
CIM Overview Document Page 1 of 3

CIM Overview Document
June 2003

Copyright © 2006 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

The Value of the Common
Information Model (Why CIM?)

The DMTF Technical Committee
Managing a business' information technology environment is a
difficult problem. It is exacerbated by each technology (and
sometimes each product offering) representing its
management data in a different way – by creating its own
semantics, terminology, data structures and protocols. Instead
of focusing on solving problems or improving overall
performance, much time and effort is spent in tying together
these “silos” of management data – trying to achieve a single
consistent representation for all management data. This
document reviews the DMTF's efforts in addressing these
issues, and shows how CIM provides a broad-reaching
abstraction layer for a business' management applications.

Introduction
Collecting the data to manage a business' computer and
networking environments is one piece of the management
problem. Another huge effort is normalizing and organizing
that data. For example, a person knows that “OK”,
“Functional”, “Operational” and “Working” are all synonyms
for a “good” status. But, how does a computer program know
this? Even worse, how does a computer program know where
to look to find this information?

 Unfortunately, the problem does not end with locating data
and determining its semantics. There is a growing need to
operate and manage a business in terms of the business’
processes and services (both required and provided). In this
environment, it is not very important for a management
system to provide the low level detail of a “bad fan.” Instead,
it becomes critical to understand what service is lost, or what
process cannot be completed (or must be failed over) due to
the fan’s failure.

End-to-end management, across multiple components, in a
distributed environment is both a reality and a requirement. It
is no longer sufficient to manage personal computers, servers,
subnets, the network core, storage and software in isolation.
These components all interoperate to provide connectivity and
services. Information passes between these boundaries.
Management must pass across these boundaries as well.

These are the problems addressed by the CIM Schema. The
goal of the schema is to provide a common way to represent
the computing and networking elements that make up a
business' systems, and the relationships between these
elements. The result is that both FCAPS management (fault,
configuration, accounting, performance and security
management) and the abstraction and decomposition of

services and business operations are addressed. The
information model defines and organizes common and
consistent semantics for equipment and services. The model's
organization is based on an object-oriented paradigm [1] –
promoting the use of inheritance, relationships, abstraction,
and encapsulation to improve the quality and consistency of
management data.

A consistent information model is a required, basic building
block for successful integration and use of management data
both within an organization's business and IT departments,
and between management vendors. CIM provides this
information model for the enterprise and Internet
management domains. Through CIM, more advanced
customer solutions for inventory tracking, root cause analysis,
and cross-vendor administration can be cooperatively
developed.

Combining the best of all worlds, the CIM Schema
incorporates concepts from other standards – such as the
Internet Engineering Task Force's (IETF's) standard MIBs [2],
and the International Telecommunication Union (ITU) [3] -
and organizes the information using the CIM hierarchy. The
other standards are not ignored or dismissed. They are reused
and mapped into CIM.

Object-Oriented Modeling
The value of CIM stems from its object orientation [1]. Object
design provides support for the following capabilities, that
other “flat” data formats do not allow:

 Abstraction and classification – To reduce the complexity,

high level and fundamental concepts (the “objects” of the
management domain) are clearly defined. These objects
are then grouped into types of management data
(“classes”) by identifying their common characteristics
and features (properties), relationships (associations) and
behavior (methods).

 Object inheritance – Below the high level and

fundamental objects, additional detail can be provided
through subclassing. A subclass “inherits” all the
information (properties, methods and associations)
defined for its higher level objects. Subclasses are created
to put the right level of detail and complexity at the right
level in the model, and to deliver continuity of
management information. This object inheritance can be
visualized as a triangle – where the top of the triangle is a
“fundamental” object, and more detail and more classes
are defined as you move closer to the base.

 Dependencies, component and connection associations –

Relationships between objects are extremely powerful

CIM Overview Document Page 2 of 3

concepts. Before CIM, management standards captured
relationships in multi-dimensional arrays or cross-
referenced data tables. The object paradigm offers a richer
and more expressive approach in that relationships and
associations are directly modeled. In addition, the way
that these relationships are named and defined describe
the semantics of the object associations (consider, for
example, the Dependency and Component associations).
Further semantics and information can be provided in
properties (specifying common characteristics and
features) of the associations.

 Standard, inheritable methods – An object’s behavior is

called a method, and by including methods CIM enables
IT managers to act on management data. The ability to
define standard object behavior (methods) is another
form of abstraction. Bundling standard methods with an
object’s data is encapsulation. Imagine the flexibility and
possibilities of a standard able to invoke a “Reset”
method against a hung device…regardless of the
hardware, operating system or device.

