
SPDM 1.1: Session Key
Exchange Protocols

August 2019

• The information in this presentation represents a snapshot of work in
progress within the DMTF.

• This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

• For additional information, see the DMTF website.
• This information is a summary of the information that will appear in the

specifications. See the specifications for further details.

2© 2019 DMTF

Disclaimer

• DMTF welcomes public comment on this Work-in-Progress (WIP)
material.

• Please submit your comments via the DMTF Feedback portal
https://www.dmtf.org/standards/feedback.

• Please refer to PMCI Upcoming Workgroup Deliverables for timelines
of SPDM development: https://www.dmtf.org/standards/pmci.

© 2019 DMTF

Call for Action

Session Key Exchange

© 2019 DMTF

Objective: Establish session keys that are known to only Requester and Responder
• Either endpoint may abort a session at any time.
• Authentication happens with session key exchange – no need to run “Device

authentication” of SPDM 1.0 if session key exchange is run.
SPDM 1.1 plans to specify the following session key exchange schemes:
1. SIGMA option: based on ephemeral Diffie-Hellman and digital signatures.
2. Pre-shared secret option: based on a pre-shared secret known to both endpoints.
*SIGMA: http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
*SPDM 1.0 draft: https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_0.9.0a.pdf

ResponderRequester

“Show your identity.”

“I’m genuine, here is my certificate and signature.”
Device

authentication

“Show your firmware measurements.”

“I’m running firmware of measurements xyz. Here is xyz.”

Device firmware
measurement

“Let’s establish session keys for secure communication.”

(session key exchange)

Session key
exchange

(e.g. MCTP type 6 messages protected by session keys)

SPDM 1.0

SPDM 1.1

© 2019 DMTF

SIGMA Option for
Session Key Exchange

• Diagram above illustrates high-level sequence; arrows do not map to actual commands.
• Based on SIGMA and TLS 1.3 handshake protocols.
• Session key agreement uses Diffie-Hellman scheme (ECDHE or FFDHE).
• Features mutual or one-way (Responder to Requester) authentication.
• Features forward secrecy.
• Requester capabilities: RSA and/or ECC, HMAC, RNG
• Responder capabilities: RSA or ECC, HMAC, RNG (if mutual authentication or forward

secrecy is required)
• Responder examples: graphics card, SSD, FPGA

ResponderRequester

(For mutual authentication)
Verify Requester’s certificate

Exchange DH public keys and certificate(s)

Exchange digital
signature(s) and MacTag(s)

(For mutual authentication)
Verify Requester’s

signature and MacTag

Verify Responder’s certificate

Derive session keys with DH

Verify Responder’s
signature and MacTag

Derive session keys with DH

Generate ephemeral DH private
key and derive public key

Generate ephemeral DH private
key and derive public key

• Pre-shared secret (pss) is a secret known to both the Requester and
the Responder, before the session key exchange flow is executed.

• Provisioning of pss is out of scope of SPDM 1.1. Implementer’s policy
is also out of scope of SPDM 1.1.

• Responder benefits: low cost (HMAC + unique device secret or secure
storage for pss)

• Responder examples: integrated webcam, integrated fingerprint
scanner, devices soldered on board, CPU, GPU, NIC

• Requester capabilities: HMAC, RNG, secure storage

© 2019 DMTF

Pre-Shared Secret Option:
Introduction

© 2019 DMTF

Pre-Shared Secret Option for
Session Key Exchange

• Diagram below illustrates high-level sequence; arrows do not map to actual
commands.

• Some provisioning schemes require Requester to send opaque_pss_data
to Responder during session key exchange flow, so the Responder can
derive pss. Content of opaque_pss_data depends on the underlying pss
provisioning scheme and both are out of scope of SPDM.

• Requester context and Responder context are described in diagram below.
• Session keys are derived from pss and contexts.

ResponderRequester

(optional) opaque_pss_data

Generate optional RspContext
– may include random nonce

and/or Responder’s infoExchange Contexts

Generate ReqContext – must
include a random nonce; may
also include Requester’s info

Derive session keys from psk,
ReqContext, and RspContext

(optional) derive pss from
opaque_pss_data

Derive session keys from psk,
ReqContext, and RspContext

Exchange MacTag Generate MacTag with session MAC key.
Verify Requester’s MacTag.

Generate MacTag with session MAC key.
Verify Responder’s MacTag.

