L% DMTF

Advancing PLDM:

Structured Sensors, Scalable Modeling, and
the Server Host SoC PLDM Specification

Justin King, AMD
Samer El-Haj-Mahmoud, Arm

Copyright © 2025 DMTF

www.dmtf.org



Disclaimer

The information in this presentation represents a snapshot of
work in progress within the DMTF.

This information is subject to change without notice. The
standard specifications remain the normative reference for all

information.
For additional information, see the DMTF website.

This information is a summary of the information that will
appear in the specifications. See the specifications for further
details




Agenda

PLDM for Host SoCs (CPUs)
Scalable Sensors/Effecters
Scalable Entity Association
Structured Attributes

Putting it all together — the PLDM Host SoC Model




PLDM for Host SoCs

Multiple Host SoC (CPU) vendors have converged on PLDM
(particularly PLDM Type 2) as their out-of-band management
protocol, but are making conflicting modeling decisions

Goal: Publish a DMTF Informational Document (DSP2070) that

provides guidance on how to build a PLDM model for Host SoCs

PMCI has published three similar Informational Documents:
DSP2054 PLDM NIC Modeling
DSP2061 PLDM Accelerator Modeling
DSP2067 PDLM CXL Memory Modeling




Scaling Challenges

Modern SoCs contain numerous instances of replicated
components — especially CPU cores
Replicated components - Replicated sensors and effecters
Example: SoC with 256 processor cores

« Thermal sensor per core (degrees C)

« Power sensor per core (milliwatts)

« -2 512 numeric sensors

« > 512 nearly-identical Numeric Sensor PDRs




PDR Cloning for Scalable Sensors/Effecters

Reduce the number of PDRs by taking an existing PDR as a
template and create several clones from that template.

Each clone has a new sensor ID or effecter ID, entity Instance, etc
but otherwise inherits all other content from the template PDR.

Reduce the number of calls to enablement commands such as
SetNumericSensorEnable by allowing a single call, using the
cloned template Id, to enable all clones at once.




PLDM Clone PDR

Type

bitfield16

uint16

CloneRecord
xN

Description

CommonHeader
See Common PDR header format.

PLDMTerminusHandle
A handle that identifies PDRs that belong to a particular PLDM terminus.

TemplatePDRType
The PDR Type of the PDR being cloned. PDR Types are given in PDR Type Values.

TemplatelD
The identity of the PDR being cloned. Depending on the PDR Type, this can be a SensorID, EffecterID, or
an ContainerID.

CloningFlags

Flags which extend the behavior of certain commands. If a bit is set, issuing the indicated command to
the TemplatelD will cause the PLDM Terminus to apply that command to all cloned IDs as well.

[ 0] : SetNumericSensorEnable of TemplatelD (SensorID) affects all clones

[ 1] : SetSensorThresholds of TemplatelD (SensorID) affects all clones

[ 2] : RestoreSensorThresholds of TemplatelD (SensorID) affects all clones

[ 3] : SetSensorHysteresis of TemplatelD (SensorID) affects all clones

[ 4] : SetStateSensorEnables of TemplatelD (SensorlD) affects all clones

[ 5] : SetNumericEffecterEnable of TemplatelD (EffecterID) affects all clones

[ 6] : SetStateEffecterEnables of TemplatelD (EffecterID) affects all clones

CloneCount
The number of clones in this PDR.

CloneRecords

Each CloneRecord is an instance of a CloneRecord structure that is used to describe the fields which are
different for each clone. PDR fields which are not described in a CloneRecord shall be considered
identical to the template PDR of the TemplatePDRType and TemplatelD above. The CloneRecord structure
is defined in Table 110.

uint16

strUTF-
8

Table 110 — CloneRecord format

Description

ClonelD
The ID of this clone. Based on TemplatePDRType, this can be a SensorlD, EffecterID, or
ContainerlD.

CloneEntitylnstanceNumber
The Instance Number for the entity that is associated with this clone See Entity Identification
Information for more information.

CloneContainerld
The ContainerlD for the containing entity that instantiates the entity that is measured by this
clone See Entity Identification Information for more information.

CloneReservedBytes
Reserved for future use.

CloneNameStringByteLength

If this is greater than zero, then the "CloneNameString” is present at the end of this record This
field is a vendor supplied sensor or effecter name. This is the explicit name for display. The
recommended maximum length is 96 bytes.

CloneNameString

This is the vendor defined name for this sensor or effecter. This field is expected to be used for
display and not an explicit identifier. This field is NOT present if the CloneNameStringByteLength
value is equal to zero.

