The information in this presentation represents a snapshot of work in progress within the DMTF.

This information is subject to change without notice. The standard specifications remain the normative reference for all information.

For additional information, see the DMTF website.

This information is a summary of the information that will appear in the specifications. See the specifications for further details.
SPDM’s Overall Goals

- All SPDM features fall into at least one of these main goals:
 - Device Attestation and Authentication
 - Secure Communication over any transport
- Device Attestation and Authentication
 - The ability to attest various aspects of a device such as firmware integrity and device identity
- Secure Communication over any Transport
 - Provide the ability to secure communication of any data or management traffic over any transport
 - Work with industry partners to ensure data in-flight is secure for all parts of the infrastructure (e.g. storage, network fabrics, etc.)
SPDM Feature Summary

• Version 1.0:
 • Measurement Support
 • Device Attestation and Authentication

• Version 1.1:
 • Secure Session
 • Public Key Exchange
 • Symmetric Key Exchange
 • Mutual Authentication

• Version 1.2:
 • Supports installation of certificates
 • Allows for alias certificates derived from device certificates
 • Send and receive large SPDM messages (chunks)
 • Added SM2, SM3, SM4 algorithms to supported list
 • New OIDs added
 • Deprecated basic mutual authentication in CHALLENGE and CHALLENGE_AUTH
SPDM 1.3 Feature Additions

• Added Eventing Mechanism
 • Allows either side of SPDM communication to notify another side about any changes in its state during secure session.

• Multiple Keys support
 • Added Generic Certificate Model.
 • Added Multiple Asymmetric Key capability.

• Measurement Enhancements
 • Added ability to retrieve only measurements that are pending changes but not applied yet
 • Added ability for Responder to notify Requester if certain measurement was changed after it was reported to Requester in case when measurements are requested one-by-one in multiple GET_MEASUREMENT requests.
 • Measurement Extension Log (MEL) and Hash Extended Measurement (HEM) for tracking changes including changes to measurements
 • Add a standard manifest format for a measurement block

• Miscellaneous:
 • Added GET_ENDPOINT_INFO for collecting generic data about endpoint participating in SPDM communication
SPDM 1.3 Feature Deprecation

• Session
 • Removed restriction on Session ID reuse.
SPDM Change Awareness

- **Statement of Backwards Compatibility:**
 - SPDM message format will maintain bit-wise and semantic compatibility for existing fields.
 - SPDM may append new fields to an existing message.
 - SPDM may make use of reserved values.
 - SPDM may deprecate a valid value.
 - SPDM may make operational changes to fix a security issue or strengthen the security posture of the operation even if they are technically incompatible.

- Therefore, SPDM 1.3 contains changes that may be deemed technically incompatible with prior versions.
 - Please see change notes at the end of DSP0274 1.3 for details.
 - The Version field is in every packet and can be used to identify differences.
Event Mechanism

- All event notifications happen inside a Secure Session
- Event Recipient can collect information about Event Types supported, and then subscribe to interesting ones.
- Event Types could be extended by other standards bodies
Multi Key Support

- Previous versions of SPDM only allowed one key pair per negotiated asymmetric algorithm
- Ability to use more than one key pair for a negotiated asymmetric algorithm
 - Up to 8 key pairs supported per asymmetric algorithm
- Every key pair could be dedicated for use case, like different key pairs for CHALLENGE and GET_MEASUREMENTS signature generations
- Requester is allowed to associate each key pair with an individual device certificate to enable one or more use cases
- Key pairs are identified by a unique KeyPairID
Generic Certificates Support

- **What is a Generic Certificate or Certificate chain?**
 - A Certificate or Certificate Chain that could not be qualified as a Device Certificate nor Alias Certificate.

- **New Feature**
 - Generic Certificate model is introduced to support Multiple Asymmetric Keys use cases.
 - Generic Certificate Model is the most flexible (or least restrictive) of the certificate models.
 - Generic Certificate Model applies to certificates in slots greater than 0.
 - A Device or Alias Certificate is required in slot 0.
SPDM Certificate Models

DeviceCert Model

Root CA

 Intermediate CA

...

Device Certificate

AliasCert Model

Root CA

 Intermediate CA

...

Device Certificate

GenericCert Model

Root CA

 Intermediate CA

...

Generic Leaf Certificate

Alias Certificate
New Measurements

• `NewMeasurementRequested` field is introduced in the request attributes of the GET_MEASUREMENTS request.
 • If Responder has any changes affecting measurements that are requested by Requester but not yet applied (for example, pending changes due to a firmware update), then these new measurement values should be returned instead of current measurements (if requested using the value in the field above)
 • If there are no pending changes, then current measurements are returned regardless of the value in `NewMeasurementRequested` field
Measurement Extension Log (MEL) and Hash-Extended Measurements (HEM)

- Responder may support reporting of measurements thru an “extend” scheme
 - Initialize $HEM = \text{HashSize bytes of 0s}$
 - For each extend operation, perform $HEM = \text{hash(Concatenate}(HEM, \text{DataToExtend}))$ for all data elements to extend
- The MEL is the collection of DataToExtend
 - Could include configuration measurements, firmware measurements, version number, etc.
- An example of such a scheme is the Platform Configuration Register "extend" function in Trusted Platform Modules.
- There is a new MeasurementValueType 0x08 introduced for HEM
Structured Manifest format for a measurement block

- Data structure that describes the contents of other indices or contains measurements itself.

- Either Free Format or Structured
 - Free Format is implementation specific
 - Structured Format provides a Standards body or vendor-defined header, and manifest data in the format defined by the Standards body or vendor
Endpoint Info

- The GET_ENDPOINT_INFO request message retrieves general information from an endpoint.
 - The SubCode parameter is used to differentiate between operations.
 - The message supports a signature.
- Currently only one Subcode is defined: \textit{DeviceClassIdentifier}
 - The \textit{DeviceClassIdentifier} response returns information that can be used to identify the class of device for the Responder in question.
 - For instance, DeviceClassIdentifier could contain PCI Vendor ID and Device ID fields.