Manage Everything DMTF Way

Dr. Hemal V. Shah
Distinguished Engineer & Architect, Broadcom Inc.
Senior VP of Technology and TC Chair, DMTF

www.dmtf.org
Disclaimers

• Please note this keynote is being recorded
• Recording will be available to the public
Agenda

• DMTF Overview
• DMTF Evolution
• DMTF Technologies
• Redfish Overview
• PMCI Overview
• SPDM Overview
DMTF – An Industry Standards Org

WHO
Led by innovative, industry-leading companies, DMTF has a global presence with members in multiple countries.

WHAT
DMTF standards support diverse emerging and traditional IT infrastructures including cloud, virtualization, network, servers and storage. A complete list is available at www.dmtf.org/standards.

WHY
Nationally and internationally recognized by ANSI and ISO, DMTF standards enable a more integrated and cost-effective approach to management through interoperable solutions.

HOW
Simultaneous development of Open Source and Open Standards is made possible by DMTF, which has the support, tools and infrastructure for efficient development and collaboration.
DMTF Board Member Companies

- BROADCOM
- CISCO
- DELL Technologies
- Hewlett Packard Enterprise
- Intel
- Lenovo
- NetApp
- POSITIVO TECNOLOGIA
- verizon

www.dmtf.org
DMTF Alliance Partners (23)

https://www.dmtf.org/about/registers
DMTF TC Organization

Technical Committee

DMTF TC Organization

Redfish Forum
- Fabrics TF
- UCIM TF
- Tools TF
- Host Interface TF
- Network Infrastructure TF
- FW Update TF
- Certificate Management TF
- Legacy Removal TF
- Composability TF

PMCI WG
- PMCI Tools TF

SPDM WG
- SPDM Code TF

CMWG

CIM Forum
- Schema TF
- CPPS TF

Legend
Active WG or Forum
Active TF
Inactive TF

CIM – Common Information Model
CMWG – Cloud Management Working Group
CPPS – CIM Profiles for Platforms and Services
DCIM – Data Center Infrastructure Management
PMCI – Platform Management Communications Infrastructure
SPDM – Security Protocol Data Model
Technical Committee Accomplishments in 2022

• Continued wide acceptance of DMTF standards in industry, Examples:
 • 2 Billion+ platforms with SMBIOS implementation
 • 340+ certified products in DASH conformance registry
 • Continued traction with Redfish adoption and continuing interest in PMCI and SPDM standards

• Increased adoption of DMTF standards in open source, Examples:
 • OpenBMC https://github.com/openbmc
 • Redfish validators, tools, checkers, etc.: https://github.com/DMTF
 • Open Linux Management Infrastructure (OpenLMI) & Open Management Interface (OMI)

• Expansion of scope continues in the DMTF
 • Redfish expansion into DCIM, Network Infrastructure, OpenAPI...
 • Security Protocol Data Model (SPDM) WG now its own body under the TC
 • The Cloud Management Working Group spun up
 • Security Response Task Force created

• 70 standards and white papers and 15 work-in-progress published in 2022

• International acceptance of DMTF standards via ISO and ANSI adoption
 • 8 ISO standards published and 4 currently in the submission process
 • 10 published ANSI standards
DMTF Standards Timeline

1990-1999
- Desktop Management Interface (DMI)
- Directory Enabled Networks (DEN)

2000-2009
- Alerting Standards Format (ASF)
- Common Diagnostics Model (CDM)

2010-2019
- Common Information Model (CIM), CIMI, CADF, CMDBf
- SMASH
- PMCI (NC-SI, MCTP, PLDM)

2020-
- Redfish
- VMAN, OVF
- NETMAN
- WS-Management
- DASH
- SPDM
- NETMAN
- VMAN
- OVF
- SMASH
- CIMI, CADF, CMDBf
- PMCI (NC-SI, MCTP, PLDM)

Legacy
Active
Maintenance
DMTF Technologies

Compute Network Storage Data Center

Redfish

Manage server, data center & cloud infrastructures

BMC

SMBIOS (Hardware Inventory)
PMCI (Component Intercommunications)
SPDM (Device Authentication & Attestation)

DASH

Manage desktop & mobile clients

CPU Storage

NIC GPU Memory
What is Redfish?

