

Disclaimer

- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the DMTF website.
- This information is a summary of the information that will appear in the specifications. See the specifications for further details.

Component Threat Vectors

SPDM's Overall Goals

- All SPDM features fall into at least one of following main goals:
- Device Attestation and Authentication
 - The ability to attest various aspects of a device such as firmware integrity and device identity
- Secure Communication over any Transport
 - Provide the ability to secure communication of any data or management traffic over any transport
 - Work with industry partners to ensure data in-flight is secure for all parts of the infrastructure (e.g. storage, network fabrics, etc.)

Alliance Partners and Adopters

SPDM Feature Summary (2023)

- Version 1.0:
 - Measurement Support
 - Device Attestation and Authentication
- Version 1.1:
 - Secure Session
 - Public Key Exchange
 - Symmetric Key Exchange
 - Mutual Authentication
- Version 1.2:
 - Supports installation of certificates
 - Allows for alias certificates derived from device certificates
 - Send and receive large SPDM messages (chunks)
 - Added SM2, SM3, SM4 algorithms to supported list
 - New OIDs added
 - Deprecated basic mutual authentication in CHALLENGE and CHALLENGE_AUTH

SPDM 1.3 Features

- Event Notification Mechanism
- Multi Key Support
- New Measurements
- Measurement Extension Log
- Structured Manifest format
- End Point Info

Event Mechanism

- Subscribed events
 - Interested Event Types
- All event notifications in a Secure Session
- Event Types could be extended by other standards bodies
- Can discovery supported event types and subscribe
- Notifications are ACK'd

Multi Key Support

- Previous versions of SPDM only allowed one key pair per negotiated asymmetric algorithm
- Ability to use more than one key pair for a negotiated asymmetric algorithm
 - Up to 8 key pairs supported per asymmetric algorithm
- Every key pair could be dedicated for use case, like different key pairs for CHALLENGE and GET_MEASUREMENTS signature generations
- Requester is allowed to associate each key pair with an individual device certificate to enable one or more use cases
 - Multi Key Support enables additional use cases such as certificate provisioning in production or customer environments
 - Improved security posture
- Key pairs are identified by a unique KeyPairID

Generic Certificates Support

- What is a Generic Certificate or Certificate chain?
 - A Certificate or Certificate Chain that could not be qualified as a Device Certificate nor Alias Certificate
- New Feature
 - Generic Certificate model is introduced to support Multiple Asymmetric Keys use cases
 - Generic Certificate Model is the most flexible (or least restrictive) of the certificate models
 - Generic Certificate Model applies to certificates in slots greater than 0.
 - A Device or Alias Certificate is required in slot 0.

New Measurements

- `NewMeasurementRequested` field is introduced in the request attributes of the GET_MEASUREMENTS request.
 - If Responder has any changes affecting measurements that are requested by Requester but not yet applied (for example, pending changes due to a firmware update), then these new measurement values should be returned instead of current measurements (if requested using the value in the field above)
 - If there are no pending changes, then current measurements are returned regardless of the value in `NewMeasurementRequested` field

 This enables the Requester to prepare as well as to apply policy as per the system

Measurement Extension Log (MEL) and Hash-Extended Measurements (HEM)

- Responder may support reporting of measurements thru an "extend" scheme
 - Initialize HEM = HashSize bytes of 0s
 - For each extend operation, perform HEM = hash(Concatenate(HEM, DataToExtend)) for all data elements to extend
- The MEL is the collection of DataToExtend
 - Could include configuration measurements, firmware measurements, version number, etc.
 - The MEL may be preserved across resets
- An example of such a scheme is the Platform Configuration Register "extend" function in Trusted Platform Modules.
- There is a new MeasurementValueType 0x08 introduced for HEM

MEL and HEM

Structured Manifest format for a measurement block

- Data structure that describes the contents of other indices or contains measurements itself.
- Either Free Format or Structured
 - Free Format is implementation specific
 - Structured Format provides a Standards body or vendor-defined header, and manifest data in the format defined by the Standards body or vendor

Endpoint Info

- The GET_ENDPOINT_INFO request message retrieves general information from an endpoint.
 - The SubCode parameter is used to differentiate between operations.
 - The message supports a signature.
- Currently only one Subcode is defined: *DeviceClassIdentifier*
 - The DeviceClassIdentifier response returns information that can be used to identify the class of device for the Responder in question.
 - For instance, DeviceClassIdentifier could contain PCI Vendor ID and Device ID fields.

And Beyond.....

FEATURES UNDER DEVELOPMENT BY THE SPDM WG

SPDM over TCP/IP Binding

• Adds a binding spec (DSP0287) to support SPDM over TCP/IP connections

- Target is Ethernet-based fabrics and use in conjunction with RDMA
- Provides standardized way to establish the security of a TCP/IP fabric before opening a memory window
- Reuses existing SPDM protocol (DSP0274)
- Sample use cases
 - Provisioning certificates from a CA server to a device
 - Using a remote Attester to offload SPDM attestation from the local PA-RoT
 - Allowing an SPDM Requester to retrieve reference measurements
 - Secure data transfer between a device and server that is lighter than HTTP/TLS

Requester	Responder	Requester	Responder
Initiate	CP connection	Initiate TCP	conn ectio n
hand	TCP shake_request	т	CP
		SPDM re	equest
	A request	V	response
		SPDM re	
	1 request	SPDM	respo nse
5P	DM response	Close TCP	connection
Close T	CP connection	.dmtf.org	

SPDM over Storage Binding

• Adds a binding spec (DSP0286) to support SPDM over storage transports

- Supports SAS, SATA, and NVMe over fabrics
- Leverages existing storage commands (IF-SEND and IF-RECV)
- Reuses existing SPDM protocol (DSP0274)
- Sample use cases
 - Authenticate a drive before using it for data storage
 - Attest the state of a drive
 - Establish a secure session to exchange secrets with a drive_

Authorization Specification

Creates a new specification to enable authorization

 Provides a mechanism to determine whether the requesting entity has the correct privileges to perform a protected action

Generalized approach

- Leverages SPDM Secured Messages
- Can be used for SPDM, PLDM, vendor-defined messages and more
- Supports multiple sets of privileges
- Scalable to support large numbers of endpoints (data centers)

Take Aways

- SPDM protocol is a prominent industry standard for Component and Device Attestation
- Has traction among other industry standard organizations and among component and system vendors
 - DMTF plans to submit the SPDM specification to ISO for ratification
- Use cases and specification work are expanding
- DMTF seeks participation, collaboration and input from the industry

Backup

SPDM over MCTP including Encrypted Messages

Figure 2 — SPDM over MCTP

