DMTF distributed monogement task force, inc.	
Document Number: DSP1	1059
B Date: 2009-07	7-15
Version: 1	1.0.0

5 Generic Device Resource Virtualization Profile

6 Document Type: Specification

- 7 Document Status: DMTF Standard
- 8 Document Language: E

9 Copyright Notice

10 Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
 management and interoperability. Members and non-members may reproduce DMTF specifications and

13 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14 time, the particular version and release date should always be noted.

- 15 Implementation of certain elements of this standard or proposed standard may be subject to third party
- 16 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
- to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
- 18 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
- inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
- disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
- incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
- 23 party implementing such standard, whether such implementation is foreseeable or not. nor to any patent
- owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
- withdrawn or modified after publication, and shall be indemnified and held harmless by any party

26 implementing the standard from any and all claims of infringement by a patent owner for such

- 27 implementations.
- 28 For information about patents held by third-parties which have notified the DMTF that, in their opinion,
- 29 such patent may relate to or impact implementations of DMTF standards, visit
- 30 <u>http://www.dmtf.org/about/policies/disclosures.php</u>.

CONTENTS

32	Fore	word.		. 4
33	Intro	oductio	n	. 5
34	1	Scope	9	. 7
35	2	Norm	ative References	. 7
36		2.1	Approved References	. 7
37	3	Terms	s and Definitions	. 7
38	4		ols and Abbreviated Terms	
39	5		osis	
40	6	Descr	iption	10
41		6.1	Resource Allocation Profile and Allocation Capabilities Profile	11
42	7	Imple	mentation	
43		7.1	Resource Allocation Profile	12
44		7.2	Allocation Capabilities Profile	12
45		7.3	Resource Type	12
46	8	Metho	ods	12
47	9	Use C	Cases	13
48		9.1	Object Diagrams	13
49		9.2	Determining Conforming Resource Types	13
50		9.3	Determining Resource Capabilities	15
51	10	CIM E	Elements	16
52		10.1	CIM_AllocationCapabilities	17
53		10.2	CIM_ElementCapabilities	17
54		10.3	CIM_RegisteredProfile	17
55	ANN	JEX A	(informative) Change Log	18
56				

57 Figures

58	Figure 1 – Generic Device Resource Virtualization Profile: Class Diagram	11
59	Figure 2 – Simple Virtual Device Allocation	13
60	Figure 3 – Profile Registration Using Central Class	14
61	Figure 4 – Profile Registration Using Scoping Class	15
62	Figure 5 – Determining Resource Capabilities	16
63		

64 Tables

65	Table 1 – Related Profiles	9
66	Table 2 – CIM Elements: Generic Device Resource Virtualization Profile	16
67	Table 3 – Class: CIM_AllocationCapabilities	17
68	Table 4 – Class: CIM_ElementCapabilities	17
69	Table 5 – Class: CIM_RegisteredProfile	17

70

71	Foreword					
72 73	The Generic Device Resource Virtualization Profile (DSP1059) was prepared by the System Virtualization Partitioning and Clustering workgroup of the DMTF.					
74 75		a not-for-profit association of industry members dedicated to promoting enterprise and systems ment and interoperability.				
76	The auth	nors wish to acknowledge the following people:				
77	Editors:					
78	•	Michael Johanssen – IBM				
79	•	Ron Goering – IBM				
80	Contribu	tors:				
81	•	Gareth Bestor – IBM				
82	•	Ron Goering – IBM				
83	•	Daniel Hiltgen –VMware Inc.				
84	•	Ron Doyle – IBM				
85	•	Rene Schmidt – VMware Inc.				
86	Steffen Grarup – VMware Inc.					
87	Hemal Shah – Broadcom					
88	Fred Maciel – Hitachi Ltd.					
89	Lawrence Lamers – VMware Inc.					
90	Andreas Maier – IBM					
91	John Parchem – Microsoft Corporation					
92	George Ericson – EMC					
93	Oliver Benke – IBM					
94	John Leung – Intel Corporation					
95	James Fehlig – Novell					
96	Nihar Shah – Microsoft Corporation					
97	•	Shishir Pardikar – Citrix Systems Inc.				
98	Stephen Schmidt – IBM					
99	Mark Hapner – Sun Microsystems					
100	Dave Barrett – Emulex					
101	•	John Suit – Fortisphere				
102	•	Jeff Wheeler – Cisco				
103	•	Mark Johnson – IBM				

• Carl Waldsburger – VMware Inc.

Introduction

106 The information in this specification should be sufficient for a provider or consumer of this data to identify 107 unambiguously the classes, properties, methods, and values that shall be instantiated and manipulated to

108 represent and manage a generic virtual device modeled using the DMTF Common Information Model 109 (CIM) core and extended model definitions.

110 The target audience for this specification is implementers who are writing CIM-based providers or

111 consumers of management interfaces that represent the component described in this document.

