
Fumio Machida1, Kumiko Tadano1, Masahiro Kawato1 　
Takayuki Ishikawa2, Yoichiro Morita3, and Masayuki Nakae3

1 NEC Service Platforms Research Laboratories, 2 NEC Business Inovation Center
3 NEC Common Platform Software Research Laboratories

This work is a part of the Secure Platform project (SPF) 
supported by Japanese ministry of Economy, Trade and 
Industry, and Association for Super-Advanced Electronics 
Technologies



 Model extension for effective directory search
◦ We propose an extension of CIM_Directory class to 

explore directories quickly on the GUI

 Study of an architecture for CIM-based integrated 
access control management
◦ We implemented the CIM-based access control manager 

by introducing additional CIM models for “reference 
monitor”

2

CIM_Directory

SPF_Directory

FileList

CIM_LogicalFile

new property



 Introduction
◦ The overview of Secure Platform project
◦ Related work

 Integrated Access control Manager (IAM)
◦ Architecture
◦ Component interactions
◦ Information models

 Implementation
◦ Policy Manipulation GUI
◦ Query performance evaluation

 Conclusion

3



 Server virtualization is used for server 
consolidation

 Concerns for security and reliability
◦ Vulnerability of virtualization software
◦ Risk of spreading of security incidents or performance 

problems across the systems

 Complexity of the configurations of security 
management tools
◦ Administrators have to configure all security 

management tools consistently 

4



 Make consolidated server systems secure and reliable
◦ Develop the security management middleware integrating 

various access control policies
◦ Develop the secure components such as secure hypervisor

5

security management middleware

secure components



 Issues on the access control management for 
consolidated server systems
◦ Access control modules are distributed over software 

layer as well as over servers
◦ All access control modules need to be configured 

consistently

  Administrator suffers from the tasks for 
configuring access control modules 

 To improve the manageability, integration of access 
control management is required

6



 Management integration
◦ Managing various access control modules from an 

integrated console

 Policy abstraction
◦ Introducing abstract policy that can be translated into the 

specific policies for access control modules

 Operation automation
◦ Automating the operations such as lookup of target 

resource information and configuration of access control 
modules

7



 Secure components
◦ SELinux and AppArmor are known as secure components for 

Linux OS using LSM framework
◦ ACM and Flask are known as secure components for Xen’s 

virtualization using XSM framework
◦ Configurations of these components are complex tasks

 Integrated access control systems
◦ Integrated access control systems for distributed systems 

have been studied in several works
◦ There is no work addressing the architecture for integrated 

access control for different resources in consolidated server 
environments

8



 Integrated Access control Manager (IAM)
◦ is organized for satisfying all the requirements
◦ adopts CIM standards for integrating various types of access 

controls

9



1. Policy Manager queries ID Manager to get the user 
information

2. Policy Manager collects target resource information 
from Resource Information Manager

3. Administrators make abstract policy

10

Resource Information 
Manager Policy Manager ID Manager

1. get user information

2. collect resource 
information abstract policy

subject

object

action

3. make policies



1. Policy Manager queries Resource Information 
Manager to get the information of the target access 
control module

2. Policy Manager compiles the abstract policy
3. Policy Manager sends configurations to the Agents
4. Agent applies the received configurations to the 

target access control module

11

Resource Information 
Manager Policy Manager

Access control 
module

Agents

1. get the information of the target

2. compile policies

3. send the configuration

4. apply the configuration



 CIM models are used in the pilot implementation for 
file access control

 Integrated file access control
◦ OS reference monitor controls the file accesses on an OS by 

access control list (ACL)
◦ IAM manages access controls for distributed multiple OS 

reference monitors with abstract policy

12

System 
administrator

IAM
Abstract 
policy ACL

OS Reference Monitor

File system

Agents

CIM models target server



 Files and Directories are the target resoruces of the OS 
reference monitor

 CIM_Directory inherits CIM_LogicalFile and logically 
represents a group of files contained in it

 SPF_Directory has a new additional property “FileList”
◦ “FileList” allows us to lookup the list of files and directories 

contained in the directory without retrieving all related 
CIM_LogicalFile instances

13

CIM_LogicalFile

CIM_Directory CIM_DataFile CIM_SymbolicLink CIM_DeviceFile

*

0..1

DirectoryContainsFile

SPF_Directory

FileList

New property for list of contained 
files and directories



 The property information of the OS reference monitor 
is required at policy translation

