
PMCI Tools Task Force

Pat Schoeller, Intel Corporation

Jim Harford, Broadcom

PMCI WG (Tools TF Co-Chairs)

Copyright © 2025 DMTF

Disclaimer

• The information in this presentation represents a snapshot of
work in progress within the DMTF.

• This information is subject to change without notice. The
standard specifications remain the normative reference for all
information.

• For additional information, see the DMTF website.

• This information is a summary of the information that will
appear in the specifications. See the specifications for further
details.

2

Session Goals

• Present the charter of the PMCI WG Tools Task Force (TF)

• Summarize the PMCI Tools TF Architecture

• Test Client (Protocol Validator)

• Test Service (Connector to MCTP process)

• Introduction to Python Scapy

• Show tool sample output

• Call for participation

3

Overview of PMCI Tools Task Force

• Developing Open-Source tools to enable validation of PMCI Protocols
on managed devices (adapters).

• The tools are broken down into:
• Test Client

• PMCI Test Tools Interface and Design Specification (DSP0280) implementation

• PMCI Protocol Validator (Python with Scapy Library)

• PMCI WG Protocols: PLDM Monitor & Control, NC-SI

• Allows easy adoption of other manageability protocols transported over MCTP

• Open-Source Code Delivery through GitHub

• Test Service
• Is part of the Target (e.g., BMC) Control Plane

• Goal is to achieve 80 - 95% common code (e.g., Control Plane compiles the
code into its environment).

• Defined Test Service / Control API to encourage “Accept As Is” adoption

4

Key Features of the PMCI Tools TF deliverables

• Universal (open source with expected 80-95% compiled

compatibility)

• Statically linked or stand-alone DLL style library

• Allows for diversity in BMC (Control Plane) integrations; Designed

to allow BMC operations to co-exist with the Test Service Library

PMCI transactions

• PMCI-Protocol-Validator provides consistent stimulus & verification

of PMCI WG protocols on a device, using the Control Plane as a

pass-through support agent

5

Test Control via Admin and Vendor Defined Admin Messages

6

Testing PLDM Functionality

7

Testing NC-SI Over MCTP Functionality

8

Testing NC-SI Over RBT Functionality

9

PMCI Stack

10

PMCI Stack

11

Tools validate upper

layer protocols

MCTP is owned by

Control Plane

Scapy Overview

• Scapy is a powerful interactive packet manipulation library written

in Python. Scapy can encode / decode packets of a wide number

of protocols

• Python Library that outputs “Human Readable” but machine

parsing enabled

• Test Client is architected as Python with Scapy to allow individual

innovation without compilation

• Python has broad support in the industry

12

Scapy Connect Request & Response Decode

###[PTTI Test Service Wrapper]###

 Version = 0x10

 ProtocolType= PTTI Admin

 Reserved = 0

 Direction = TC to TS Request

 TestClientID= 0x0aaa

###[PTTI Connect Request]###

 CommandCode= Connect

 SecurityParameterLength= 6

 SecurityParameter= [0x31, 0x32,

0x33, 0x34, 0x35, 0x36]

###[PTTI Test Service Wrapper]###

 Version = 0x10

 ProtocolType= PTTI Admin

 Reserved = 0

 Direction = TS to TC Response

 TestClientID= 0x0aaa

###[PTTI Connect Response]###

 CommandCode= Connect

 ResponseCode= SUCCESS

 TestServiceVersion= 0x10

 TestClientID= 0xdeadbeef

Goals for 2025

• Complete the Test Service Code and Open Source by 4Q2025

• Follows the SPDM Tools GitHub Publishing Model

• Publish a Control Plane integration example

• Complete the Test Client Code and Open Source by 4Q2025

• Base PLDM DSP0240 / DSP0248 functionality

• Base NC-SI functionality

• Modular design allows open contributions for other MCTP enabled

manageability protocols (such as NVMe MI, PCIe MI, etc)

14

Example Tools GitHub Repository Structure (Subject to change)

15

• https://github.com/DMTF/lib-test-service

• examples/ - mock Control Plane using libTestService (implements
interfaces/)

• interfaces/ - .h file documenting interfaces that the control plane must
provide

• src/ - ANSI C source for a Test Service

• https://github.com/DMTF/PMCI-Protocol-Validator

• src/ - python source code for validating PLDM/NC-SI

• /dsp0240

• /dsp0248

• /dsp0267

• /dsp0218

• /dsp0222

https://github.com/DMTF/lib-test-service
https://github.com/DMTF/lib-test-service
https://github.com/DMTF/lib-test-service
https://github.com/DMTF/lib-test-service
https://github.com/DMTF/lib-test-service
https://github.com/DMTF/lib-test-service
https://github.com/DMTF/PMCI-Protocol-Validator
https://github.com/DMTF/PMCI-Protocol-Validator
https://github.com/DMTF/PMCI-Protocol-Validator
https://github.com/DMTF/PMCI-Protocol-Validator
https://github.com/DMTF/PMCI-Protocol-Validator
https://github.com/DMTF/PMCI-Protocol-Validator

For more information,

visit dmtf.org

Learn about the PMCI working group at

dmtf.org/standards/pmci

Thank you!

	Slide 1: PMCI Tools Task Force
	Slide 2: Disclaimer
	Slide 3: Session Goals
	Slide 4: Overview of PMCI Tools Task Force
	Slide 5: Key Features of the PMCI Tools TF deliverables
	Slide 6: Test Control via Admin and Vendor Defined Admin Messages
	Slide 7: Testing PLDM Functionality
	Slide 8: Testing NC-SI Over MCTP Functionality
	Slide 9: Testing NC-SI Over RBT Functionality
	Slide 10: PMCI Stack
	Slide 11: PMCI Stack
	Slide 12: Scapy Overview
	Slide 13: Scapy Connect Request & Response Decode
	Slide 14: Goals for 2025
	Slide 15: Example Tools GitHub Repository Structure (Subject to change)
	Slide 16: For more information, visit dmtf.org Learn about the PMCI working group at dmtf.org/standards/pmci

