Compute Express Link™ (CXL™): A Coherent Interface for Ultra-High-Speed Transfers

DMTF Virtual APTS
July 21, 2020
Kurt Lender, Ecosystem Enabling Manager, Intel Corporation
Co-Chair Marketing Work Group, CXL Consortium
Meet the Presenter

Kurt Lender
Ecosystem Enabling Manager
Intel Corporation
Agenda

• Industry Landscape
• Compute Express Link™ Overview
• CXL™ Features and Benefits
• CXL Use Cases
• CXL Consortium and Industry Liaisons
• Summary
Industry Landscape

- Industry trends are driving demand for faster data processing and next-generation data center performance.
Why the need for a new class of interconnect?

• Industry mega-trends are driving demand for faster data processing and next-generation data center performance:
 • Proliferation of Cloud Computing
 • Growth of Artificial Intelligence and Analytics
 • Cloudification of the Network and Edge

• Need a new class of interconnect for heterogenous computing and disaggregation usages:
 • Efficient resource sharing
 • Shared memory pools with efficient access mechanisms
 • Enhanced movement of operands and results between accelerators and target devices
 • Significant latency reduction to enable disaggregated memory

• The industry needs open standards that can comprehensively address next-gen interconnect challenges
Compute Express Link™ (CXL™) Overview

• **New breakthrough high-speed CPU-to-Device interconnect**
 • Enables a high-speed, efficient interconnect between the CPU and platform enhancements and workload accelerators
 • Builds upon PCI Express® infrastructure, leveraging the PCIe® 5.0 physical and electrical interface
 • Maintains memory coherency between the CPU memory space and memory on attached devices
 • Allows resource sharing for higher performance
 • Reduced complexity and lower overall system cost
 • Permits users to focus on target workloads as opposed to redundant memory management

• **Delivered as an open industry standard**
 • CXL Specification 1.1 is available now
 • Future CXL Specification generations will continue to innovate to meet industry needs
Alibaba, Cisco, Dell EMC, Facebook, Google, Hewlett Packard Enterprise, Huawei, Intel Corporation and Microsoft announced their intent to incorporate in March 2019.

This core group announced incorporation of the Compute Express Link (CXL) Consortium on September 17, 2019 and unveiled the names of its Board of Directors:
Introducing CXL

• Processor Interconnect:
 • Open industry standard
 • High-bandwidth, low-latency
 • Coherent interface
 • Leverages PCI Express®
 • Targets high-performance computational workloads
 • Artificial Intelligence
 • Machine Learning
 • HPC
 • Comms

A new class of interconnect for device connectivity
What is CXL?

• Alternate protocol that runs across the standard PCIe physical layer

• Uses a flexible processor port that can auto-negotiate to either the standard PCIe transaction protocol or the alternate CXL transaction protocols

• First generation CXL aligns to 32 Gbps PCIe 5.0

• CXL usages expected to be key driver for an aggressive timeline to PCIe 6.0
CXL Protocols

- The CXL transaction layer is compromised of three dynamically multiplexed sub-protocols on a single link:

- **CXL.io**
 Discovery, configuration, register access, interrupts, etc.

- **CXL.cache**
 Device access to processor memory

- **CXL.Memory**
 Processor access to device attached memory
CXL™ Features and Benefits
CXL Stack – Designed for Low Latency

• All 3 representative usages have latency critical elements:
 • CXL.Cache
 • CXL.Memory
 • CXL.io

• CXL cache and memory stack is optimized for latency:
 • Separate transaction and link layer from IO
 • Fixed message framing

• CXL io flows pass through a stack that is largely identical a standard PCIe stack:
 • Dynamic framing
 • Transaction Layer Packet (TL)/Data Link Layer Packet (DLPP) encapsulated in CXL flits
CXL Stack – Designed for Low Latency

• All 3 representative usages have latency critical elements:
 • CXL.Cache
 • CXL.Memory
 • CXL.io

• CXL cache and memory stack is optimized for latency:
 • Separate transaction and link layer from IO
 • Fixed message framing

• CXL io flows pass through a stack that is largely identical a standard PCIe stack:
 • Dynamic framing
 • Transaction Layer Packet (TLP)/Data Link Layer Packet (DLLP) encapsulated in CXL flits

© CXL™ Consortium 2020
Asymmetric Complexity

CCI* Model – Symmetric CCI Protocol

- **Accelerator**
 - Accelerator Engine
 - Accelerator Caching Agent
 - Accelerator Home Agent
 - Memory Agent

- **CPU**
 - Core
 - CCI Caching Agent
 - CCI Home Agent
 - Memory Agent

CXL Model – Asymmetric Protocol

- **Accelerator**
 - Accelerator Engine
 - Cache
 - Biased Coherence Bypass

- **CPU**
 - Core
 - CXL/CNI Caching Agent
 - CXL/CNI Home Agent
 - Memory Agent

CXL Key Advantages:

- Avoid protocol interoperability hurdles/roadblocks
- Enable devices across multiple segments (e.g. client / server)
- Enable Memory buffer with no coherency burden
- Simpler, processor independent device development

