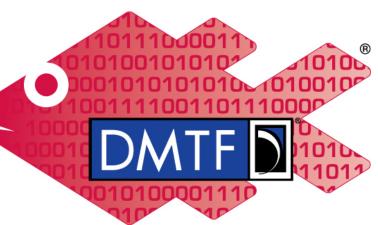


Redfish for Thermal Equipment

WORK IN PROGESS

DMTF Redfish Forum February 2022 V0.8


Disclaimer

- The information in this presentation represents a snapshot of work in progress within the DMTF.
- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the DMTF website: www.dmtf.org

Getting involved in Redfish

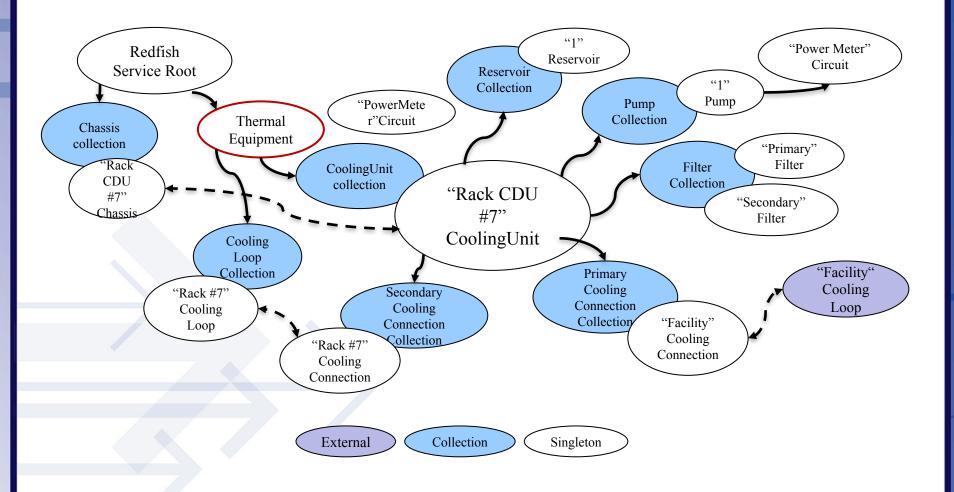
- Redfish Standards page
 - Schemas, Specs, Mockups, White Papers & more
 - http://www.dmtf.org/standards/redfish
- Redfish Developer Portal
 - Redfish Interactive Resource Explorer
 - Educational material, documentation & other links
 - http://redfish.dmtf.org
- Redfish User Forum
 - User forum for questions, suggestions and discussion
 - http://www.redfishforum.com
- DMTF Feedback Portal
 - Provide feedback or submit proposals for Redfish standards
 - https://www.dmtf.org/standards/feedback
- DMTF Redfish Forum
 - Join the DMTF to get involved in future work
 - http://www.dmtf.org/standards/spmf

Redfish

Introduction

- Proposal to extend Redfish DCIM models to incorporate cooling units
 - Support for rack-based Cooling Distribution Units (CDUs)
 - Support for immersion cooling units
 - Models should apply generally to other liquid cooling gear
 - Heat exchangers, air conditioners, etc.
 - Expect the model to also cover air-cooling systems
 - Explicit coverage is not shown in this proposal, but some notes are mentioned
- Leverages existing Redfish DCIM models and style
 - Adapts the Power Distribution Unit concepts, schemas and properties
 - Controls several instances of valves for liquid flow
 - Sensors New types for pressure, flow rates, etc.

