

GICTF

Global Inter-Cloud Technology Forum (GICTF)

05/18/2011 NTT DATA Agilenet L.L.C. Kenji Motohashi

Agenda

- 1. Introduction
- 2. What is the "GICTF"
- 3. Use cases for the Inter-Cloud Computing
- 4. Functional Requirements
- 5. Global Collaboration

INTRODUCTION

- Cloud Computing for Social Infrastructure
- Why "Inter-Cloud Computing" ?

Broadband Subscribers in Japan

Source: Ministry of Internal Affairs and Communications

Broadband Services and Price Trend

Cloud Market in Japan

Emerging Services with Cloud Computing

Safe and Secure Cloud is promising

Why we focus on "Inter-Cloud computing"?

GICTF

- 1. Cloud Computing for Social Infrastructure
- 2. Various Functional requirements
- 3. Various Quality requirements
 - Availability, Security, Cost, Green, et al

- Can "Single Cloud" solve them? Can satisfy all?
- "Inter-Cloud computing" should be promising

WHAT IS "GICTF"?

Promotes the global standardization of inter-cloud system interfaces through collaboration between academia, government, industry and

Open Cloud Consortium

GICTF: A technology forum for the "Inter-cloud" era

Promotes the global standardization of inter-cloud system interfaces through collaboration between academia, government and industry

Established on July 17th 2009

Global Inter-Cloud Technology Forum (GICTF)

Main activities:

http://www.gictf.jp/index_e.html

- · Identify technical needs for secure "inter-cloud technology" applicable to e-Government, etc.
 - the first white paper "Use case and functional requirements for Inter-Cloud Computing" Aug 2010
- Develop a standard set of specifications for inter-cloud collaborating globally with relevant standard bodies
- · Raise awareness of users both in industry, government and communities

Membership (as of April 2011)

- · 75 enterprises: NTT, KDDI, NEC, Hitachi, Fujitsu, Toshiba Solution, Microsoft, IBM, Oracle, Cisco, BIGLOBE, IIJ and others
- · Independent administrative institution, National laboratory
- · University professors, etc.
- · Ministry of Internal Affairs and Communications of Japan (Observer)

Liaison between GICTF and other related bodies

GICTF Organization

General Assembly

Chair: Tomonori Aoyama V.Chair: Atsuhiro Goto

Board of Directors

Technology Task Force

- 1. Exchange and share information with relevant standards bodies, academia and communities
- 2. Identify technical needs related to secure inter-cloud technology applicable to e-Government, etc.
- 3. Develop a standard set of specifications applicable to e-Government, etc. and propose it to relevant standards bodies

Application Task Force

- 1. Identify technical needs related to secure inter-cloud technology
- 2. Promote widespread use of intercloud computing technology

Key Issues in Technology Task Force

Discussion issues for inter-cloud computing (1/2)

A: Inter-cloud computing use cases	 Scale-out through cloud federation (cloud bursting) Mutual backup and recovery from a disaster through inter-cloud accommodation Porting of services to other cloud providers Service interworking through the simultaneous use of multiple clouds etc.
B: QoS and SLA to be considered in inter-cloud computing	 QoS and SLA items to be guaranteed end-to-end (totality of server, storage and network) Security requirements requirements for cloud systems (data confidentiality, placement of data, tracking and monitoring illegal actions, measures against DDoS / malware etc.) requirements that involve coordination between the cloud and terminals, etc.

