Introduction

- Redfish extended into DCIM in 2019
 - Initial support for power infrastructure and power distribution units
 - Liquid cooling systems added in release 2023.1
- Benefits industry in several ways
 - Client software obtains data using a single protocol, represented in a standard data model, avoiding ongoing work to adapt vendor-specific
 - Equipment vendors leverage Redfish ecosystem and freely-available open source tools for “housekeeping” software functions
 - Includes: event configuration, firmware update, security & certificates mgmt, etc.
 - With a consistent model, DCIM equipment data can be correlated with the associated IT gear, enabling more advanced, integrated management functionality
 - Numerous methods to increase energy efficiency and equipment utilization if DCIM and IT controls can be tightly coupled
 - But we have to be able to measure and monitor first…
ThermalEquipment resource

• Single resource under **ServiceRoot**
 • Follows design pattern used for **PowerEquipment**
 • Contains links to all cooling systems and related equipment
 • Used primarily for discovery of managed equipment
 • Can expand to include other equipment categories, such as heat re-use

• Links to Resource Collections of:
 • Coolant Distribution Units (CDU’s)
 • Immersion Cooling Units
 • Heat Exchangers
 • Also leverages the **ThermalSubsystem** under **Chassis** for **Fan** resources
 • Cooling Loops
 • Both facility-level (FWS) and rack/secondary (TCS) loops
Thermal Equipment Model

Redfish Service Root

Chassis collection

“Rack CDU #7” Chassis

Thermal Equipment
/redfish/v1/ThermalEquipment

CDU Collection

“Rack CDU #7” CoolingUnit

HeatExchanger Collection

“Hx 3” CoolingInit

ImmersionUnit Collection

“Tank 4” CoolingUnit

Cooling Loop Collection

“Rack #7” Cooling Loop

External Collection Resource
COOLING LOOP MODEL
Cooling Loop and Coolant Connector Models

- **CoolingLoop** model
 - Describes the physical characteristics and capacities of a cooling loop
 - Loop can be self-contained (within a rack or group of racks)
 - Or can be facility-wide (primary loops from external chillers, etc.)
 - Shows connectivity to equipment
 - Provides means for both “names” (strings) and links to resources

- **CoolantConnector** models connections to a CoolingLoop
 - Describes the “supply” and / or “return” side of the managed equipment
 - An instance is either a connection pair, or an individual supply or return
 - Metrics are gathered at these connection points
 - Allows independent metrics for each piece of equipment connected to the loop
 - Can also support “in line” measurement points using the consistent data model
 - Provide information about the connected loop if available
 - User-entered “loop name” provides a connection path through the infrastructure
Cooling Loop – Rack-level self-contained example

This **CoolingLoop** is within the rack, and can be modeled and populated by the RackCDU’s Redfish service.

System’s **CoolantConnector** links to the external **CoolingLoop** (in the Rack CDU).

Rack CDU *secondary* **CoolantConnector** connects to a **CoolingLoop** resource.

Rack CDU *primary* **CoolantConnector** links to a **CoolingLoop** resource in the facility, or provides just the *LoopName*.
Cooling Loop – facility level example

In this example, the CDU has no knowledge about the chiller or the attached cooling loop, but can provide the loop name and sensor readings in CoolantConnector.

Existing equipment isn’t currently managed via Redfish, but is controlled by a system which can be identified by references (names or URLs) in the Redfish model.
CoolingLoop schema