THERMAL EQUIPMENT MODEL

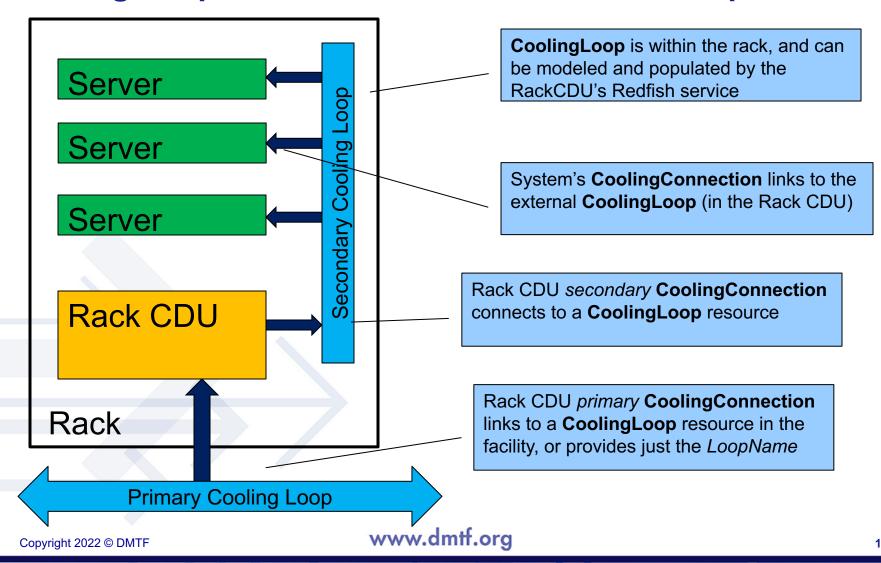


NEW ThermalEquipment resource

- Single resource under **ServiceRoot**
 - Follows design pattern used for **PowerEquipment**
 - Contains links to all cooling systems and related equipment
 - Used primarily for discovery of managed equipment
- Links to Resource Collections of:
 - Cooling Distribution Units (CDU's)
 - Immersion cooling units
 - Air Handler (CRAH) units
 - Air Conditioners (CRAC) units
 - Cooling Loops
 - Other cooling equipment?

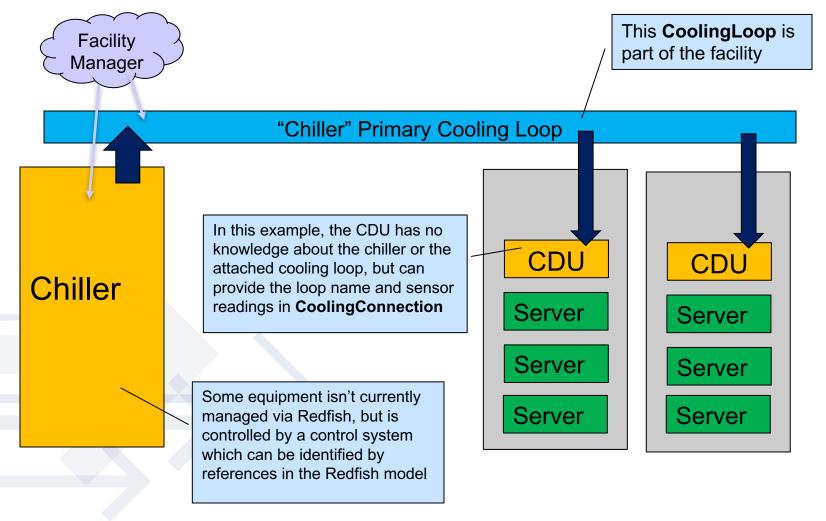
Thermal Equipment / Cooling Unit Model

COOLING LOOP MODEL



Cooling Loop Model

- Large-scale cooling equipment connects through "loops"
 - Loop can be self-contained (within a rack or group of racks)
 - Or can be facility-wide (primary loops from external chillers, etc.)
 - The concepts for cooling loops came from Circuit models
- Create a CoolingConnection that connects to CoolingLoop
 - Models both the "supply" and "return" side of the managed equipment
 - Metrics are gathered at these connection points
 - Can be different for each piece of equipment connected to the loop
 - Provide information about the connected loop if available
 - User-entered "loop name" provides a connection path through the infrastructure



Cooling Loop – Rack-level self-contained example

Cooling Loop – facility level example

NEW CoolingLoop schema

- CoolingLoopCollection placed under ThermalEquipment
- Reports product and measurements for the loop itself
 - CoolingLoopType Condenser, Facility, Technology, Immersion, Internal
- Describes the coolant properties
 - FluidType Water, GlycolMixture, Dielectric
 - FluidQuality Normal or Abnormal
 - FluidLevelStatus OK, Warning, Critical
- Methods to represent connections to related equipment
 - ConsumingEquipmentNames[] User-defined string for unmanaged gear
 - ConsumingEquipment[] R/W array of links to Chassis resources
 - CoolingManagerUri User-defined link to a management console

NEW CoolingLoop resource

```
"@odata.type": "#CoolingLoop.v1_0_0.CoolingLoop",
"Id": "Data Center Chiller",
"LoopType": "Facility",
"SupplyingEquipmentNames": [ "Chiller" ],
"ConsumingEquipmentNames": [ "Rack #1 CDU", "Rack #2 CDU", "Rack #3 CDU", "Rack #4 CDU"],
"FluidQuality": "Normal",
"TemperatureCelsius": {
    "DataSourceUri": "/redfish/v1/Facilities/Room237/Sensors/ChillerTemp",
    "Reading": 13.7
},
"SupplyPressurePa": {
    "DataSourceUri": "/redfish/v1/Facilities/Room237/Sensors/ChillerPressure",
    "Reading": 3447.4
},
"SupplyFlowValve": {
    "DataSourceUri": "/redfish/v1/Facilities/Room237/Controls/ChillerFlow",
    "Reading": 1.58,
    "ReadingUnits": "L/s",
    "SetPoint": 80,
    "SetPointUnits": "%"
                                          Links to Redfish-managed Consuming
},
                                          and Source resources – likely references
"Links": {
                                          to external Redfish services
    "ConsumingEquipment": [
            "@odata.id": "192.42.23.1/redfish/v1/CoolingEquipment/CDUs/1"
```