Note: cloneEntityType is
implicit/cloned from TemplatelD PDR




Clone PDR — Host SoC w/ 256 Cores

SensorlD = 1000

EntityType = Proc Core
Entitylnstance =0x0000
ContainerID = 100

BaseUnit = Volts
UnitMod = -3 (millivolts)

SensorID = 1001

EntityType = Proc Core
Entitylnstance =0x0000
ContainerlD = 100

BaseUnit = Degrees C

SensorlD = 1002

SensorlD = 1003

SensorlD = 1510

SensorID = 1000

ContainerlD = 100

ContainerEntType = Processor Chip
ContainerEntinstance =0x0001
ContainerEntContainerlD = System
ContainedEntType = Processor Core
ContainedEntinstance = 0x0000
ContainedEntContainerID = 100
ContainedEntType = Processor Core
ContainedEntinstance = 0x0001
ContainedEntContainerID = 100

lified

EntityType = Proc Core
Entitylnstance = 0x0000
ContainerlD = 100

BaseUnit = Volts
UnitMod = -3 (millivolts)

ContainerID = 100

ContainerEntType = Processor Chip
ContainerEntinstance =0x0001
ContainerEntContainerlD = System

SensorlD =2000

EntityType = Proc Core
Entitylnstance =0x0000
ContainerID = 100

BaseUnit = Degrees C

ContainedEntType = Processor Core
ContainedEntinstance = 0x0000
ContainedEntContainerID = 100

ContainedEntType = Processor Core
ContainedEntinstance = 0x0001
ContainedEntContainerID = 100

*NEW* Clone PDR
sourcelD = 1000

ContainedEntType = Processor Core
ContainedEntinstance = 0x00FF
ContainedEntContainerID = 100

513 PDRs

EntityType = Proc Core
Entityinstance = 0x00FF
ContainerID = 100

BaseUnit = Volts
UnitMod = -3 (millivolts)

SensorlD = 1511

numClones = 255

clone[0].cloneld =1001
clone[0].instance =1
clone[0].container = 100

ContainedEntType = Processor Core
ContainedEntinstance = 0x00FF
ContainedEntContainerID = 100

clone[255].cloneld =1255
clone[255].instance =255
clone[255].container = 100

*] *

EntityType = Proc Core
Entitylnstance =0x00FF
ContainerID = 100

BaseUnit = Degrees C

www.dmif.org

sourcelD =2000
numClones = 255

clone[0].cloneld =2001
clone[0].instance =1
clone[0].container = 100

clone[255].cloneld =2255
clone[255].instance =255
clone[255].container = 100

5 PDRs




Large/Scaled Entity Association PDRs

« Entity Association Records/PDRs are limited and inefficient in scalable
environments

Limit: 256 children/PDR (Can use linked EA PDRs for bigger container)

Inefficient: duplicated child entities == duplicated fields
« Example: SoC has 256 processor cores in a single container. Entries:

l Txee = Core,llnstanceID = 0x00|Container =100 l
Type = Core)InstancelD = 0x01fContainer = 100

Type = Core,|InstancelD = 0x02] Container = 100 I Duplicated Fields

Type = Core,}InstancelD = OxFH Container = 100

Type = CoreJ)InstancelD = OxFF &ontainer = 100)
* *

» Duplicated data consumes 65.6% of a max-size Entity Association PDR (1020/1556 bytes)

www.dmif.org




New Scalable Entity Association PDR

Existing EA PDR Front Matter

Description

CommonHeader
See Common PDR header format.

ContainerlD

value: 0x0001 to OxFFFF = An opaque number that identifies a particular container entity in the hierarchy of containment.

uint16 See Physical-to-Physical containment associations for more information.
special value: 0x0000 = "SYSTEM". This value is used to identify the topmast containing pntity in PLDM Entity Association
containment hierarchies.

enuma AssociationType
value: { PhysicalToPhysicalContainment, LogicalContainmelit, Sl g WHTE (@I T Ty Clglacter | e | ReTo Te | [T 1ETT T T l

Container Entity Identification Information

uint16  ContainerEntityType

ContainerEntitylnstanceNumber
A top-level PDR shall use ContainerEntitylnstanceNumber 1.
uint16  Any sensor which relates to this level shall use the ContainerEntityType and ContainerEntitylnstanceNumber to reference
the top level
This method should only be used on the top-level entity association PDR.

uint16  ContainerEntityContainerlD

;

New Child Entity Section (ScaledPhvsical. ScaledLoaical)

Contained Entity Identification Information When AssociationType is ScaledPhysicalContainment or ScaledLogicalContainment

uint16

uint16

uint16

uint16

uint16

uint16
uint16

uint16

uint16

uint16

Reserved
Must be set to 0x00 for backwards compatibility.

SingletonContainedEntityCount
Count of contained singleton entity IDs (1 to K)

SegmentCount
Count of segments (1 to N) each containing a set of contiguous EntitylnstanceNumbers

TotalContainedEntityCount

The number of contained entities listed in this particular PDR across all segments. This may not be the total number of
contained entities because multiple containment association PDRs may exist for the same container entity. See Linked
Entity Association PDRs for more information.

ContainedEntitiesType
ContainedEntitiesCantainerNumber

SingletonContainedEntitylnstanceNumber[1]

SingletonContainedEntitylnstanceNumber[K]
SegmentStartingEntityinstanceNumber[1]

SegmentEntitylnstanceCount[1]

SegmentStartingEntitylnstanceNumber[N]

SegmentEntitylnstanceCount[N]

www.dmif.org




Atomically accessible attributes

PLDM lacks a simple way to “atomically” read structured data
« “Atomic” from perspective of MC.

