

SPDM Authorization (Intro and Update)

Raghu Krishnamurthy, NVIDIA
Scott Phuong, Microsoft

Disclaimer

- The information in this presentation represents a snapshot of work in progress within the DMTF SPDM WG.
- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the DMTF website.
- This information is a summary of the information that will appear in the specifications. See the specifications for further details.

Authorization

Definition:

 Determining if the requesting entity has the appropriate privileges to perform protected actions. If yes, to allow them to perform those protected actions.

Scope:

- Provide a general mechanism for any use case (e.g., SPDM, PLDM, other present and future PMCI WG use cases, alliance partners, industry) to perform authorization.
 - Examples:
 - PLDM FW Update, Type 2 and/or Type 6
 - SPDM Set Certs (and other future "set" commands).

Expected publication Q4 2025

Assumptions

- This presentation makes the following assumptions
 - The endpoints in discussion communicate using SPDM (DSP0274) and SPDM Secured Messages (DSP0277)
 - Communication can use any transport that supports the above commands
 - To bootstrap Authorization, there needs to be a provisioning step for initial credential
 - Definition of Policy profiles is out of scope for the Authorization specification

High Level Architectural Components

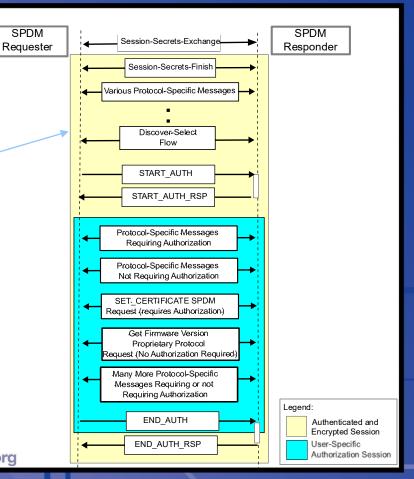
- Authorization Flow
 - Use SPDM Sessions between Requester/Responder pair (simplifies supported options, baseline security)
 - Specify how to authorize generic messages
- Credential and Policy Management
 - Types of Credentials
 - Asymmetric Key Pair (Focus of initial release)
 - Credential and Credential Policy
 - Standardize provisioning of credentials and associating them with their authorization policy
 - Authorization policy itself should be specified by the protocol leveraging this authorization specification

High Level Architectural Components

- Ownership and Transfer of Ownership
 - Workflow for locking and clearing provisioned authorization data and vendor defined data types to factory defaults.
 - Not the same as OCP Device Ownership Transfer

Authorization Processes

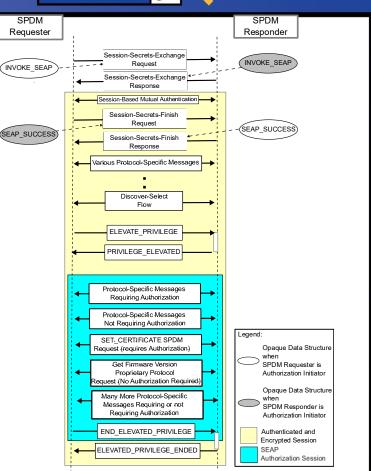
- 2 Use Cases the User is the authorized actor
 - SPDM Requester represents User via SEAP
 - SPDM Requester is a proxy for User via USAP



SPDM

User-Specific Authorization Process (USAP)

Regular SPDM Key exchange (Asym, PSK etc) using endpoint key Includes negotiating Secured Messages DSP0277 version


> AuthTag uses authorization key (separate from key exchange keys)

www.dmtf.org

SPDM Endpoint Authorization Process (SEAP)

www.dmtf.org

Credential Provisioning

- DSP0289 defines 8 persistent Credential Slots, minimum supported is one
 - The ability to clear slot contents will be included in v1.0
- All slots can be provisioned in
 - A trusted environment
 - Authorized via a selected credential(s) already provisioned
- All credentials associated with a policy
 - Defines what the credential can be used to authorize (ex: SET_CERTIFICATE, PLDM FW Activation etc)
- DSP0289 defines credential provisioning commands for credentials and policies

Call to Action

- Get involved in the DMTF Authorization Specification development
- Review the WIP slides from DMTF
 (https://www.dmtf.org/sites/default/files/SPDM_Authoriz ation_WIP90.pdf)
- Provide feedback to DMTF SPDM (https://www.dmtf.org/standards/feedback)
- Start developing use cases for authorization at the device level
- Is being adopted by other standards bodies.

For more information, visit dmtf.org

Learn about membership at dmtf.org/join

Thank you!