- **CoolingLoopCollection** placed under **ThermalEquipment**
- Reports product, location, and capacity for the loop
- Describes **Coolant** properties
 - **CoolantType** – Water, Dielectric, Hydrocarbon, Fluorocarbon
 - **AdditiveName** and **AdditivePercent** – based on **CoolantType**
 - **ServicedDate** and **ServiceHours** – Track maintenance requirements
 - **SpecificHeatkJoulesPerKgK** and **DensitykgPerCubicMeter** – info for clients
- Cooling loop-level metrics
 - **CoolantQuality** – Normal or Abnormal
 - **CoolantLevelStatus** (OK, Warning, Critical) and **CoolantLevelPercent**
- Methods to represent connections to related equipment
 - **ConsumingEquipmentNames[]** – User-defined strings for unmanaged gear
 - **SupplyEquipmentNames[]** – User-defined strings for upstream gear
 - **CoolingManagerUri** – User-defined link to a management console
CoolingLoop resource example

```json
{
    "@odata.type": "#CoolingLoop.v1_0_0.CoolingLoop",
    "Id": "BuildingChiller",
    "Name": "Feed from building chiller",
    "Status": {
        "Health": "OK"
    },
    "UserLabel": "Building Chiller",
    "RatedFlowLitersPerMinute": 900,
    "RatedPressurekPa": 1600,
    "Coolant": {
        "AdditiveName": "Generic cooling water biocide",
        "AdditivePercent": 0.25,
        "CoolantType": "Water"
    },
    "CoolantLevelStatus": "OK",
    "CoolantQuality": "Normal",
    "CoolantLevelPercent": {
        "Reading": 95
    },
    "SupplyEquipmentNames": ["Chiller"],
    "ConsumingEquipmentNames": ["Rack #1 CDU", "Rack #2 CDU", "Rack #3 CDU", "Rack #4 CDU"],
    "PrimaryCoolantConnectors": {
        "@odata.id": "/redfish/v1/ThermalEquipment/CoolingLoops/BuildingChiller/PrimaryCoolantConnectors"
    },
    "SecondaryCoolantConnectors": {
        "@odata.id": "/redfish/v1/ThermalEquipment/CoolingLoops/BuildingChiller/SecondaryCoolantConnectors"
    }
}
```

- **Details about coolant used in the loop**
- **Sensor excerpts for coolant level and total heat removed**
- **EquipmentNames** allow users to manually add non-Redfish devices to help complete the model
COOLING UNIT MODEL
CoolingUnit schema and resources

- Unified schema covers many types of cooling gear
 - Equipment that cannot be modeled by a Chassis and ThermalSubsystem
 - Simple heat exchangers or manifolds may be covered as a Chassis alone
 - CoolingUnit equipment will have a containing Chassis resource
 - Share common modeling and property definitions
 - EquipmentType property provides specific identification

- Resource contents
 - General product identification – model, manufacturer, serial number, etc.
 - Versioning – Hardware revision, firmware version, date of manufacture