Cache Coherent Interface
CXL’s Coherence Bias

Device Bias

- Accelerator
 - Cache
- CPU + IO
 - Coherence
 - CA + IA
- Accelerator Local Memory
- Host Memory

Accelerator

- Accelerator Engine
 - Cache
- Biased Coherence Bypass
- Memory Agent

CPU

- Core
- Core
- Core
- Core
 - CXL/CCI Caching Agent
 - CXL/CCI Home Agent
- Memory Agent

Host Bias

- Accelerator
 - Cache
- Coherence
 - CA + IA
- Accelerator Local Memory
- Host Memory

Critical access class for accelerators is "device engine to device memory"

"Coherence Bias" allows a device engine to access its memory coherently without visiting the processor

Two driver managed modes or "Biases"

HOST BIAS: pages being used by the host or shared between host and device

DEVICE BIAS: pages being used exclusively by the device

Both biases guaranteed correct/coherent

Guarantee applies even when software bugs or speculative accesses unexpectedly access device memory in the "Device Bias" state.
CXL™ Use Cases
Representative CXL Usages

Caching Devices / Accelerators

- **Usages:**
 - PGAS NIC
 - NIC atomics
- **Protocols:**
 - CXL.io
 - CXL.cache

Accelerators with Memory

- **Usages:**
 - GPU
 - Dense Computation
- **Protocols:**
 - CXL.io
 - CXL.cache
 - CXL.memory

Memory Buffers

- **Usages:**
 - Memory BW expansion
 - Memory capacity expansion
 - Storage Class Memory
- **Protocols:**
 - CXL.io
 - CXL.mem
Heterogeneous Computing Revisited – with CXL

- CXL enables a more fluid and flexible memory model
- Single, common, memory address space across processors and devices

- More efficient population and update of operands
- More efficient extraction of results
- Memory resource “borrowing”
- User/Kernel level data access and data movement
- Low latency to memory, host to device and device to host

© CXL™ Consortium 2020
CXL Consortium
CXL Consortium™ Membership

• CXL Consortium boasts 100+ member companies to date and is growing rapidly
 • Membership reflects required industry expertise to create a robust, vibrant CXL ecosystem
 • View the List of Members

• Members have immediate access to the CXL Specification 1.1
 • Both the Host and Target side of the interface is published, allowing it to be implemented on any type of system and with any type of target device
 • All members can implement the spec under the Consortium’s IP protection policy
 • Evaluation Copy of the CXL 1.1 Specification is available for download

• The CXL Consortium will continue to define and deliver future generations of the CXL Specification
 • Contributor level members and above can participate in the definition and promotion of future specifications in the following CXL Working Groups:
 • Compliance WG, Marketing WG, PHY WG, Protocol WG, System WG and Software WG
 • Will maintain backwards compatibility with prior generations to protect member investments

Compute Express Link™ and CXL Consortium™ are trademarks of the Compute Express Link Consortium.
Industry Liaison – DMTF

• Work register established between CXL Consortium and DMTF

• Areas of Technical Collaboration:
 • CXL is built on top of PCIe infrastructure, so CXL can leverage all PMCI standards that apply to PCIe adapters. CXL will adopt DMTF defined SPDM standard
 • Assist in extending the Redfish standard to include CXL management
 • Provide CXL expertise and assistance to the Redfish Forum
 • Current definition of Redfish data model is rich enough to describe CXL accelerators and memory expanders for the most parts, CXL will leverage.
 • Ensure CXL management support in standards developed by DMTF’s Platform Management Components Intercommunication working group
 • CXL consortium will collaborate with DMTF to define extensions (e.g. new MCTP message type, new properties) as needed
CXL Summary

• CXL has the right features and architecture to enable a broad, open ecosystem for heterogeneous computing and server disaggregation:

- **Coherent Interface:** Leverages PCIe® with 3 mix-and-match protocols
- **Low Latency:** .Cache and .Mem targeted at near CPU cache coherent latency
- **Asymmetric Complexity:** Eases burdens of cache coherent interface designs
- **Open Industry Standard:** With growing broad industry support
Call to Action

• To join the CXL Consortium, visit www.computeexpresslink.org/join
• If your company is a member, consider joining various workgroups and contribute to future generation of CXL.
• Download an evaluation copy of the CXL 1.1 specification
• Engage with us on social media

@ComputeExLink

www.linkedin.com/company/cxl-consortium/

CXL Consortium Channel
CXL Resources

Webinars:
Upcoming webinar: Memory Challenges and CXL Solutions (August 6, 8 AM PT)
Webinar: Exploring Coherent Memory and Innovative Use Cases
Webinar: Introduction to Compute Express Link (CXL) Webinar Presentation

CXL Blogs:
• Compliance and Interoperability: Critical Indicators of Technology Success
• The Benefits of Serial-Attached Memory with Compute Express Link™
• Questions from the Compute Express Link™ Exploring Coherent Memory and Innovative Use Cases Webinar

Whitepaper:
• Introduction to Compute Express Link™

www.ComputeExpressLink.org

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
Thank you!