Example: UEFI boot progress sensor (for Host SoC model)
« 8 byte status, 4 byte instance
« Two PLDM numeric sensors does not give atomicity
« Extending PLDM numeric sensors to a uint128 does not enable self-
description (understanding the structure) via PDRs
Additional examples:

« timestamp104 (13 bytes), interval72 (9 bytes), ver32 (4 bytes
structured), UUID (16 bytes)

e 3-axis accelerometer

www.dmif.org



Proposed Solution — PLDM Structured Attributes

New type of reading (in addition to numeric and state sensors)
New PDR type, new read/enable commands

PDR enumerates a structureType — describes format of data
For downstream device vendors, this is opt-in.

If your current device functions well without Structured Attributes, you
do not have to use them.

Can be cloned, just like sensors, effecters, and Entity Assoc. PDRs




PLDM StrUCtu l'ed Attl’ibute PDR New Structured Attribute

Context Table in DSP0249
Top Matter: Header, Handle, AttributelD, Entity Type/lnstance/Container Structure

StructureContextiD Context
The Structure Context ID for this Structured Attribute as documented in DSP0249, Table X Structured Attribute Contexts [»]

ver32

StructureVersion

The version of this Structured Attribute encoded as a ver32 Boot StatUS and lr:‘Stance as deﬁned in UEFI
Platform Initialization Spec Chapter 6 v1.0
StructureFieldsCount

The number N of fields in this Structured Attribute F ID F Type Field Name
StructureField Type[0]
Type of the first field of the Structured Attribute, as enumerated in DSP0240, Table 2 Data Types 1 uint8 status code type
StructureFieldID[0] . i
Identifier of the first field of the Structured Attribute, as enumerated in DSP0249, Table X Structured Attribute Contexts for the given 2 uint8 statu S _C ode_sever lty
StructureContextiD.

3 uint32 stance
StructureField Type[N-1]
Type of the last field of the Structured Attribute, as enumerated in DSP0240, Table 2 Data Types

StructureFieldID[N-1] 0xF000 - <Range for OEM Structs>
Identifier of the last field of the Structured Atiribute, as enumerated in DSP0249, Table X Structured Attribute Contexts for the given OXF FFF
StructureContextiD.

uint16

01 struct uefi_boot_statusm _ Enhanced PLDM Types
£1£0£000 03 ¢ Table in DSP0240

status_code_ type; Data
EN01 status_code_severity; T‘”’e _ -
0302 instance : uint8 Unsigned 8-bit binary integer

0503 sint8 Signed 8-bit binary integer

Enumeration Interpretation

uint18 Unsigned 16-bit binary integer

sint16 Signed 16-bit binary integer

www.dmif.org




Putting it all together — the PLDM Host SoC Model

« Qverall SoC Sensor Collection
« Temperature, Power, Health, Boot Status (Structure)

SoC Processor Cores Collection — Define once, scale
» Frequency, Utilization

SoC Memory Collection — Define once, scale
« Temperature, Power, Utilization, Health

SoC 10 Collections - Define once, scale
 PCle, Network Ports
« Health, Utilization, Speed/Performance

www.dmif.org



How to get involved

Contribute to PLDM Host SoC Modeling / Monitoring & Control
» Host SoC modeling — Common base of function vendors
» Monitoring & Control v1.4.0 — Scaling for modern devices

Direct through the PMCI Workgroup Group of DMTF
» https://www.dmtf.org/standards/pmci

Or

DMTF Feedback Portal
« https://www.dmtf.org/standards/feedback

www.dmif.org


https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/feedback
https://www.dmtf.org/standards/feedback

k

k

Acknowledgement

Thanks to all the contributors and
participants of the PMCI Working Group!




Questions?




|—9 DMTF

For more information,
visit dmtf.org

Learn about the PMCI working group at

dmtf.org/standards/pmci

Thank you!

www.dmtf.org



	Slide 1: Advancing PLDM: Structured Sensors, Scalable Modeling, and the Server Host SoC PLDM Specification
	Slide 2: Disclaimer
	Slide 3: Agenda
	Slide 4: PLDM for Host SoCs
	Slide 5: Scaling Challenges
	Slide 6: PDR Cloning for Scalable Sensors/Effecters
	Slide 7: PLDM Clone PDR
	Slide 8: Clone PDR – Host SoC w/ 256 Cores
	Slide 9: Large/Scaled Entity Association PDRs
	Slide 10: New Scalable Entity Association PDR
	Slide 11: Atomically accessible attributes
	Slide 12: Proposed Solution – PLDM Structured Attributes
	Slide 13: PLDM Structured Attribute PDR
	Slide 14: Putting it all together – the PLDM Host SoC Model
	Slide 15: How to get involved
	Slide 16: Acknowledgement
	Slide 17: Questions?
	Slide 18: For more information,  visit dmtf.org   Learn about the PMCI working group at dmtf.org/standards/pmci