Generic Device Resource Virtualization Profile

113 **1 Scope**

114 The *Generic Device Resource Virtualization Profile* is a concrete component profile that specializes the 115 abstract *Resource Allocation Profile* and the abstract *Allocation Capabilities Profile*.

116 The Generic Device Resource Virtualization Profile is intended for use when a more specific resource

allocation profile (for example, the *Processor Resource Virtualization Profile*, *Memory Resource*

118 Virtualization Profile, and so on) for common resource types has not yet been defined or approved, or

119 when the device in question is an unusual device type for which no more specific profile exists.

120 **2** Normative References

121 The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

124 2.1 Approved References

- 125 DMTF DSP0004, CIM Infrastructure Specification 2.5
- 126 <u>http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf</u>
- 127 DMTF DSP0200, CIM Operations over HTTP 1.3
- 128 <u>http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf</u>
- DMTF DSP1001, Management Profile Specification Usage Guide 1.0
 <u>http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf</u>
- 131 DMTF DSP1033, Profile Registration Profile 1.0
- 132 <u>http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf</u>
- 133 DMTF DSP1041, Resource Allocation Profile 1.1
- 134 <u>http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf</u>
- 135 DMTF DSP1043, Allocation Capabilities Profile 1.0
- 136 <u>http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf</u>

137 3 Terms and Definitions

- For the purposes of this document, the following terms and definitions apply. For the purposes of this document, the terms and definitions given in DSP1033 and DSP1001 also apply.
- 140 **3.1**
- 141 can
- used for statements of possibility and capability, whether material, physical, or causal
- 143 **3.2**
- 144 cannot
- 145 used for statements of possibility and capability, whether material, physical, or causal

146	3.3
147	conditional
148	indicates requirements to be followed strictly to conform to the document when the specified conditions
149	are met
150	3.4
151	mandatory
152	indicates requirements to be followed strictly to conform to the document and from which no deviation is
153	permitted
154 155 156	3.5mayindicates a course of action permissible within the limits of the document
157	3.6
158	need not
159	indicates a course of action permissible within the limits of the document
160	3.7
161	optional
162	indicates a course of action permissible within the limits of the document
163	3.8
164	referencing profile
165	indicates a profile that owns the definition of this class and can include a reference to this profile in its
166	"Referenced Profiles" table
167	3.9
168	shall
169	indicates requirements to be followed strictly to conform to the document and from which no deviation is
170	permitted
171	3.10
172	shall not
173	indicates requirements to be followed strictly to conform to the document and from which no deviation is
174	permitted
175	3.11
176	should
177	indicates that among several possibilities, one is recommended as particularly suitable, without
178	mentioning or excluding others, or that a certain course of action is preferred but not necessarily required
179	3.12
180	should not
181	indicates that a certain possibility or course of action is deprecated but not prohibited
182	3.13
183	unspecified
184	indicates that this profile does not define any constraints for the referenced CIM element or operation

185 **3.14**

186 allocated resource

- 187 the partitioned or virtual resource that has been allocated to a consumer based on the associated
- 188 resource allocation

189 **3.15**

190 host resource

- 191 a device or computing resource contained by the host system that may be allocated with either exclusive
- 192 or shared access through the host system to provide resources to a resource pool or consumer
- 193 **3.16**
- 194 host system
- 195 the scoping system containing resources that may be allocated and/or virtualized
- 196 **3.17**

197 virtual computer system

- 198 a virtual system as applied to a computer system
- 199 Other common industry terms for such a system include virtual machine, hosted computer, child partition,
- 200 logical partition, domain, guest, and container.
- 201 **3.18**
- 202 virtual resource
- 203 the instantiation of the allocated resource that is exposed to a consumer through a logical device

204 **4** Symbols and Abbreviated Terms

- 205 The following abbreviations are used in this document.
- 206 4.1
- 207 **RASD**
- 208 CIM_ResourceAllocationSettingData

209 **5 Synopsis**

- 210 **Profile Name:** Generic Device Resource Virtualization
- 211 Version: 1.0.0
- 212 Organization: DMTF
- 213 CIM Schema Version: 2.22
- 214 Specializes: Resource Allocation Profile and Allocation Capabilities Profile
- 215 Central Class: CIM_ResourcePool
- 216 **Scoping Class:** CIM_System
- The *Generic Device Resource Virtualization Profile* is a component profile that provides the capability to manage a virtual device.
- The Central Class of the *Generic Device Resource Virtualization Profile* shall be CIM_ResourcePool. The Scoping Class shall be CIM_System. Table 1 lists profiles upon which this profile has a dependency.
- 221

Table 1 – Related Profiles

Profile Name	Organization	Version	Relationship	Description
Resource Allocation	DMTF	1.1	Specializes	The abstract profile that describes the virtualization of resources See 7.2.
Allocation Capabilities	DMTF	1.0	Specializes	The abstract profile that describes capabilities for resource allocation

Profile Name	Organization	Version	Relationship	Description
				See 7.3.
Profile Registration	DMTF	1.0	Mandatory	The profile that specifies registered profiles

222 6 Description

223 The Generic Device Resource Virtualization Profile is a component profile that defines basic

implementation for a virtual device including resource allocation from a resource pool as specified in the
 abstract *Resource Allocation Profile* and specification of resource capabilities as specified in the abstract
 Allocation Capabilities Profile.

