Redfish Control schema and Sensor enhancement proposal

DMTF Redfish Forum
August 2020
Disclaimer

• The information in this presentation represents a snapshot of work in progress within the DMTF.

• This information is subject to change without notice. The standard specifications remain the normative reference for all information.

• For additional information, see the Distributed Management Task Force (DMTF) website.
Getting involved in Redfish

- Redfish Standards page
 - Schemas, Specs, Mockups, White Papers & more
 - http://www.dmtf.org/standards/redfish

- Redfish Developer Portal
 - Redfish Interactive Resource Explorer
 - Educational material, documentation & other links
 - http://redfish.dmtf.org

- Redfish User Forum
 - User forum for questions, suggestions and discussion
 - http://www.redfishforum.com

- DMTF Feedback Portal
 - Provide feedback or submit proposals for Redfish standards
 - https://www.dmtf.org/standards/feedback

- DMTF Redfish Forum
 - Join the DMTF to get involved in future work
 - http://www.dmtf.org/standards/spmf
Introduction

- General need to represent user or system-owned control points in a system
- These are typically coupled with one or more sensors that provide readings and feedback into a control loop
- Like a sensor, there is desire to display a small, primary set of data about the control, while having the ability to retrieve a large set of detailed, mostly static information about the control
Definition – “Managed Element”

- Generic term for the device or system being managed
 - Examples: ComputerSystem, PowerDistributionUnit, etc.
- A Redfish resource for a managed element will have many properties
 - General information about the element
 - PartNumber, SerialNumber, etc.
 - Status – State, Health, HealthRollup
 - Links to additional (subordinate) resources that describe subsystems
 - May have one or more controls
 - May have one or more associated sensors
- Desire to provide summary of control settings and sensors readings
 - Redfish models attempt to provide this with a single GET
 - Define schemas “excerpt” of the Control and Sensor resources
 - These provide links to Sensor and Control resources to obtain details
CONTROL SCHEMA
Control schema proposal

• New schema heavily leveraged from Sensor
• Describes an individual control point plus associated sensor(s) that measures the effects of that control point
 • More formally known as an “effector”
• *SetPoint* is the primary property for a Control
 • The desired value for a Reading resulting from the Control setting
• *ControlLoop* object to expose and control parameters of a control loop
• Includes a “pass-through” of a single *Reading* from a Sensor
 • Sensor *Reading* might use different measurement units than the *SetPoint*
 • Example: Liquid flow valve (percent open), with sensor Reading in liters/second
 • Controls with multiple associated sensors can build Sensor excerpts in context for more complex relationships
Control Definition (example w/single associated Sensor)

```json
{
    "@odata.type": "Control.v1_0_0.Control",
    "@odata.id": "/redfish/v1/Chassis/1U/Controls/Thermostat",
    "Id": "Thermostat",
    "ControlType": "Temperature",
    "ControlUnits": "Cel",
    "SetPoint": 27,
    "ReadingDeadBand": 1.5,
    "ReadingUnits": "Cel",
    "OperatingMode": "Automatic",
    "Sensor": {
        "Reading": 27,
        "DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CabinetTemp"
    },
    "Algorithm": "Average",
    "MinValue": 10,
    "MaxValue": 35,
    "Precision": 1,
    "Accuracy": .25,
    "ControlLoop": {
        "Proportional": 0.232,
        "Integral": 0.095,
        "Derivative": 0.049
    },
    "Oem": {}
}
```