 The model of OS reference monitor is defined by 
extending CIM_SoftwareElement

 Types of “subject” and “object” supported by the OS 
reference monitor are expressed within the 
SPF_RMTagetSettingData

14

SPF_ReferenceMonitor SPF_RMTargetSettingData

SubjectType
ResourceType

CIM_ElementSettingData

CIM_SoftwareElement

Name
Version
…

CIM_SettingData

InstanceID
ElementName

Properties for identifying the types of 
subject and object



 The actions need to be controlled are "read", 
"write", and "execute“

 The action types are modeled by extending the 
CIM_Capabilities

15

CIM_Capabilities

InstanceID
ElementName

SPF_FileSystemCapabilities

ReadSupported
WriteSupported
ExecuteSupported

ElementCapabilities
CIM_FileSystem

Name
CreationClassName
CSCreationClassName
CSName
FileSystemType

Properties for identifying the set of 
actions supported by the file system



 We implemented the IAM using Java, XMLDB, 
XACML, CIM-XML, Xpath/Xquery, SOAP/HTTP

16

<Policy PolicyId="uuid-837423801-4837290">
  <Target>
    <Subjects>
      <Subject> 
        <SubjectMatch MatchId="string-match">
          <SubjectAttributeDesignator … />
          <AttributeValue>
　　　　　　 AGlobalRoleId</AttributeValue>
        </SubjectMatch>
      </Subject>
    </Subjects>
    <Resources><AnyResources/></Resources>
    <Actions><AnyActions/></Actions>
   </Target>
   <Rule RuleId="rule-1" effect="deny">
    <Target>
      <Subjects><AnySubjects/></Subjects>
      <Resources>
        <Resource> 
          <ResourceMatch MatchId="string-match">
            <ResourceAttributeDesignator 　 .. />
            <AttributeValue>
               AGlobalResourceId</AttributeValue>
          </ResourceMatch>
        </Resource>
      </Resouces>
      <Actions> 
        <Action>read</Action>
        <Action>write</Action>
      </Actions>
    </Target>
  </Rule>
</Policy>

XACML policy

Administrator’s Workstation 

Policy Manager

User 
info

Policy Repository
(XML-DB)

Policy Generator

Policy Deployer plugin

Resource Information 
Manager

cache

Xpath/XQuery

Manipulate and deploy policies

Target server 

Policy Deployment AgentResource Information Agent

Agents

scriptsscripts

SOAP/HTTP SOAP/HTTP

administrator



17

(1) Making resource groups on the Resource Group Editor

group name

(2) Generating abstract policies on Abstract Policy Editor

directory tree for choosing 
target resources

resource
<object>

action

role
<subject>

policy name



 Query response time is an important factor in the 
usability of the IAM

 We measured the query response time to 
Resource Information Manager

18

Client

CPU Pentium4 3.2GHz

Memory 1 GB

OS Fedora Core 6

Client workstation Target server

Virtual Machine Host Machine

CPU Intel Xeon 3GHz Intel Xeon 3GHz

Memory 512 MB 2 GB

OS Cent OS 5 Windows Server 2003
VMware Player

VM

Xpath/XQuer
y

results



 Most of queries take 2.5 seconds to get results
 Query for getting all CIM_LogicalFile instances below 

the root directory takes 5.7 seconds
◦ We can avoid this inefficient query by using proposed 

SPF_Directory model

19

Query target XQuery Response 
time (s)

Instances of computer systems for $instance in 
//INSTANCE[@CLASSNAME="CIM_ComputerSyste
m"]
return {$instance}

2.493

An instance of root directory for $instance in 
//INSTANCE[@CLASSNAME="SPF_Directory"] …

2.435

All instances just below root 
directory

for $instance in 
//INSTANCE[@CLASSNAME="SPF_Directory"] …

5.770

An instance of file access 
capabilities

for $instanceFSC in 
//INSTANCE[@CLASSNAME="SPF_FileSystemCap
abilities"] …

2.523

An instance of setting data for 
reference monitor

for $instanceRMTSD in 
//INSTANCE[@CLASSNAME="SPF_RMTargetSetti
ngData"] …

2.532



 We proposed the architecture of the integrated access 
control manager (IAM) for the consolidated server 
systems

 IAM employs CIM standards for managing various 
types of access control modules

 In the pilot implementation, we apply CIM to model the 
file and directory information, reference monitor, and 
capabilities of file system

 We propose an extension of the CIM_Directory to 
improve the efficiency of directory browsing 

20

Thank you !Thank you !


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

