Redfish OpenAPI Support
(Work-In-Progress)

Mike Raineri (Dell), Redfish Forum Co-Chair
June 2018

Disclaimer

The information in this presentation represents a snapshot of work in
progress within the DMTF.

This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

For additional information, see the Distributed Management Task
Force (DMTF) website.

What Is OpenAPI?

 OpenAPl is a framework for defining RESTful APlIs
e Implementers can create a RESTful API definition in a YAML or JSON
file
e The OpenAPI specification details the formatting supported
* For the purpose of this discussion, we’ll focus on the YAML file since most

of the examples and editors available appear to be YAML based

 The OpenAPI community has created tools for taking YAML files and
auto-generating code libraries for various languages

Elements to Define in the YAML File(s)

» Prescriptive URIs for all Redfish resources

e All URIs are well known by the client; no dynamic discovery via walking
from Service Root needed

e Possible to describe a parameter in a URI (such as a Chassis ID)
URI descriptors contain possible HTTP methods and their responses
« HTTP status codes and payload definitions
Annotations for elements defined by the YAML file
e Can map many of the standard terms to our existing annotations
e Custom terms can be made by starting with “x-

OpenAPI allows for the service document to make references to
external files using “$ref”

YAML Sample: Header

info:
contact:
name: DMTF
url: https://www.dmtf.org/standards/redfish
description: This contains the definition of a Redfish service.
title: Redfish API
version: '2018.2"
openapi: 3.0.0

www.dmif.org

YAML Sample: Paths

paths:
/redfish/v1/:
get:
responses:
'200':
content:
application/json:
schema:
Sref: http://redfish.dmtf.org/schemas/vl/ServiceRoot.vl 3 1.yaml#/components/schemas/ServiceRoot
description: Resource response
default:
content:
application/json:
schema:
Sref: '#/components/schemas/RedfishError'
description: Error condition
head:
responses:
'204":
description: Success, but no response data
default:
content:
application/json:
schema:
Sref: '#/components/schemas/RedfishError'
description: Error condition

www.dmif.org

YAML Sample: Paths (cont.)

/redfish/v1/SessionService/Sessions/{SessionId}:
get:
parameters:
- in: path
name: SessionId
required: true
schema:
type: string
responses:
'200":
content:
application/json:
schema:
Sref: http://redfish.dmtf.org/schemas/vl/Session.vl 1 O.yaml#/components/schemas/Session
description: Resource response
default:
content:
application/json:
schema:
Sref: '#/components/schemas/RedfishError'
description: Error condition

www.dmif.org

YAML Sample: Schemas

components:
schemas:
Session:
additionalProperties: false
description: The Session resource describes a single connection (session) between
a client and a Redfish service instance.
properties:
Id:
Sref: http://redfish.dmtf.org/schemas/vl/Resource.yaml#/components/schemas/Id
readOnly: true
Name:
Sref: http://redfish.dmtf.org/schemas/vl/Resource.yaml#/components/schemas/Name
readOnly: true
UserName:
description: The UserName for the account for this session.
nullable: true
readOnly: true
type: string
x—-longDescription: The value of this property shall be the UserName that
matches a registered account identified by a ManagerAccount resource registered
with the Account Service.
required:
- Id
- Name
type: object

www.dmif.org

Additions to Redfish for Support of OpenAPI

e For payload definitions, OpenAPI is heavily based on JSON Schema
e There are some minor deviations

e Our existing JSON Schema files are about 95% of the way to how
OpenAPI defines the “components/schemas” body of their documents

Create a lightweight service document that lists out the URIs and
points to the latest version of each of the schemas

e This will be regenerated on each release of the Redfish schema bundle
Use annotations in the CSDL and JSON Schema definitions for
assisting with the generation of the OpenAPI service document

Redfish.Uris (new): A collection of strings that contain the valid URI
patterns for the resource

Capabilities.UpdateRestrictions: If “PATCH” or “PUT” are allowed methods
Capabilities.DeleteRestrictions: If “DELETE” is an allowed method
Capabilities.InsertRestrictions: If “POST” is an allowed method

www.dmtif.org

Annotation Example for CSDL

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="ManagerAccount">
<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

<EntityType Name="ManagerAccount" BaseType="Resource.vl 0 0.Resource" Abstract="true">
<Annotation Term="Capabilities.InsertRestrictions">
<Record>
<PropertyValue Property="Insertable" Bool="false"/>
</Record>
</Annotation>
<Annotation Term="Capabilities.UpdateRestrictions">
<Record>
<PropertyValue Property="Updatable" Bool="true"/>
</Record>
</Annotation>
<Annotation Term="Capabilities.DeleteRestrictions">
<Record>
<PropertyValue Property="Deletable" Bool="true"/>
</Record>
</Annotation>
<Annotation Term="Redfish.Uris">
<Collection>
<String>/redfish/v1/AccountService/Accounts/{AccountId}</String>
</Collection>
</Annotation>
</EntityType>

www.dmif.org

Annotation Example for JSON Schema

"Sref": "#/definitions/ManagerAccount",
"Sschema": "http://redfish.dmtf.org/schemas/vl/redfish-schema.vl 5 0.json",

"copyright": "Copyright 2014-2018 Distributed Management Task Force, Inc. (DMTF). For the full DMTF
copyright policy, see http://www.dmtf.org/about/policies/copyright",

"definitions": {
"ManagerAccount": {

"anyOf": [... 1,
"deletable": true,
"description": "Account description...",
"insertable": false,
"longDescription": "Account long description...",
"updatable": true,
"uris": [

"/redfish/v1l/AccountService/Accounts/{AccountId}"

by
"owningEntity": "DMTEF",
"title": "#ManagerAccount.ManagerAccount"

www.dmif.org

OpenAPI Generation Tool

e First step: perform a one to one conversion process of each JSON
Schema file to create the standalone YAML files

o “definitions” becomes “components/schemas’
* “longDescription” becomes “x-longDescription”
e “readonly” becomes “readOnly”
 Etc
e Second step: generate the OpenAPI service document after all files are
created

e Scan each of the converted files for the “uris”, “insertable”, “updateable”,
and “deleteable” terms

Based on the discovered terms, populate the paths portion of the
document, fill in the appropriate methods, and point to the appropriate
schema files

Scan each of the converted files for all action definitions, and generate the
path for the actions

www.dmif.org

Implications to the Redfish Specification

 These changes will introduce new requirements on implementations
e Implementations will be required to support the URIs specified within the
schema files
e In order to allow shipping implementations to continue operating, a new
minor version of the specification will be produced to differentiate the
cut-over point

Proposed version 1.6.0 of the specification should add the normative
language about supporting the URIs specified in the schema files

Existing implementations can report 1.5.X (or older) until they are ready to
be updated to conform to the new URI patterns

This would be considered a backwards compatible change since clients do
not need to modify their software to move forward

