
Redfish Telemetry

Streaming and Reporting

WORK IN PROGRESS

Jeff Autor, Vertiv

Redfish Forum, October 2025

Copyright © 2025 DMTF

Disclaimer

• The information in this presentation represents a snapshot of work in
progress within the DMTF.

• This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

• For additional information, see the DMTF website: www.dmtf.org

2

http://www.dmtf.org/

Telemetry proposal goals

• Produce interoperable telemetry in formats easily consumed by

time series database packages or Redfish-aware clients

• Need end user feedback and any client-side requirements

• Enable correlation with Redfish data model

• Match telemetry data to source in Redfish resources and properties

• Configure & deploy telemetry streaming without a priori knowledge

of resource tree or require vendor-specific string matching

• Should be able to “blind deploy” telemetry configuration across fleet

• Support stream / poll models and report generation

• Polling still useful for testing or ad hoc data gathering…

3

Telemetry enhancement proposal components

• NEW Time series-focused output format

• One “metric” per record (TLV), bundle of records delivered together

• Specify “metric name” and “metric label” string formats for interop

• TelemetryFeed definition

• Revamped proposal to easily define the contents of a stream

• Provide better leverage and integration from MetricReportDefinition

• Resource subset output format (from original proposal)

• Deliver “telemetry-only” resource subset on change or time interval

• Schema annotations to define telemetry subsets

4

TIME SERIES RECORDS

5

NEW TimeSeriesRecord

• Schema (non-resource) definition to describe telemetry output

• Contains time-label-value (TLV) records

• Records[{…}] contains:

• Time : Epoch-format (ms) (or seconds as float?)

• Name : Metric name constructed from schema

• Label : Instance name constructed from location in resource tree

• Value : Property value

• RedfishId : Service-unique, durable identifier for Name-Label pair

• Possible option to omit Name/Label after first record for efficiency

• Client stores lookup table based on RedfishId values

6

TimeSeriesRecord: Name construction

• Construct Name using schema and property names

• Format: Redfish_<schema name>_[<object path>]_<property name>

• Omit indexing of array properties (those are included in Label)

• Simplify frequent use of Reading in Sensor excerpt objects

• Excerpt property name is sufficient, omit Reading as unnecessary

• Example: Redfish_PowerSupply_InputVoltage[_Reading]

• Perhaps insert value of key property (if defined in schema)

• Provide “type” granularity if needed (e.g. “Temperature_Sensor”)

• Or this could be an exception just for Sensor schema

• Is this better addressed by proper resource selection in Feed?

7

TimeSeriesRecord: Name and Label style choices

• Do we need to follow the “best practices” for Name and Label?

• Those include “style” choices, but also rules to avoid name collisions

• We would preface our names with “Redfish_” or perhaps “rf_”

• Inclusion of schema (resource type) ensures unique names

• Conversion requires client-side recovery of Redfish property names

• Following best practices of time series client package(s):

• CamelCase becomes lower_case (some fixups needed: e.g. “kWh”)

• Name: rf_<schema name>[_<object name>]_<property name>

• Will need to document (few) exceptions as schema annotation

• Is this necessary, and/or can this be accomplished in exporter(s)?

8

TimeSeriesRecord: Name examples

• Native Redfish style:
• Redfish_PortMetrics_Networking_TXBroadcastFrames

• Redfish_Temperature_Sensor

• Redfish_Outlet_EnergykWh

• Redfish_EnvironmentMetrics_HumidityPercent

• Redfish_EnvironmentMetrics_FansSpeedPercent_SpeedRPM

• Prometheus “Best practice” style:
• redfish_port_metrics_networking_tx_broadcast_frames

• redfish_temperature_sensor

• redfish_outlet_energy_kwh

• redfish_environment_metrics_humidity_percent

• redfish_environment_metrics_fans_speed_percent_speed_rpm

9

Sensor example showing “subset type” prepended to
schema name and Reading property name removed

TimeSeriesRecord: Label construction

• Construct using path to source property in Redfish resource tree

• Only includes the fork “choices”, generating a minimal path

• Starts with schema name and append identifiers at each fork choice

• Define identifiers for collection members and array properties

• Use schema name or property name (when multiple paths in resource)

• Same format questions as Name

• Provide Label as either a string or a structure (need feedback)

• Don’t want to require string parsing to “break apart”

• Adapter code could craft one from the other if desired

• Structure likely an array of key-value pairs {schema_name : identifier}

10

TimeSeriesRecord: Label identifiers

• Need interoperable identifier values equivalent to “path to property”

X Resource collection Id values are opaque strings, not interoperable

X Resource collection Members[0..n] order may change on service reset

• Add Ordinal property for Resource Collection members

• Ordinal values defined by service (0-based integer)

• Values are stable unless “significant configuration change”, same as Id

• Create annotation rather than property? @Redfish.Ordinal

• Add “?ordinal=<int>” query parameter to retrieve resources without Id

• For array properties, add index (0-based) key-value to Label

• Example: “FanSpeedsPercent=5” in EnvironmentMetrics

11

TimeSeriesRecord: Name and Label examples

• Redfish_PortMetrics_Networking_TXBroadcastFrames

• Label: “ComputerSystem=0,FabricAdapter=1,Port=1”

• Redfish_PowerSupplyMetrics_OutputPowerWatts_ReactiveVAR

• Label: “Chassis=0,PowerSupply=3”

• Redfish_Outlet_EnergykWh

• Label: “RackPDUs=0,Outlet=9”

• Redfish_EnvironmentMetrics_HumidityPercent

• Label: “Chassis=2”

• Redfish_EnvironmentMetrics_FansSpeedPercent_SpeedRPM

• Label: “Chassis=2,FansSpeedPercent=7”

12

TimeSeriesRecord: Full record example

13

New properties for defining
interoperable labels and

system-level identifiers

{

 “Time”: 1743984255000,

 “Records”: [{

 “Time": 1743984253000,

 “RedfishId”: “KAN3dr4”,

 “Name”: “Redfish_Temperature_Sensor”,

 “Label”: “Chassis=0,Sensor=17”,

 "Value": “46.1”,

 },

 {

 “Time": 1743984253000,

 “RedfishId”: “LK9hy72”,

 “Name”: “Redfish_Temperature_Sensor”,

 “Label”: “Chassis=0,Sensor=33”,

 "Value": “29.7”,

 },

 . . . More records ...

