

Redfish for Liquid Cooling Equipment

DMTF Redfish Forum November 2023

Introduction

Redfish extended into DCIM in 2019

- Initial support for power infrastructure and power distribution units
- Liquid cooling systems added in release 2023.1

Benefits industry in several ways

- Client software obtains data using a single protocol, represented in a standard data model, avoiding ongoing work to adapt vendor-specific
- Equipment vendors leverage Redfish ecosystem and freely-available open source tools for "housekeeping" software functions
 - Includes: event configuration, firmware update, security & certificates mgmt, etc.
- With a consistent model, DCIM equipment data can be correlated with the associated IT gear, enabling more advanced, integrated management functionality
 - Numerous methods to increase energy efficiency and equipment utilization if DCIM and IT controls can be tightly coupled
 - But we have to be able to measure and monitor first...

THERMAL EQUIPMENT MODEL

Copyright 2023 © DMTF

ThermalEquipment resource

Single resource under ServiceRoot

- Follows design pattern used for **PowerEquipment**
- Contains links to all cooling systems and related equipment
- Used primarily for discovery of managed equipment
- Can expand to include other equipment categories, such as heat re-use
- Links to Resource Collections of:
 - Coolant Distribution Units (CDU's)
 - Immersion Cooling Units
 - Heat Exchangers
 - Also leverages the ThermalSubsystem under Chassis for Fan resources
 - Cooling Loops
 - Both facility-level (FWS) and rack/secondary (TCS) loops

Thermal Equipment Model

COOLING LOOP MODEL

Copyright 2023 © DMTF

www.dmtf.org

6

Cooling Loop and Coolant Connector Models

CoolingLoop model

- Describes the physical characteristics and capacities of a cooling loop
- Loop can be self-contained (within a rack or group of racks)
 - Or can be facility-wide (primary loops from external chillers, etc.)
- Shows connectivity to equipment
 - Provides means for both "names" (strings) and links to resources
- CoolantConnector models connections to a CoolingLoop
 - Describes the "supply" and / or "return" side of the managed equipment
 - An instance is either a connection pair, or an individual supply or return
 - Metrics are gathered at these connection points
 - Allows independent metrics for each piece of equipment connected to the loop
 - Can also support "in line" measurement points using the consistent data model
 - Provide information about the connected loop if available
 - User-entered "loop name" provides a connection path through the infrastructure

Cooling Loop – Rack-level self-contained example

Cooling Loop – facility level example

www.dmtf.org

Copyright 2023 © DMTF

CoolingLoop schema

- CoolingLoopCollection placed under ThermalEquipment
- Reports product, location, and capacity for the loop
- Describes Coolant properties
 - CoolantType Water, Dielectric, Hydrocarbon, Fluorocarbon
 - AdditiveName and AdditivePercent based on CoolantType
 - ServicedDate and ServiceHours Track maintenance requirements
 - SpecificHeatkJoulesPerKgK and DensitykgPerCubicMeter info for clients
- Cooling loop-level metrics
 - CoolantQuality Normal or Abnormal
 - CoolantLevelStatus (OK, Warning, Critical) and CoolantLevelPercent
- Methods to represent connections to related equipment
 - ConsumingEquipmentNames[] User-defined strings for unmanaged gear
 - SupplyEquipmentNames[] User-defined strings for upstream gear
 - CoolingManagerUri User-defined link to a management console

11

CoolingLoop resource example

COOLING UNIT MODEL

Copyright 2023 © DMTF

www.dmtf.org

12

CoolingUnit schema and resources

- Unified schema covers many types of cooling gear
 - Equipment that cannot be modeled by a **Chassis** and **ThermalSubsystem**
 - Simple heat exchangers or manifolds may be covered as a Chassis alone
 - CoolingUnit equipment will have a containing Chassis resource
 - Share common modeling and property definitions
 - *EquipmentType* property provides specific identification
- Resource contents
 - General product identification model, manufacturer, serial number, etc.
 - Versioning Hardware revision, firmware version, date of manufacture
- Links to subordinate and related resources
 - Sensors, LeakDetection, EnvironmentMetrics
 - Primary (input) and Secondary (output) CoolantConnectors
 - Subsystems: Pumps, Filters, Reservoirs
 - Chassis that contains the equipment

Cooling Unit Model

CoolingUnit resource example

```
"@odata.type": "#CoolingUnit.v1_0_0.CoolingUnit",
"Id": "1",
"EquipmentType": "CDU",
"Name": "Rack #4 Cooling Distribution Unit",
"FirmwareVersion": "3.2.0",
"Version": "1.03b",
"ProductionDate": "2020-12-24T08:00:00Z",
"Manufacturer": "Contoso",
"Model": "BRRR4000",
"SerialNumber": "29347zT536",
"PartNumber": "ICE-9".
"Coolant": {
   "CoolantType": "Hydrocarbon"
},
"AssetTag": "PDX5-92381",
"Status": {
    "State": "Enabled",
    "Health": "OK"
},
"LeakDetection": { "@odata.id": < Link to LeakDetection > },
"PrimaryCoolantConnectors": { "@odata.id": < Link to CoolantConnectorCollection > },
"SecondaryCoolantConnectors": { "@odata.id": < Link to CoolantConnectorCollection > },
"Pumps": { "@odata.id": < Link to PumpCollection > },
"Filters": { "@odata.id": < Link to FilterCollection > },
"EnvironmentMetrics": { "@odata.id": < Link to EnvironmentMetrics > },
 < TRUNCATED >
```

