

Disclaimer

 The information in this presentation represents a snapshot of work in progress within the DMTF.

- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the DMTF website.
- This information is a summary of the information that will appear in the specifications. See the specifications for further details.

Alliance Partners and Adopters

SPDM's Overall Goals

• All SPDM features fall into at least one of these main goals:

- Device Attestation and Authentication
- Secure Communication over any transport

Device Attestation and Authentication

- The ability to attest various aspects of a device such as firmware integrity and device identity
- Secure Communication over any Transport
 - Provide the ability to secure communication of any data or management traffic over any transport
 - Work with industry partners to ensure data in-flight is secure for all parts of the infrastructure (e.g. storage, network fabrics, etc.)

SPDM Feature Summary

- Version 1.0:
 - Measurement Support
 - Device Attestation and Authentication
- Version 1.1:
 - Secure Session
 - Public Key Exchange
 - Symmetric Key Exchange
 - Mutual Authentication
- Version 1.2:
 - Supports installation of certificates
 - Allows for alias certificates derived from device certificates
 - Send and receive large SPDM messages (chunks)
 - Added SM2, SM3, SM4 algorithms to supported list
 - New OIDs added
 - Deprecated basic mutual authentication in CHALLENGE and CHALLENGE_AUTH

SPDM 1.3 Feature Additions

Added Eventing Mechanism

• Allows either side of SPDM communication to notify another side about any changes in its state during secure session.

• Multiple Keys support

- Added Generic Certificate Model.
- Added Multiple Asymmetric Key capability.

Measurement Enhancements

- Added ability to retrieve only measurements that are pending changes but not applied yet
- Added ability for Responder to notify Requester if *certain measurement was changed* after it was reported to Requester in case when measurements are requested one-by-one in multiple GET_MEASUREMENT requests.
- Measurement Extension Log (MEL) and Hash Extended Measurement (HEM) for tracking changes including changes to measurements
- Add a standard manifest format for a measurement block

• Miscellaneous:

 Added GET_ENDPOINT_INFO for collecting generic data about endpoint participating in SPDM communication

www.dmtf.org

SPDM 1.3 Feature Deprecation

- Session
 - Removed restriction on Session ID reuse.

www.dmtf.org

SPDM Change Awareness

- Statement of Backwards Compatibility:
 - SPDM message format will maintain bit-wise and semantic compatibility for existing fields.
 - SPDM may append new fields to an existing message.
 - SPDM may make use of reserved values.
 - SPDM may deprecate a valid value.
 - SPDM may make operational changes to fix a security issue or strengthen the security posture of the operation even if they are technically incompatible.
- Therefore, SPDM 1.3 contains changes that may be deemed technically incompatible with prior versions.
 - Please see change notes at the end of DSP0274 1.3 for details.
 - The Version field is in every packet and can be used to identify differences.

Event Mechanism

- All event notifications happen inside a Secure Session
- Event Recipient can collect information about Event Types supported, and then subscribe to interesting ones.
- Event Types could be extended by other standards bodies

Multi Key Support

- Previous versions of SPDM only allowed one key pair per negotiated asymmetric algorithm
- Ability to use more than one key pair for a negotiated asymmetric algorithm
 - Up to 8 key pairs supported per asymmetric algorithm
- Every key pair could be dedicated for use case, like different key pairs for CHALLENGE and GET_MEASUREMENTS signature generations
- Requester is allowed to associate each key pair with an individual device certificate to enable one or more use cases
- Key pairs are identified by a unique KeyPairID

Generic Certificates Support

• What is a Generic Certificate or Certificate chain?

• A Certificate or Certificate Chain that could not be qualified as a Device Certificate nor Alias Certificate.

New Feature

- Generic Certificate model is introduced to support Multiple Asymmetric Keys use cases.
- Generic Certificate Model is the most flexible (or least restrictive) of the certificate models.
- Generic Certificate Model applies to certificates in slots greater than 0.
 - A Device or Alias Certificate is required in slot 0.

SPDM Certificate Models

www.dmtf.org

New Measurements

- `NewMeasurementRequested` field is introduced in the request attributes of the GET_MEASUREMENTS request.
 - If Responder has any changes affecting measurements that are requested by Requester but not yet applied (for example, pending changes due to a firmware update), then these new measurement values should be returned instead of current measurements (if requested using the value in the field above)
 - If there are no pending changes, then current measurements are returned regardless of the value in `NewMeasurementRequested` field

Measurement Extension Log (MEL) and Hash-Extended Measurements (HEM)

- Responder may support reporting of measurements thru an "extend" scheme
 - Initialize HEM = HashSize bytes of 0s
 - For each extend operation, perform HEM = hash(Concatenate(HEM, DataToExtend)) for all data elements to extend
- The MEL is the collection of DataToExtend
 - Could include configuration measurements, firmware measurements, version number, etc.
- An example of such a scheme is the Platform Configuration Register "extend" function in Trusted Platform Modules.
- There is a new MeasurementValueType 0x08 introduced for HEM

Structured Manifest format for a measurement block

- Data structure that describes the contents of other indices or contains measurements itself.
- Either Free Format or Structured
 - Free Format is implementation specific
 - Structured Format provides a Standards body or vendor-defined header, and manifest data in the format defined by the Standards body or vendor

Endpoint Info

- The GET_ENDPOINT_INFO request message retrieves general information from an endpoint.
 - The SubCode parameter is used to differentiate between operations.
 - The message supports a signature.
- Currently only one Subcode is defined: *DeviceClassIdentifier*
 - The DeviceClassIdentifier response returns information that can be used to identify the class of device for the Responder in question.
 - For instance, DeviceClassIdentifier could contain PCI Vendor ID and Device ID fields.