- **Industry Standard Software Defined Management for Converged, Hybrid IT**
 - HTTPS in JSON format
 - Schema-backed but human-readable
 - Equally usable by Apps, GUIs and Scripts
 - Extensible, Secure, Interoperable
- **Initial release in 2015 focused on Servers**
 - A secure, multi-node capable replacement for IPMI-over-LAN
 - Represent full server category: Rackmount, Blades, HPC, Racks, Future
 - Intended to meet OCP Remote Machine Management requirement
- **Expanded scope since then to the rest of IT infrastructure**
 - Worked with SNIA to cover more advanced Storage (Swordfish)
 - Worked with OCP, The Green Grid & ASHRAE to cover Facilities (DCIM)
 - Adopted YANG & other models to cover Ethernet Switching
 - Working with CXL & OpenFabrics & others to cover Fabrics
 - Additional features coming out approximately every 4 months
GET http://<ip-addr>/redfish/v1/Systems/{id}/Processors/{id}
Use the Redfish Resource Explorer (redfish.dmtf.org) to explore the resource map
Interoperability Profiles

- An “Interoperability Profile” provides a common ground for Service implementers, client software developers, and users
 - A profile would apply to a particular category or class of product (e.g. “Front-end web server”, “NAS”, “Enterprise-class database server”)
 - It specifies Redfish implementation requirements, but **is not** intended to mandate underlying hardware/software features of a product
 - Provides a target for implementers to meet customer requirements
 - Provide baseline expectations for client software developers utilizing Redfish
 - Enable customers to easily specify Redfish functionality / conformance in RFQs
- A machine-readable Profile definition
 - Document must be human-readable
 - Can be created by DevOps personnel and non-CS professionals
- Enable authoring of Profiles by DMTF, partner organizations, and others
 - OCP, OpenStack, and OPAF published profiles for their management domains
- Open-source interop validator developed by the DMTF to test for profile conformance
A few of the Open-Source Efforts around Redfish

- DMTF - a suite of validation software, conformance and client tools
- Open Compute Project (OCP) – rack manager & software agent
- Linux Foundation OpenBMC and ODIM projects
- Vertical integrations – OpenStack, Ansible, Puppet
- SNIA Swordfish tools
- Many companies have open-source tools
Redfish Developer Hub: redfish.dmtf.org

- Resources
 - Schema Index
 - Specifications
 - GitHub for Redfish Tools
 - Registries
 - Other Documentation

- Mockups
 - Simple Rack-mounted Server
 - Bladed System
 - Proposed OCP Redfish Profile
 - More being added

- Education/Community
 - Redfish User Forum
 - Whitepapers, Presentations
 - YouTube shorts & Webinars
PMCI
Platform Management Communication Infrastructure
(Was Platform Management Components Intercommunication)
PMCI Working Group

- Platform Management Communications Infrastructure

- PMCI suite of standards provide ‘inside-the-box’ communication and function interfaces between components within the platform management subsystem
 - Management Controller (MC) to Management Controller
 - Management Controller to Network Device (NC)
 - Management Controller to Managed Device (MD)
 - Host Interface to Management Controller

- Formed in 2005, initial standards released in 2007
 - Creates specifications for MCTP, PLDM, and NC-SI
 - PLDM Sensor, FW Update, RDE all done here
 - As are the mapping specs for PCIe, CXL, I2C, I3C, USB, KCS.

- Over a decade of implementations within server and desktops

PMCI technologies and interfaces are complementary and enable DMTF external facing data models/remote management protocols
Platform Management Subsystem

MC↔MC Communications (MCTP, PLDM, SPDM)

MC↔MD Communications (MCTP, PLDM, NC-SI, NVMe-MI®, SPDM)

MC↔NC Communications (NC-SI, PLDM)

Management Controller (MC)

Remote Management Console

External Facing Protocols and Communications (Redfish, CIM, etc)

MC↔Host Communications (MCTP, PLDM, NC-SI, SPDM)

Redfish Host Interface (Redfish)

Other Standards from DMTF
Network Controller Sideband Interface (NC-SI)

- A common interoperable sideband interface and protocol to transfer management traffic between a Baseboard Management Controller (BMC) & network controller (NC)
- Supports Multiple Types of Management Traffic
 - Pass-Thru Management Traffic enables BMC-Network communication via NC
 - NC-SI Command/Response Packets
 - Command (Response) sent by BMC (NC) to NC (BMC)
 - Request/Response Semantics
 - Functions: Control, Configuration, Status, Statistics,…
 - NC-SI Notification Packets
 - Generated and sent by NC to MC
 - Functions: OS/Link Status Change; NC Soft Reset
Management Component Transport Protocol (MCTP)

- Base transport for “inside-the-box” communication.
- Suitable for use with multiple media: SMBus/I2C, I3C, PCIe, CXL, etc.
- Suitable for all computer platform types
- Supports logical addressing based on Endpoint IDs
- Provides simple message fragmentation/reassembly
- Built-in capability discovery and supports path transmission unit discovery
- Carries multiple message types: MCTP Ctrl, PLDM, NC-SI, NVMe, SPDM, CXL

