

# Fabrics Configuration And Routing





# Agenda

- Fabric configuration and routing
  - Fabric model hierarchy
  - Zones
  - Address pools
  - Connections



#### **Fabric Model Resources**

- Switches, ports, and adapters are used to model physical topology
- Zones and address pools are used to control routing in a fabric
- Connections are used to control access rules for fabric connected devices



# Fabric Zones, Connections, Address Pools

- Represents the customer intent of the fabric
  - Provides mechanisms to constrain traffic in the fabric
  - Defined by a fabric administrator
  - Models which endpoints can communicate with other endpoints



# **Fabric Zones**

- Expresses routing constraints in a fabric
  - Provides isolation of groups of endpoints
    - Enables multi-tenant access on the fabric
    - Communication is limited to the zone
  - "Default zone" defined for entire fabric
    - New endpoints are added to the default zone
  - Zone of zones
    - Fabrics can provide zone-to-zone connectivity via zone of zones
    - Allows for scalability for large fabrics
    - Can only contain zones of endpoints



DMTFD

DMTF Redfish

# **Fabric Address Pools**

- Constrains control planespecific pools of addresses and configuration
  - Example: In Ethernet fabrics, address pools can contain subnet, default gateway, VLAN, BGP underlay, and EVPN information
- Can be applied to entire fabric or specific zones



DMTF Redfish

# **Fabric Connections**

- Contains access permissions for resources once endpoints establish a communication channel
- Connections are between initiators and targets, or groups
- Does not define routing between the endpoints



DMTF



#### www.dmtf.org

DMTF





### **Example Address Pool**

| "Id": "AP1",                           |
|----------------------------------------|
| "Name": "AddressPool 1",               |
| "Status": {                            |
| "State": "Enabled",                    |
| "Health": "OK"                         |
| <u>}</u>                               |
| "Ethernet": {                          |
| "IPv4": {                              |
| "VLANIdentifierAddressRange": {        |
| "Lower": 1,                            |
| "Upper": 100                           |
| },                                     |
| <pre>"FabricLinkAddressRange": {</pre> |
| "Lower": "192.168.1.1",                |
| "Upper": "192.168.3.254"               |
| },                                     |
| "SystemMACRange": {                    |
| "Lower": "AA:BB:CC:DD:EE:00",          |
| "Upper": "AA:BB:CC:DD:EE:FF"           |
| },                                     |
| }                                      |

All endpoints within this address pool must conform with the constraints provided in this address pool

Ethernet fabric; IPv4 addressing constraints

Upper and lower bounds for VLAN IDs

Constraints on system MAC IDs





# **Example Connection**

Endpoint 5 is allowed to read or write the memory chunk provided by endpoint 4

```
"Id": "24",
"Name": "Connection 24",
"ConnectionType": "Memory",
                                             Connection type and resource info
"MemoryChunkInfo":
       "AccessCapabilities":
            "Read"
            "Write"
                                         Connected resource and access information
         "AccessState": "Optimized"
 "Links": {
      "InitiatorEndpoints"
          "@odata.id": "/redfish/v1/Fabrics/GenZ/Endpoints/5" }
```

"TargetEndpoints": [

"@odata.id": "/redfish/v1/Fabrics/GenZ/Endpoints/4"}

Initiator and target endpoints affected by this connection



#### For more information, visit us online at dmtf.org

Visit the Redfish Developer Hub at redfish.dmtf.org



DMTF

www.dmtf.org

DMTF **Redfish**