Discussion issues for inter-cloud computing (2/2)

Cloud B

End user

C: Inter-cloud service monitoring and audit

Centralized monitoring and auditing of services across clouds Mutual disaster detection mechanism

D: Inter-cloud resource discovery and reservation

Dynamic discovering, reserving or leasing resources Policy coordination

E: Inter-cloud service setup

Dynamic network configuration (VPN setting, reroute end user access) Reallocating applications and data

Network

F: Inter-cloud authentication

Reserved

Tenant / end-user authentication Exchange end user attribute information

G: Interworking between clouds and the network

Routing optimization based on monitoring the traffic of each cloud service Effective power saving of networking equipments

GICTF White Paper

GICTF White Paper

Use Cases and Functional Requirements for Inter-Cloud Computing

August 9, 2010

[Contents]

- · Use cases of inter-cloud computing
- Procedures in use cases of inter-cloud computing
- · Functional requirements for inter-cloud computing
- · Functional structure and interfaces of cloud systems in inter-cloud computing

GICTF White Paper

Table of cont	ents
1 Introduction	1
2 Definition of cloud computing	2
3 Quality requirements for services and cloud provider's SLA	5
3.1 Quality requirements for services	5
3.2 Cloud provider's SLA	7
4 Needs for and purposes of inter-cloud computing	8
4.1 Guaranteed end-to-end quality for each service	8
4.1.1 Guaranteed performance	8
4.1.2 Guaranteed availability	9
4.2 Convenience of service cooperation.	9
5 Use cases of inter-cloud computing	10
5.1 Guaranteed end-to-end quality of service	10
5.1.1 Guaranteed performance	10
5.1.2 Guaranteed availability	13
5.2 Enhanced convenience by service cooperation	15
5.3 Service continuity	16
5.4 Market transactions via brokers	17
6 Procedures in use cases of inter-cloud computing	18
6.1 Procedures for guaranteeing performance through inter-cloud interactions.	18
6.2 Procedures for recovering service and guaranteeing availability by inter	r-cloud
interaction	23
7 Functional requirements for inter-cloud computing	29
7.1 Matching between service consumer's quality requirements and SLA	29
7.2 Monitoring (resource, service, and dead/alive)	29
7.3 Provisioning	30
7.4 Resource discovery and securement	31
7.5 Resource management.	32
7.6 Service Setup	32
7.7 Authentication interworking	33
7.8 Network Interworking	35
7.9 Alternation and Retrieval of data for access route from consumer	35
7.10 Releasing resources	36
8 Functional structure and interfaces of cloud systems in inter-cloud computing	36
8.1 Functional structure	36
0.0 Textouring and	20

http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf

USE CASES FOR THE INTER-CLOUD COMPUTING

Use case of disaster recovery

than that of Cloud A

Protect lifeline services in emergency situation

GICTF

- Protect lifeline services by accommodating resources among cloud/network providers when disaster or massive breakdown occurs
- Distribute cloud/network resources in line with social importance/priority

Guarantee performance regarding delay

Inter-cloud reduces power consumption

- Guaranteeing high-availability and high-performance by single cloud increases power consumption due to backup machines in active idle.
- Inter-cloud enables multiple cloud systems to share resources, which reduces the power consumption since each cloud can minimize the number of idle machines.

CPU load - Active power

Performance		Power		
Target Load	Actual Load	ssi_ops	Average Active Power (W)	Performance to Power Ratio
100%	99.6%	3,417,531	858	3,983
90%	90.0%	3,089,214	798	3,869
80%	80.0%	2,745,590	736	3,729
70%	70.0%	2,403,210	669	3,594
60%	60.2%	2,065,033	599	3,445
50%	50.0%	1,716,434	538	3,190
40%	40.0%	1,371,435	487	2,818
30%	29.9%	1,027,604	442	2,325
20%	19.9%	683,596	401	1,706
10%	10.0%	342,961	351	978
Ac	tive Idle	0	194	0
		3,106		

Power consumption in active idle is around 20% of that in full CPU use.

Hewlett-Packard Company ProLiant SL2X170z G6

http://www.spec.org/power_ssj2008/results/res2010q2/power_ssj2008-20100406-00247.html

FUNCTIONAL REQUIREMENTS

Functional Structure of Inter-cloud Computing

GLOBAL COLLABORATION

Opportunities for collaboration with other groups

変える力を、ともに生み出す。

NTT DATAグループ

NTT DATA AgileNet L.L.C.
Senior Research Engineer
Kenji Motohashi
motohashikn@nttdata.com
+1-650-248-4275