EquipmentNames allow users to manually add non-Redfish devices to help complete the model

> Sensor excerpts and Control excerpt for valves

> > Need to explain "percent open" vs "percent closed" Boolean property or normative language

COOLING UNIT MODEL

NEW CoolingUnit schema and resources

- Unified schema defines several types of cooling gear
 - Share common modeling and property definitions
 - EquipmentType property provides specific identification
 - Separate collections of each type linked from ThermalEquipment
- Resource contents
 - General product identification model, manufacturer, serial number, etc.
 - Versioning Hardware revision, firmware version, date of manufacture
- Links to subordinate Resources and Resource Collections
 - Sensor Collection, Metrics (entire unit)
 - Primary (input) CoolingConnection(s)
 - Secondary (output) CoolingConnection(s)
 - Subsystems: Pumps, Filter, Reservoirs

NEW CoolingUnit schema

```
"@odata.type": "#CoolingUnit.v1_0_0.CoolingUnit",
"Id": "1".
"EquipmentType": "CDU",
"Name": "Rack #4 Cooling Distribution Unit",
"FirmwareVersion": "3.2.0",
"Version": "1.03b",
"ProductionDate": "2020-12-24T08:00:00Z",
"Manufacturer": "Contoso".
"Model": "BRRR4000",
"SerialNumber": "29347ZT536",
"PartNumber": "ICE-9",
"UUID": "32354641-4135-4332-4a35-313735303734",
"AssetTag": "PDX5-92381",
"Status": {
   "State": "Enabled",
    "Health": "OK"
"PrimaryCoolingConnections": { "@odata.id": < Link to CoolingConnectionCollection > },
"SecondaryCoolingConnections": { "@odata.id": < Link to CoolingConnectionCollection > },
"CoolingLoops": { "@odata.id": < Link to CoolingLoopCollection > }.
"Pumps": { "@odata.id": < Link to PumpCollection > },
"Filters": { "@odata.id": < Link to FilterCollection > },
"EnvironmentMetrics": { "@odata.id": < Link to EnvironmentMetrics > },
"PowerMeter": { "@odata.id": < Link to Circuit > },
"Sensors": { "@odata.id": < Link to SensorCollection > },
"Controls": { "@odata.id": < Link to ControlCollection > },
< TRUNCATED >
```


NEW CoolingConnection schema

- The connection between the cooling unit and a CoolingLoop resource
 - Analogous to Circuit in relation to a PowerDistribution resource
 - Provides numerous sensor readings and controls
 - Flow, Temperature, Pressure on both supply and return
 - Valve controls, drain, etc.
 - If known, provide link to CoolingLoop
 - Or the loop name and Manager URI if known and populated by end user
- Main monitoring resource for the cooling unit's functionality
 - Primary cooling connections input from facility chillers or other sources
 - Secondary cooling connections
 – output from the cooling unit to feed "consuming" equipment

NEW CoolingConnection schema

```
"@odata.type": "#CoolingConnection.v1_0_0.CoolingConnection",
 "Id": "Chiller".
 "Name": "Primary Input from Chiller",
                                                   As LiquidType is really a description of the
 "Status": {
                                                   loop – this may become a more general
     "Health": "OK"
                                                   LoopType that describes any loop, and could
                                                   be populated if CoolingLoop is managed.
 "CoolingConnectionType": "Primary",
 "FluidType": "GlycolMixture",
 "GlycolPercent": 20,
 "RatedFlowLSeconds": 30,
 "SupplyFlowValve": {
     "DataSourceUri": "/redfish/v1/CoolingEquipment/RackCDUs/1/Controls/ChillerSupplyValve",
     "SetPoint": 70.
     "SetPointUnits": "%",
                                                 Sensor excerpts and Control
     "Reading": 9.5,
                                                 excerpt for valves
     "ReadingUnits": "L/s"
 "SupplyTemperatureCelsius": {
     "DataSourceUri": "/redfish/v1/CoolingEquipment/RackCDUs/1/Sensors/LoopASupplyTemp",
     "Reading": 14.8
"SupplyPressurePa": {
     "DataSourceUri": "/redfish/v1/CoolingEquipment/RackCDUs/1/Sensors/LoopASupplyPressure",
     "Reading": 319.6
"ReturnTemperatureCelsius": < SENSOR EXCERPT >
 < TRUNCATED >
                                           www.dmtf.org
Copyright 2022 © DMTF
```