MCTP for platform communications ~ TCP/IP for Internet comm
Platform Level Data Model (PLDM)

- An effective interface & data model for efficient access to
 - Low-level platform inventory, BIOS, and config data
 - Platform monitoring/control, alerting, event log, FRU, etc.
 - Firmware Update, Redfish Device Enablement (RDE), File Transfer (future)
- Defines low level data representations and commands
- Provides transport independent Request/Response Model
- Supports a subtype to distinguish types of PLDM Messages
 - Allows messages to be grouped based on the functions
 - Allows the discovery of the functionality supported

PLDM for platform components communications ~ L5-L7 layers of Internet

www.dmtf.org
SPDM
Security Protocol & Data Model
Attacks on fabrics by hostile devices

Hostile device insertion

Substitution of existing devices

Snooping via probes

Compromise of device firmware

Compromise of platform firmware or configuration

Hostile device insertion

Supply chain compromise

Any component is a potential attack vector
SPDM’s Overall Goals

- All SPDM features fall into at least one of these main goals:
 - Device Attestation and Authentication
 - Secure Communication over any transport
- Device Attestation and Authentication
 - Attest aspects of a device such as firmware integrity & device identity
- Secure Communication over any Transport
 - Secure communication of any management traffic over any transport
 - Work with industry partners to ensure data in-flight is secure for all parts of the infrastructure (e.g. storage, network fabrics, etc.)
SPDM Feature Summary

- **Version 1.0:**
 - Measurement Support
 - Device Attestation and Authentication

- **Version 1.1:**
 - Secure Session
 - Public Key Exchange
 - Symmetric Key Exchange
 - Mutual Authentication

- **Version 1.2:**
 - Supports installation of certificates
 - Allows for alias certificates derived from device certificates
 - Send and receive large SPDM messages (chunks)

- **Version 1.3:**
 - Eventing Mechanism
 - Multiple Keys support
 - Measurement Enhancements
 - Miscellaneous
SPDM Certificate Models

DeviceCert Model:
- Root CA
- Intermediate CA
- Device Certificate

AliasCert Model:
- Root CA
- Intermediate CA
- Device Certificate CA
- Alias Intermediate CA
- Alias Certificate

GenericCert Model:
- Root CA
- Intermediate CA
- Generic Leaf Certificate
SPDM Discovery and Negotiation

1. The Requester sends a GET_VERSION request message.
2. The Requester sends a GET_CAPABILITIES request message.
3. Determine device capability and feature support.
4. The Requester sends a NEGOTIATE_ALGORITHMS request message to advertise the supported algorithms.
5. The Requester uses the selected cryptographic algorithm set for all following exchanges, until the next GET_VERSION or the next reset.

1. The Responder sends a VERSION response message.
2. The Responder sends a CAPABILITIES response message.
3. The Responder selects the algorithm set and sends a ALGORITHMS response message.
SPDM Endpoint Authentication

Certificate Retrieval

1. The requester sends a GET_DIGESTS request message.
2. Compare digests in DIGESTS response message to cached digests. **Continue if no match is found.**

 - DIGESTS
 - SHA256
 - SHA384
 - SHA512

3. The requester sends a GET_CERTIFICATE request.
4. Verify validity of certificate chain against the root certificate, then proceed to the challenge-response.

 - GET_CERTIFICATE
 - Offset (0)
 - Length (0x0000)
 - CERTIFICATE (1076, 0)
 - RootCert
 - VendorCert
 - ModelCert
 - DeviceCert

2. For each received GET_CERTIFICATE request, the responder verifies that Offset is within the certificate chain and then sends the CERTIFICATE response message based on the requested Length. If the actual CERTIFICATE chain length is less than or equal to the requested Length (e.g., 1076 bytes), the Responder returns entire certificate and a RemainderLength 0.

Challenge/Response

1. The Requester sends a CHALLENGE request message.
2. The Requester verifies Responder’s signature.

 - CHALLENGE
 - Challenge Hash, Nonce, Measurement SummaryHash, OpaqueData, Signature

Firmware Measurement Retrieval

1. The Requester sends a GET_MEASUREMENTS request message.
2. Verify signature and verify measurements match expected values.

 - GET_MEASUREMENTS
 - Nonce
 - MEASUREMENTS
 - Number of measurements, length, Nonce, measurement blocks, signature
DMTF standards for managing HW & infrastructures
DMTF continues to evolve to meet industry needs
Redfish – de jure standard for IT, server, cloud, and data center infrastructure management
PMCI – for components comm inside the platform
SPDM – for device auth, attestation & encrypted comm