The Goals and Benefits of CIM
Modeling goals were briefly mentioned in the Introduction
(FCAPS management and the abstraction/decomposition of
services). However, it is important to discuss the goals and
uses of CIM, in a bit more detail.

Basically, all goals and uses derive from the ability to define a
single model for management information and service
semantics – and to position everything relative to that model.
Low-level equipment details and high-level service
composition are both supported – using different abstractions
in the object hierarchy. Via relationships and associations, the
roles of the equipment, software and low-level services (in
providing functionality and supporting business processes) can
be described. The tie of multiple settings (configurations) or
statistics (performance management) to an element is also
enabled via associations and the use of a well-understood
object hierarchy. The object hierarchy indicates “where to
look” for certain data, while the associations describe the
relationships and applicability of the instances.

Of special significance is CIM's facilitation of data reuse,
delivering consistency of information across products and
releases of products. For example, a chassis is identified by the
same class of objects regardless of whether it is a personal
computer chassis or the packaging of a high-end router. The
basic abstraction of a chassis holds true in both cases – similar
to a person’s ability to identify a “dog”, despite variations
across species.
In the computing and networking world, there are many
general abstractions that can be defined across vendors,
products and problem domains. Consider, for example, the
concepts of service (such as diagnostics and databases),
devices (such as power supplies or monitors), or administrative
domains. These common and consistent data semantics can be

provided independent of the repository of the data or the
protocol transport used to retrieve it.

Taking a customer’s perspective, costs can be contained since
a single set of management tools and applications can be
written, operating against clearly defined data. And, these tools
need not change for each product and release since they are
based on a single model and consistent abstractions. (Of
course, change to support new product or management
features would be encouraged, but the extent of this change is
minimized.)

For example, let us examine the concept of service in more
detail. All functions can be abstracted to a high-level concept
called a "Service" in CIM. This class defines methods to start
and stop an instance of Service, as well as properties indicating
the Service’s status and whether it is currently running. From
this abstract class, "standard" print, diagnostic or storage
management subclasses can be defined. All of these subclasses
can be started and stopped using the same, high level methods.
All of their statuses can be checked. Well understood
relationships can be traversed to obtain more information,
such as analyzing dependencies.

Another goal and benefit of CIM is its flexibility and support
for extensions. This means a vendor or user can build on CIM
to cover particular management areas. New subclasses may be
defined, and/or new instances of existing classes created, as
required to describe a computing or networking environment.
For example, a customer could define a new high-level Service
unique to their environment, and then specify dependencies
on specific sub-services provided by various vendors. The
vendors’ services would also be defined using the model and
therefore inherit/use the same methods and properties.
Default settings for the sub-services could also be used and
manipulated.

Using CIM, tools can now focus on managing, versus bringing
together “silos” of data. Coupling the model with standard,
interoperable access mechanisms (such as the DMTF’s CIM
Operations over HTTP [4] and a CIM XML DTD [5], IETF’s
LDAP APIs [2] in a directory environment, or OMG’s Corba
[6]) creates a complete management environment. Both
standard information and standard access are available. The
DMTF's goal is to enable a wide variety of access and
implementation options. Our focus is on the data – which can
be implemented in various ways (through repositories and
infrastructures), and accessed via various protocols and
encodings.

The CIM Schema is about well-understood and abstracted
information. Mappings to a relational database, object oriented
store, LDAP directory and other repositories are possible. The
schema is designed to be "technology-neutral" with respect to
its repository and access protocol. This is a key benefit of the
model since there is no single implementation that fits all
environments.

CIM Overview Document Page 3 of 3

Closing Remarks
Modeling a business’ computing and networking environments
can be a daunting task. This is the ultimate goal of the CIM
Schema. With technology continually advancing, the work will
never be complete. For this reason, the model is written
assuming an incremental development approach, with both
top-down and bottom-up design. Details are present to allow
FCAPS analyses (the bottom-up approach) and to map the
best details from the various other standards bodies such as
IETF and ITU. CIM also provides general abstractions and
the ability to compose/decompose higher-level services and
functions, permitting management at a less granular level (the
top-down approach). No longer are there “silos” of data that
must be translated, interpreted and normalized. With CIM,
data has meaning, is consistent across vendors and products,
and is more than bits on the wire.

References
[1] DMTF CIM Concepts White Paper and, DMTF CIM
Specification
 [2] IETF RFCs
[3] ITU
[4] DMTF CIM Operations over HTTP
[5] DMTF CIM XML DTD
[6] OMG Corba