- **SetPoint** is a primary property.
- **OperatingMode** allows for “Manual” or “Automatic” operation – definition will depend on the type of Control.
- **Algorithm** would allow model to expose how the control loop operates.
- **Reading** from a Sensor instance (a Sensor excerpt).
- **ControlLoop** would allow model to expose parameters for a PID-based system, or even allow modification.
Control Definition (multiple associated Sensors example)

```json
{
    "@odata.type": "Control.v1_0_0.Control",
    "@odata.id": "/redfish/v1/Chassis/1U/Controls/Thermostat",
    "Id": "Thermostat",
    "ControlType": "Temperature",
    "ControlUnits": "Cel",
    "SetPoint": 27,
    "SetPointDeadBand": 1.5,
    "ControlDelaySeconds": 180,
    "OperatingMode": "Automatic",
    "ReadingType": "Temperature",
    "MinValue": 10,
    "MaxValue": 35,
    "Precision": 1,
    "Accuracy": .25,
    "Links": {
        "AssociatedSensors": [
            { "@odata.id": "/redfish/v1/Chassis/1U/Sensors/CabinetTemp" },
            { "@odata.id": "/redfish/v1/Chassis/1U/Sensors/CabinetIntake" },
            { "@odata.id": "/redfish/v1/Chassis/1U/Sensors/CabinetExhaust" }
        ],
        "Oem": {} 
    }
}
```

Array of links to multiple Sensor instances instead of a single Sensor excerpt
Control usage of schema excerpts

- An excerpt inserts a copy of certain properties from another resource
 - Allows high-value properties to appear in managed element resources
 - Enables consistent definitions for Sensors and Controls across the data model
 - Also provides a link to the original source of the data
 - Excerpted properties are defined using annotations in Redfish schema
- Control can include a Sensor excerpt
 - Provides Reading from a single associated Sensor
 - This property can be further reflected into a managed element resource
- Unit-specific Reading<units> are added if a Control need is identified
 - Useful for Control instances when the associated Sensor has different units
 - These would appear in managed element resources as excerpts of Control
- Examples
 - ReadingPercent – Fan speed where input is a PWM value
 - ReadingGPM – Liquid flow where input is a valve percent open
Sensor and Control excerpt flow

- **Sensor resource**
 - *Reading* is defined as an excerpt property

- **Control resource**
 - Sensor excerpt appears as an object, with *Reading* included
 - *SetPoint* is defined as an excerpt property
 - *DataSourceUri* points to the associated Sensor that provided *Reading*

- **“Managed element” resources**
 - Control excerpts appears as objects, with SetPoint included
 - Also includes Reading from the Control’s Sensor excerpt as a “pass-through”
 - Reading might be rendered as *Reading*<units> to match the Control needs
 - *DataSourceUri* points to the associated Control
Control excerpt examples

- An excerpt appears in a managed element resource as an object containing the excerpted properties and the link to source.

Example #1: `SetPoint` has the same units as `Reading` from a single Sensor instance.

```
"ThermostatCelsius": {
  "Reading": 27,
  "SetPoint": 27,
  "DataSourceUri": "/redfish/v1/Chassis/1U/Controls/Thermostat"
},

"WaterValvePercent": {
  "ReadingGPM": 7.93,
  "SetPoint": 70,
  "DataSourceUri": "/redfish/v1/Chassis/1U/Controls/Valve1"
},

"WaterValvePercent": {
  "Reading": 7.93,
  "ReadingUnits": "GPM",
  "SetPoint": 70,
  "DataSourceUri": "/redfish/v1/Chassis/1U/Controls/Valve1"
}
```

Example #2: `SetPoint` and `Reading` use different units. Excerpt includes `Reading` property from Sensor renamed as `Reading<unit>` to clarify the difference in units.

Example #3: Alternate proposal of #2 using `Reading` and `ReadingUnits` when different units of measure are needed.

`DataSourceUri` points to the Control resource. The Control resource will contain a Sensor excerpt with `DataSourceUri` further pointing to the Sensor resource.
Complex Control example

- Multiple excerpts appear in this managed element resource as objects containing the excerpted properties and links to each data source.
- This provides a compact summary of the element in a single resource.

```json
{  
"PrimaryControl": {  
  "ComplexControlPercent": {  
    "SetPoint": 75,  
    "DataSourceUri": "/redfish/v1/Chassis/1U/Controls/PrimaryValve"
  },  
  "LiquidFlowGPM": {  
    "Reading": 7.93,  
    "DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PrimaryValveFlow"
  },  
  "InputPressurePsi": {  
    "Reading": 35.81,  
    "DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/IntakePressure"
  },  
  "OutputPressurePsi": {  
    "Reading": 11.24,  
    "DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/OutflowPressure"
  }
}
```

This Control has multiple Sensor associations.

