Disclaimer

- The information in this presentation represents a snapshot of work in progress within the DMTF.
- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the Distributed Management Task Force (DMTF) website.
Goals

• Create specification(s) to provide security for PMCI standards and protocols.
 • Prefer specification that targets the transport layer.
 • MCTP, NC-SI, PLDM, Redfish Device Enablement, Firmware Update, Monitoring and Control, NVMe-MI™ Binding, etc…
 • www.dmtf.org/standards/PMCI
• Specification should be implementable on existing hardware designs.
 • Do not require changes to existing hardware/silicon.
• Referenceable by other industry standards organizations.
 • Examples: Security Project of Open Compute Project (OCP), PCI-SIG, Open Data Center Committee (ODCC), etc…
• Rapid Publication of Standard
 • Detail Architecture Release: October 2018
 • 0.9 Work-in-Progress Release: December 2018
 • Official 1.0 Release: Q1 2019

www.dmtf.org
Requirement Categories

- Functional
- Trust
- Data Protection
- Cryptography
- Out of Scope
- Future Considerations
Functional Requirements

• Endpoint Authentication, Data Confidentiality and Integrity.
 • Security protocol(s) are endpoint-to-endpoint.

• Support Wide Ecosystem
 • Allow resource constrained environments (i.e. low CPU and memory requirements) to choose basic security measures.
 • Allow resource-rich environments to choose stronger security measures.

• Support Layered Security
 • Ensure compatible security methods across layers of PMCI standards and protocols.
 • Should compliment security defined at other layers (i.e. such as the physical layer)

• Interoperable
 • Specify minimal set of capabilities and operations.
 • Define mechanism for protocol endpoints to choose security parameters.
Trust Requirements

- Allows Trust to be determined.
 - When requested, endpoint must provide identity.
 - Support for X.509 certificate
 - Does not exclude other forms of identity.
- Authentication Protocol based on existing art.
 - Example: USB-C authentication
- Define mechanism for passing firmware measurements.
Data Protection Requirements

- Use CIA Triad (Confidentiality, Integrity and Availability) as model for data protection
 - Perform a threat analysis/threat model.
- Allow design/implementation to dynamically choose which data to protect
- Define mechanism for Encryption and Integrity
Cryptography Requirements

• Use Standards (i.e. NIST, FIPS, RFCs, etc…)
 • Use list of algorithms in NIST-SP-800-131A revision 1 (published 2015)
 • Specify a set of cryptography algorithms to balance interoperability and design flexibility.
 • Potentially reference NIST.IR.8105.
 • Don’t invent or use outside of intended design/purpose

• Extensibility
 • Specification must be able to accommodate GEO compliance and support for future algorithms.
Out of Scope for Specification

- How identity and keys are initially provisioned.
- How firmware measurements are performed.
- PMCI Host Interface access to devices
- Security Policies
 - Specification will specify some mechanisms for implementing security policies but will not define those policies.
- Root-of-Trust (RoT)
 - Specification allows for RoT but will neither define nor require a RoT.
Future Considerations (i.e. Post 1.0 release)

• Authorization
 • How does an endpoint determine the remote endpoint has sufficient privilege to perform a specific PMCI operation?

• Identity Lifecycle Management (e.g. Certificate)
 • Do we define a new MCTP ID codes/operations?
 • Or Leverage RDE?
 • Do we do a new PLDM type?
 • What part of the lifecycle needs to be addressed?

• Any PMCI standards and protocols not encompassed in release 1.0.