Cooling Loops / Cooling Connections – open questions

- Leak detection will need Sensor support
 - Determine presence / functional as well as actual "leak detected"
 - Expect to add *PhysicalContext* values (Floor, sub-floor, etc.)
- Support for Air / Phase Change / Liquid loops
 - Phase change (refrigerant) loops can be modeled with this pattern as well
 - Not recommended for initial release, wait for industry feedback
 - LoopType = Air, Liquid, Primary / Secondary?
 - An "air loop" could be the room, plenum, or ductwork
 - Air handling may not be 'contained', but the "loop interface" does still apply
- Chassis links and physical containment
 - Work left to ensure model supports consistent links for physical containment of cooling units and cooling loops
 - Support any mix of managed / unmanaged gear while minimizing the types of links and resources

NEW PowerMeter resource

- Immersion cooling units have additional power-related requirements
 - Ability to report the power consumption of all "immersed" equipment
 - Ability to control the power state of all immersed equipment
 - Both from a breaker (over current) and user-actuated control perspective
- Leverage existing Circuit schema for this purpose
 - Add new CircuitType of "PowerMeter"
 - Allows a Circuit resource to appear under CoolingUnit
 - Enables use of PowerControl and BreakerControl actions
- Power consumption and other monitoring of the cooling equipment itself is shown in EnvironmentMetrics or PowerSubsystem under the Chassis related to the CoolingUnit

Circuit schema as PowerMeter example

```
"@odata.type": "#Circuit.v1_6_0.Circuit",
"Id": "PowerMeter".
"Name": "Pump #1 Power Meter",
"Status": { < Status object> },
"CircuitType": "PowerMeter".
"PhaseWiringType": "TwoPhase3Wire",
"Nominalvoltage": "AC240V",
"RatedCurrentAmps": 16,
"BreakerState": "Normal".
"PowerState": "On",
"VoltageSensor": { < Single-phase voltage sensor > },
"PolyPhaseVoltageSensors": { < Voltage per phase sensors > },
"CurrentSensor": { < Total Current sensor > },
"PolyPhaseCurrentSensors": { < Current per phase sensors > },
"PowerSensor": { < Total Power sensor > },
"PolyPhasePowerSensors": { < Power per phase sensors > },
"FrequencySensor": { < Frequency sensor > },
"EnergySensor": { < Energy sensor > },
"Actions": { < ResetBreaker, ResetStatistics > }
"@odata.id": "/redfish/v1/CoolingEquipment/RackCDUs/1/Pumps/1/PowerMonitor",
```

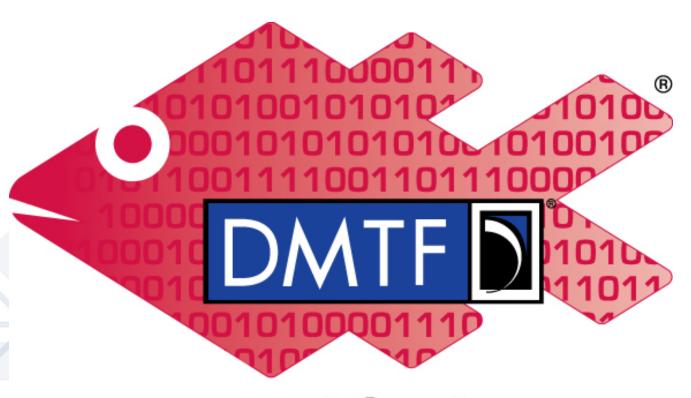

NEW Subsystem schemas for Cooling Unit

- Pump Resource Collection
 - Will have differential pressure / absolute pressure, flow, etc.
 - Can be a physical sensor or a synthesized value (model as sensor)
 - Variable Frequency Drive may need an object
 - PowerMeter (Circuit) subordinate resource
 - May be 3-phase, have a breaker, etc.
- Filter Resource Collection
 - Pressure sensors
 - Service time / install time, life etc.
 - ASHRAE requirements / classifications
 - Flush / clean actions?

NEW Subsystem schemas for Cooling Unit, continued

- HeatExchanger Resource Collection
 - For air-liquid systems
 - Likely a unit with a **Fan** collection with redundancy information
 - Fans may appear under the ThermalSubsystem in the associated Chassis
 - Temperature, power, other sensors
 - Controls and policies
- Reservoir Resource Collection
 - Fill level, pressure sensors
 - Air bleed value (controls), fill valve, drain valve
 - May have connections between reservoirs (balancing)

QUESTIONS FOR INDUSTRY



Status and open topics

- Model is solidifying with several name changes since last release
 - Expect more property additions prior to v1.0, dependent on feedback
- Expect support for air-liquid cooling units
 - Reviewing model to ensure this support can be added
 - Not expected for the v1.0 release of this material
- Significant number of common messages to define for Events / Alarms
 - Expect to define new message registries
 - Should be able to harvest existing SNMP trap definitions as a starting point
 - Will be prioritizing this portion of the effort to enable products to be fully managed using Redfish (and without requiring SNMP "in practice")

Q&A & Discussion

Redfish