]

}

Adopt millisecond-granularity epoch-style timestamps (bundle
plus per-record) – shown as Int64 (ms), could be float (s)

RedfishId provides service-unique identifier, allowing option to
omit Name and Label after first record for efficiency

TELEMETRY FEEDS

14

Selecting properties for a telemetry feed

• Redfish separates fast-changing data into separate resources

• But even these resources include some static, supporting properties

• Choose telemetry-focused subsets of properties for each schema

• Omit configuration data, supporting properties, links to resources, etc.

• Example: In Sensor, normally, only the Reading value changes

• Define these subsets as part of the standard schema

• Schema annotation concept unchanged from previous proposal

• Telemetry feed contains the subset defined for a selected resource

• Simplifies feed creation by pre-selecting properties per schema

• A resource instance of this subset at a given time is a “record”

15

NEW TelemetryFeed schema

• A feed is produced using a schema-backed subset of properties

from a selected set of resources in the tree

• URI patterns (with wildcards) and “type” filters select resources

• Schema annotations define which properties are included

• Can receive “Compact”, “Detailed”, or “All” subset of properties

• Concept is mostly unchanged from previous proposal

• Local “reports” built from feed are placed in TelemetryData

• Provides means to create “daily” / “hourly” reports stored on service

• Includes controls for report generation, duration, etc.

• Feed can also be used to define OEM-specific TelemetryData output

16

TelemetryFeed mockup
{

 "@odata.type": "#TelemetryFeed.v1_0_0.TelemetryFeed",

 "Id": “HourlyTemperature",

 "Name": "Temperature data from 1U servers collected every hour",

 "Enabled": true,

 “PollTimeSeriesURI”: “/redfish/v1/TelemetryService/TelemetryFeeds/HourlyTemperature/TimeSeries”,

 “PollJSONLinesURI”: “/redfish/v1/TelemetryService/TelemetryFeeds/HourlyTemperature/JSONLines”,

 "FeedSources": [

 {

 "URIPattern": "/redfish/v1/Chassis/{1U_*}/Sensors",

 "FilterKeyValues": ["Temperature“]

 }

],

 "SamplingInterval": "PT60M",

 "SamplingType": "Interval",

 "Verbosity": "Compact",

 "IncludeStatus": false,

 "TelemetryDataOutput": {

 "Enabled": true,

 "Duration": "PT24H",

 “Format": “TimeSeries”,

 "StartTime": "2024-09-01T00:00",

 "KeepAtMost": 4

 },

 "@odata.id": "/redfish/v1/TelemetryService/TelemetryFeeds/HourlyTemperature“

}

17

Array allows collecting telemetry
from multiple resources (with

wildcard support) in a single feed

Enable predictable polling support, a
GET returns a single set of record(s)

A “Report” is a JSON Lines concatenated
file of telemetry records (in any supported

format). Reports built from the feed are

placed in TelemetryData collection

Subscribing to TelemetryFeed

• New EventFormatType values in EventDestination

• “TimeSeriesRecord” : receive TimeSeriesRecord

• “TelemetryFeed” : receive telemetry subsets in JSON Lines

• TelemetryFeedId – Id value of TelemetryFeed

• Can be used for “MetricReport” format as well

• Supports both POST Event method or Server-Sent Eventing (SSE)

• HTTP headers define content type and subscriber context
• Content-Type: application/jsonlines

• X-Redfish-Context: <context>  Custom HTTP Header defined for this purpose

18

Call to Action

• Watch for updated work-in-progress bundle for more details

• See: https://www.dmtf.org/redfish under “Work in Progress”

• Evaluate “Name” and “Label” construction concepts

• Are there existing formats to which we can align?

• Do we need to support multiple formats / styles?

• Any telemetry package-specific needs beyond TLV fields?

• Provide feedback on updated proposal

• Need your requirements to ensure we create an interoperable solution

• What else is needed to produce interoperable telemetry?

19

https://www.dmtf.org/redfish

Q&A & Discussion

20

	Slide 1: Redfish Telemetry Streaming and Reporting
	Slide 2: Disclaimer
	Slide 3: Telemetry proposal goals
	Slide 4: Telemetry enhancement proposal components
	Slide 5: Time series records
	Slide 6: NEW TimeSeriesRecord
	Slide 7: TimeSeriesRecord: Name construction
	Slide 8: TimeSeriesRecord: Name and Label style choices
	Slide 9: TimeSeriesRecord: Name examples
	Slide 10: TimeSeriesRecord: Label construction
	Slide 11: TimeSeriesRecord: Label identifiers
	Slide 12: TimeSeriesRecord: Name and Label examples
	Slide 13: TimeSeriesRecord: Full record example
	Slide 14: Telemetry feeds
	Slide 15: Selecting properties for a telemetry feed
	Slide 16: NEW TelemetryFeed schema
	Slide 17: TelemetryFeed mockup
	Slide 18: Subscribing to TelemetryFeed
	Slide 19: Call to Action
	Slide 20: Q&A & Discussion

