
Redfish OpenAPI Support
(Work-In-Progress)

Mike Raineri (Dell), Redfish Forum Co-Chair
June 2018

Disclaimer
• The information in this presentation represents a snapshot of work in

progress within the DMTF.
• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.
• For additional information, see the Distributed Management Task

Force (DMTF) website.

2

What Is OpenAPI?
• OpenAPI is a framework for defining RESTful APIs
• Implementers can create a RESTful API definition in a YAML or JSON

file
• The OpenAPI specification details the formatting supported
• For the purpose of this discussion, we’ll focus on the YAML file since most

of the examples and editors available appear to be YAML based
• The OpenAPI community has created tools for taking YAML files and

auto-generating code libraries for various languages

3

Elements to Define in the YAML File(s)
• Prescriptive URIs for all Redfish resources

• All URIs are well known by the client; no dynamic discovery via walking
from Service Root needed

• Possible to describe a parameter in a URI (such as a Chassis ID)
• URI descriptors contain possible HTTP methods and their responses

• HTTP status codes and payload definitions
• Annotations for elements defined by the YAML file

• Can map many of the standard terms to our existing annotations
• Custom terms can be made by starting with “x-”

• OpenAPI allows for the service document to make references to
external files using “$ref”

4

YAML Sample: Header
info:

contact:
name: DMTF
url: https://www.dmtf.org/standards/redfish

description: This contains the definition of a Redfish service.
title: Redfish API
version: '2018.2'

openapi: 3.0.0

5

YAML Sample: Paths
paths:
/redfish/v1/:
get:
responses:
'200':
content:
application/json:
schema:
$ref: http://redfish.dmtf.org/schemas/v1/ServiceRoot.v1_3_1.yaml#/components/schemas/ServiceRoot

description: Resource response
default:
content:
application/json:
schema:
$ref: '#/components/schemas/RedfishError'

description: Error condition
head:
responses:
'204':
description: Success, but no response data

default:
content:
application/json:
schema:
$ref: '#/components/schemas/RedfishError'

description: Error condition

6

YAML Sample: Paths (cont.)
/redfish/v1/SessionService/Sessions/{SessionId}:
get:
parameters:
- in: path
name: SessionId
required: true
schema:
type: string

responses:
'200':
content:
application/json:
schema:
$ref: http://redfish.dmtf.org/schemas/v1/Session.v1_1_0.yaml#/components/schemas/Session

description: Resource response
default:
content:
application/json:
schema:
$ref: '#/components/schemas/RedfishError'

description: Error condition

7

YAML Sample: Schemas
components:
schemas:
Session:
additionalProperties: false
description: The Session resource describes a single connection (session) between
a client and a Redfish service instance.

properties:
Id:
$ref: http://redfish.dmtf.org/schemas/v1/Resource.yaml#/components/schemas/Id
readOnly: true

Name:
$ref: http://redfish.dmtf.org/schemas/v1/Resource.yaml#/components/schemas/Name
readOnly: true

UserName:
description: The UserName for the account for this session.
nullable: true
readOnly: true
type: string
x-longDescription: The value of this property shall be the UserName that
matches a registered account identified by a ManagerAccount resource registered
with the Account Service.

required:
- Id
- Name
type: object

8

Additions to Redfish for Support of OpenAPI
• For payload definitions, OpenAPI is heavily based on JSON Schema

• There are some minor deviations
• Our existing JSON Schema files are about 95% of the way to how

OpenAPI defines the “components/schemas” body of their documents
• Create a lightweight service document that lists out the URIs and

points to the latest version of each of the schemas
• This will be regenerated on each release of the Redfish schema bundle

• Use annotations in the CSDL and JSON Schema definitions for
assisting with the generation of the OpenAPI service document
• Redfish.Uris (new): A collection of strings that contain the valid URI

patterns for the resource
• Capabilities.UpdateRestrictions: If “PATCH” or “PUT” are allowed methods
• Capabilities.DeleteRestrictions: If “DELETE” is an allowed method
• Capabilities.InsertRestrictions: If “POST” is an allowed method

9

Annotation Example for CSDL
<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="ManagerAccount">

<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

<EntityType Name="ManagerAccount" BaseType="Resource.v1_0_0.Resource" Abstract="true">

<Annotation Term="Capabilities.InsertRestrictions">

<Record>

<PropertyValue Property="Insertable" Bool="false"/>

</Record>

</Annotation>

<Annotation Term="Capabilities.UpdateRestrictions">

<Record>

<PropertyValue Property="Updatable" Bool="true"/>

</Record>

</Annotation>

<Annotation Term="Capabilities.DeleteRestrictions">

<Record>

<PropertyValue Property="Deletable" Bool="true"/>

</Record>

</Annotation>

<Annotation Term="Redfish.Uris">

<Collection>

<String>/redfish/v1/AccountService/Accounts/{AccountId}</String>

</Collection>

</Annotation>

</EntityType>

10

Annotation Example for JSON Schema
{

"$ref": "#/definitions/ManagerAccount",

"$schema": "http://redfish.dmtf.org/schemas/v1/redfish-schema.v1_5_0.json",

"copyright": "Copyright 2014-2018 Distributed Management Task Force, Inc. (DMTF). For the full DMTF
copyright policy, see http://www.dmtf.org/about/policies/copyright",

"definitions": {

"ManagerAccount": {

"anyOf": [...],

"deletable": true,

"description": "Account description...",

"insertable": false,

"longDescription": "Account long description...",

"updatable": true,

"uris": [

"/redfish/v1/AccountService/Accounts/{AccountId}"

]

}

},

"owningEntity": "DMTF",

"title": "#ManagerAccount.ManagerAccount"

}

11

OpenAPI Generation Tool
• First step: perform a one to one conversion process of each JSON

Schema file to create the standalone YAML files
• “definitions” becomes “components/schemas”
• “longDescription” becomes “x-longDescription”
• “readonly” becomes “readOnly”
• Etc

• Second step: generate the OpenAPI service document after all files are
created
• Scan each of the converted files for the “uris”, “insertable”, “updateable”,

and “deleteable” terms
• Based on the discovered terms, populate the paths portion of the

document, fill in the appropriate methods, and point to the appropriate
schema files

• Scan each of the converted files for all action definitions, and generate the
path for the actions

12

Implications to the Redfish Specification
• These changes will introduce new requirements on implementations

• Implementations will be required to support the URIs specified within the
schema files

• In order to allow shipping implementations to continue operating, a new
minor version of the specification will be produced to differentiate the
cut-over point
• Proposed version 1.6.0 of the specification should add the normative

language about supporting the URIs specified in the schema files
• Existing implementations can report 1.5.X (or older) until they are ready to

be updated to conform to the new URI patterns
• This would be considered a backwards compatible change since clients do

not need to modify their software to move forward

13

14