- Links to subordinate and related resources
 - Sensors, LeakDetection, EnvironmentMetrics
 - Primary (input) and Secondary (output) CoolantConnectors
 - Subsystems: Pumps, Filters, Reservoirs
 - Chassis that contains the equipment
CoolingUnit resource example

```json
{
  "odata.type": "#CoolingUnit.v1_0_0.CoolingUnit",
  "Id": "1",
  "EquipmentType": "CDU",
  "Name": "Rack #4 Cooling Distribution Unit",
  "FirmwareVersion": "3.2.0",
  "Version": "1.03b",
  "ProductionDate": "2020-12-24T08:00:00Z",
  "Manufacturer": "Contoso",
  "Model": "BRRR4000",
  "SerialNumber": "29347ZT536",
  "PartNumber": "ICE-9",
  "Coolant": {
    "CoolantType": "Hydrocarbon"
  },
  "AssetTag": "PDX5-92381",
  "Status": {
    "State": "Enabled",
    "Health": "OK"
  },
  "LeakDetection": { "@odata.id": < Link to LeakDetection > },
  "PrimaryCoolantConnectors": { "@odata.id": < Link to CoolantConnectorCollection > },
  "SecondaryCoolantConnectors": { "@odata.id": < Link to CoolantConnectorCollection > },
  "Pumps": { "@odata.id": < Link to PumpCollection > },
  "Filters": { "@odata.id": < Link to FilterCollection > },
  "EnvironmentMetrics": { "@odata.id": < Link to EnvironmentMetrics > },
  < TRUNCATED >
}```
CoolantConnector schema

- Describes a coolant-carrying connector and its equipment connections
  - Modeled either as a connector pair, or an individual “supply” or “return”
  - Provides numerous sensor readings
    - Flow, Temperature, Pressure on both supply and return
  - If known, provide link to CoolantLoop
    - Or the loop name and Manager URI if known and populated by end user
- Main monitoring resource for the cooling unit’s functionality
  - Primary coolant connectors – input from facility chillers or other sources
  - Secondary coolant connectors – output from the cooling unit to feed “consuming” equipment
CoolantConnector resource example:
{
    "@odata.type": 
    "#CoolantConnector.v1_0_0.CoolantConnector",
    "Id": "Chiller",
    "Name": "Primary Input from Chiller",
    "Status": {
        "Health": "OK"
    },
    "CoolantConnectorType": "Pair",
    "CoolingLoopName": "Building Chiller",
    "Coolant": {
        "CoolantType": "Water",
        "AdditiveName": "Generic cooling water biocide",
        "AdditivePercent": 0.25
    },
    "RatedFlowLitersPerMinute": 120,
    "RatedPressurekPa": 1600,
    "SupplyTemperatureCelsius": {
        "DataSourceUri": "/redfish/v1/CoolingEquipment/RackCDUs/1/Sensors/LoopASupplyTemp",
        "Reading": 14.8
    },
    "SupplyPressurekPa": {
        "Reading": 319.6
    },
    "DeltaTemperatureCelsius": {
        "Reading": 19.3
    }
}< TRUNCATED >
Example: Rear Door Heat Exchanger

The heat exchanger model includes a **Chassis** with a **ThermalSubsystem** that describes the **Fans**.

**ThermalMetrics** has new sensor excerpts to describe airflow and delta pressure.

**CDU primary CoolantConnector** attaches to the facility cooling loop and its **secondary CoolantConnector** connects to a technology loop, which in turn connects to the heat exchanger via **CoolantConnector**.

**OR** the heat exchanger directly connects to the facility loop via a **CoolantConnector**.

---

**Server**

**Server**

**Server**

**Rack**

**CDU (CoolingUnit)**

**Heat Exchanger**

**Fan**

**Fan**

**Cooling Loop**

**Primary (FWS) Cooling Loop**
Subsystems for CoolingUnit and ThermalEquipment

- Equipment that may appear as a subsystem of a CoolingUnit
  - Model this equipment as a subordinate resources to an individual CoolingUnit
- These schemas contain basic inventory and identification data
  - More specific properties are easily added as feedback is received
- Pump resource collection
  - Pump speed, product information
- Reservoir resource collection
  - Fill level, capacity, internal pressure, product information
- Filter resource collection
  - Service time / install time, product information
LeakDetection schema

• Resource to describe leak detection equipment and report leaks
  • Allows discovery of detection equipment to validate customer requirements

• DetectorGroups supports multiple “zones” of detection
  • Each group represents a detection zone
  • Made up of one or more LeakDetector instances
  • Can also include a humidity sensor
  • “Policy” for what constitutes a reported leak is left to implementation
    • Assumes this is manufacturer or configuration based, not user-defined

• Status object provides means to report leaks
  • Will define messages for reporting leaks as Conditions
LeakDetection resource example

{
  "@odata.type": "#LeakDetection.v1_0_0.LeakDetection",
  "Name": "Leak Detection Systems",
  "Status": {
    "State": "Enabled",
    "Health": "OK",
    "Conditions": []
  },
  "LeakDetectorGroups": [
    {
      "GroupName": "Detectors under and around the CDU",
      "HumidityPercent": {
        "Reading": 45
      },
      "Detectors": [
        {
          "DataSourceURI": "/redfish/v1/ThermalEquipment/CDUs/1/LeakDetection/LeakDetectors/1",
          "PhysicalContext": "Chassis",
          "DetectorState": "OK"
        },
        {
          "DataSourceURI": "/redfish/v1/ThermalEquipment/CDUs/1/LeakDetection/LeakDetectors/2",
          "PhysicalContext": "Chassis",
          "DetectorState": "OK"
        }
      ]
    }
  ]
}
Call to Action

- Implement Redfish support on your cooling equipment
  - Leverage the existing Redfish software ecosystem
  - Enable higher-level client software functions
    - Link infrastructure power & cooling to IT gear performance data
    - Share status information and provide event notification
- Provide feedback on the data model
  - Redfish 2023.2 release incorporated feedback from early adopters
    - CoolingLoop, CoolantConnector redundancy support added
    - Redfish releases typically occur 3-4 times annually
  - Simple questions or suggestions are welcome on the public forum
  - Feedback can be submitted to the DMTF directly
Getting involved in Redfish

- Redfish Standards page
  - Schemas, Specs, Mockups, White Papers & more
  - [https://www.dmtf.org/standards/redfish](https://www.dmtf.org/standards/redfish)

- Redfish Developer Portal
  - Redfish Interactive Resource Explorer
  - Educational material, documentation & other links
  - [https://redfish.dmtf.org](https://redfish.dmtf.org)

- Redfish User Forum
  - User forum for questions, suggestions and discussion
  - [https://www.redfishforum.com](https://www.redfishforum.com)

- DMTF Feedback Portal
  - Provide feedback or submit proposals for Redfish standards
  - [https://www.dmtf.org/standards/feedback](https://www.dmtf.org/standards/feedback)

- DMTF GitHub organization
  - Open source tools and libraries for DMTF standards
  - [https://www.github.com/DMTF](https://www.github.com/DMTF)
Q&A & Discussion