Control excerpt contains the `SetPoint`.

Note that object names include Reading or SetPoint units.

Three Sensor excerpts show the resulting values as Reading.
Fan resource concept

- “Fan” is an example of a managed element resource
- Contains a Sensor excerpt, and may expose a Control as well

```json
{
    "SpeedControlPWM": {
        "SetPoint": 125,
        "DataSourceUri": "/redfish/v1/Chassis/1U/Controls/FanBay1"
    },
    "SpeedPercent": {
        "Reading": 55,
        "SpeedRPM": 2300,
        "DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"
    }
}
```

Control excerpt to show SetPoint, if supported

Sensor excerpt to show Reading and “extra fan excerpt property” SpeedRPM

Fan instances that expose the control include the SpeedControlPWM object (excerpt of Control), while fans without the control exposed include only the SpeedPercent object (excerpt of Sensor)
SENSOR ENHANCEMENTS
User-defined Threshold

- Add User-defined Threshold support in Sensor
 - Clearly define service vs user-defined thresholds
 - Implementation may support user-defined thresholds for each sensor
 - Some existing Thresholds usage may move to UserThresholds
 - If user can define reaction behavior (but perhaps not change value)?
- Follow Thresholds structure with a parallel object definition
 - UserThresholds {}
 - UpperCaution, UpperCritical, LowerCaution, LowerCritical, etc.
- Or, add new sub-objects to Thresholds object with “user” naming?
Control links

• Add Controls links to show relationships
 • “What control(s) do I use to affect changes to this reading?”
 • Provide array of Links to locate Controls that affect the sensor

```
"Links": {
  "Controls": [{
    "@odata.id": "/redfish/v1/Chassis/1U/Controls/PrimaryValve"
  },
  { "@odata.id": "/redfish/v1/Chassis/1U/Controls/SecondaryValve" }
},
```

Reactions for Thresholds

- Add *Reaction* object under each *Threshold* to describe actions taken when a threshold is violated
 - Allows service to expose those actions
 - Provide user the ability to define what occurs when a threshold is violated
 - User could be given option to disable the reaction, for example, choosing not to perform a graceful shutdown due to high temperatures

- *Reaction* options include:
 - Log a Message
 - Send an Event
 - Event messages can be used to notify aggregation points or higher-level control systems that they need to take further action
 - Trigger a Metric Report
 - Execute a Job
 - Specify the Job name to execute – allows re-use in multiple sensors
 - Could pre-define frequently-used reactions for ease of use (Shutdown, etc.)
 - Add Job support to execute a Job on receipt of an Event Message
Threshold Reaction

{
 "@odata.type": "Sensor.v1_3_0.Sensor",
 "@odata.id": "/redfish/v1/Chassis/1U/Sensors/RoomTemp",
 "Id": "RoomTemp",
 "ReadingType": "Temperature",
 "Reading": 27,
 "ReadingUnits": "Cel",
 "Thresholds": {
 "Caution": {
 "Activation": "Increasing",
 "DwellTime": "PT5M",
 "ThresholdEnabled": "Mandatory | Enabled | Disabled",
 "Reading": 30,
 "Reaction": {
 "Description": "Set fans to 100%",
 "TriggerMetricReport": true,
 "GenerateEvent": "Thermal.CautionTempHigh",
 "ExecuteJob": "FanFullSpeed"
 }
 }
 },
 "Oem": {}
}
Q&A & Discussion

Redfish

www.dmtf.org