CoolantConnector schema

• Describes a coolant-carrying connector and its equipment connections

- Modeled either as a connector pair, or an individual "supply" or "return"
- Provides numerous sensor readings
 - Flow, Temperature, Pressure on both supply and return
- If known, provide link to CoolingLoop
 - Or the loop name and Manager URI if known and populated by end user
- Main monitoring resource for the cooling unit's functionality
 - Primary coolant connectors input from facility chillers or other sources
 - Secondary coolant connectors
 output from the cooling unit to feed "consuming" equipment

CoolantConnector resource example

```
"@odata.type": "#CoolantConnector.v1_0_0.CoolantConnector",
"Id": "Chiller",
"Name": "Primary Input from Chiller",
"Status": {
    "Health": "OK"
}.
"CoolantConnectorType": "Pair",
"CoolingLoopName": "Building Chiller",
"Coolant": {
     "CoolantType": "Water",
     "AdditiveName": "Generic cooling water biocide",
     "AdditivePercent": 0.25
}
"RatedFlowLitersPerMinute": 120,
"RatedPressurekPa": 1600,
"SupplyTemperatureCelsius": {
     "DataSourceUri": "/redfish/v1/CoolingEquipment/RackCDUs/1/Sensors/LoopASupplyTemp",
     "Reading": 14.8
},
"SupplyPressurekPa": {
    "Reading": 319.6
},
"DeltaTemperatureCelsius": {
     "Reading": 19.3
},
< TRUNCATED >
```

Example: Rear Door Heat Exchanger

The heat exchanger model includes a **Chassis** with a **ThermalSubsystem** that describes the **Fans**

ThermalMetrics has new sensor excerpts to describe airflow and delta pressure

CDU *primary* **CoolantConnector** attaches to the facility cooling loop and its *secondary* **CoolantConnector** connects to a technology loop, which in turn connects to the heat exchanger via **CoolantConnector**

OR the heat exchanger directly connects to the facility loop via a **CoolantConnector**

Subsystems for CoolingUnit and ThermalEquipment

- Equipment that may appear as a subsystem of a **CoolingUnit**
 - Model this equipment as a subordinate resources to an individual CoolingUnit
- These schemas contain basic inventory and identification data
 - More specific properties are easily added as feedback is received
- Pump resource collection
 - Pump speed, product information
- Reservoir resource collection
 - Fill level, capacity, internal pressure, product information
- Filter resource collection
 - Service time / install time, product information

LEAK DETECTION

Copyright 2023 © DMTF

www.dmtf.org

20

LeakDetection schema

- Resource to describe leak detection equipment and report leaks
 - Allows discovery of detection equipment to validate customer requirements
- DetectorGroups supports multiple "zones" of detection
 - Each group represents a detection zone
 - Made up of one or more *LeakDetector instances*
 - Can also include a humidity sensor
 - "Policy" for what constitutes a reported leak is left to implementation
 - Assumes this is manufacturer or configuration based, not user-defined
- Status object provides means to report leaks
 - Will define messages for reporting leaks as *Conditions*

LeakDetection resource example

```
"@odata.type": "#LeakDetection.v1_0_0.LeakDetection",
  "Name": "Leak Detection Systems",
                                                In this example with one
  "Status": {
                                                LeakDetectorGroup, there are three
      "State": "Enabled",
                                                sensors, with the implementation deciding
      "Health": "OK",
                                                the policy under which a leak is reported
      "Conditions": []
  },
  "LeakDetectorGroups": [{
      "GroupName": "Detectors under and around the CDU",
      "HumidityPercent": {
                                        Humidity reading, with an internal
          "Reading": 45
                                        threshold to indicate a leak
      },
      "Detectors": [{
               "DataSourceURI": "/redfish/v1/ThermalEquipment/CDUs/1/LeakDetection/LeakDetectors/1",
               "PhysicalContext": "Chassis",
               "DetectorState": "OK"
                                                        Two types of Detectors, which will indicate a
          },
                                                        leak with a DetectorState of "Alert"
               "DataSourceURI": "/redfish/v1/ThermalEquipment/CDUs/1/LeakDetection/LeakDetectors/2",
               "PhysicalContext": "Chassis",
               "DetectorState": "OK"
  }],
                                         www.dmtf.org
Copyright 2023 © DMTF
                                                                                                      22
```

Call to Action

• Implement Redfish support on your cooling equipment

- Leverage the existing Redfish software ecosystem
- Enable higher-level client software functions
 - Link infrastructure power & cooling to IT gear performance data
 - Share status information and provide event notification
- Provide feedback on the data model
 - Redfish 2023.2 release incorporated feedback from early adopters
 - CoolingLoop, CoolantConnector redundancy support added
 - Redfish releases typically occur 3-4 times annually
 - Simple questions or suggestions are welcome on the public forum
 - Feedback can be submitted to the DMTF directly

Getting involved in Redfish

- Redfish Standards page
 - Schemas, Specs, Mockups, White Papers & more
 - <u>https://www.dmtf.org/standards/redfish</u>
- Redfish Developer Portal
 - Redfish Interactive Resource Explorer
 - Educational material, documentation & other links
 - https://redfish.dmtf.org
- Redfish User Forum
 - User forum for questions, suggestions and discussion
 - https://www.redfishforum.com
- DMTF Feedback Portal
 - Provide feedback or submit proposals for Redfish standards
 - <u>https://www.dmtf.org/standards/feedback</u>
- DMTF GitHub organization
 - Open source tools and libraries for DMTF standards
 - <u>https://www.github.com/DMTF</u>

www.dmtf.org

Redfish

Q&A & Discussion