Figure 1 presents the class schema for the *Generic Device Resource Virtualization Profile*. The prefix CIM_ has been removed from the names of the classes.

229 Note that most of the behavioral constraints for many of the classes identified are inherited from the

abstract *Resource Allocation Profile* and *Allocation Capabilities Profile*. Therefore, although they are

shown, they are not referenced in this specification.

Figure 1 – Generic Device Resource Virtualization Profile: Class Diagram

6.1 Resource Allocation Profile and Allocation Capabilities Profile

Implementations of the *Generic Device Resource Virtualization Profile* will conform to the *Resource Allocation Profile* and to the *Allocation Capabilities Profile*. This profile does not further constrain the flexibility stated in these profiles subject to the constraint described in "Virtual Resource Allocation," clause 7.2, of the *Resource Allocation Profile*). For example, allocations may occur from the primordial pool or pool hierarchies, active pool management may be implemented, and the allocation capabilities pattern may be used to help the management client understand valid attribute values.

241 **7 Implementation**

This section details the requirements related to the arrangement of instances and their properties for implementations of this profile.

244 **7.1 Resource Allocation Profile**

- 245 The *Resource Allocation Profile* specifies two alternatives for modeling resource allocation.
- 246 Implementations conforming to this profile shall implement the normative content in "Virtual Resource
- Allocation" (clause 7.2) in the *Resource Allocation Profile*.

248 **7.2 Allocation Capabilities Profile**

- 249 The Allocation Capabilities Profile specifies ways for an implementation to use instances of
- 250 CIM_AllocationCapabilities and the CIM_SettingsDefineCapabilities association for a set of
- 251 CIM_ResourceAllocationSettingData instances to describe the default property values, supported
- 252 property values, and range of property values for a resource allocation request.
- 253 An instance of the CIM_AllocationCapabilities class shall be used to represent the allocation capabilities
- of a conformant resource pool. That instance shall be associated with the instance of the
- 255 CIM_ResourcePool class that represents the conformant resource pool through the
- 256 CIM_ElementCapabilities association.
- 257 Instances of the CIM_ResourceAllocationSettingData class shall be used to represent defaults and
- supported property values and ranges of the allocation capabilities of conformant resource pools. These
- instances shall be associated with the instance of the CIM_AllocationCapabilities class that represents
- the allocation capabilities of a conformant resource pool through the CIM_SettingsDefineCapabilities
- association.

262 **7.3 Resource Type**

- 263 If the virtual device is one of the types specified in the CIM_ResourceAllocationSettingData MOF (and the
- 264 CIM_AllocationCapabilities and CIM_ResourcePool MOFs), then the type field should be set accordingly.
- 265 If there is no appropriate type value, the type field shall be set to 1 (Other) and the OtherResourceType 266 attribute shall be set to a short string specifying the type.
- 267 For a specific resource type the type attribute value in the associated
- 268 CIM_ResourceAllocationSettingData, CIM_AllocationCapabilities, and CIM_ResourcePool instances shall 269 all be set to the same value.
- 270 The ResourceSubType attribute may be set to specify an implementation-specific sub-type.

271 8 Methods

The requirements for operations and methods are defined in the *Resource Allocation Profile* and the *Allocation Capabilities Profile*.

274 9 Use Cases

The following object diagrams and use cases are based on the implementation conforming to the DMTF Generic Device Resource Virtualization Profile.

277 9.1 Object Diagrams

- 278 Figure 2 shows a single resource pool aggregating host logical devices (in this example, an Infiniband
- Port) and allocating virtual devices. The allocated virtual device is associated to an owning virtual system using the CIM SystemDevice association.

281 282

Figure 2 – Simple Virtual Device Allocation

283 9.2 Determining Conforming Resource Types

Two scenarios for determining which resource types this profile applies to are described in the following sections.

9.2.1 Determining Resource Types in Implementations Using Central Class Registration Methodology

- 288 This use case assumes that the client knows the reference that refers to an instance of the
- 289 CIM_RegisteredProfile class, which represents an implementation of this profile.
- A client can determine which resource types this profile applies to as follows:
- 2911)The client follows the CIM_ElementConformsToProfile association from an instance of292CIM_RegisteredProfile to all instances of ResourcePool that conform to this profile.
- 293 2) For each of the associated instances of the CIM_ResourcePool class, the value of the 294 ResourceType property designates the resource type conforming to this profile.
- The result is a set of references that refer to conforming resource pools and the resource types for those pools.
- 297 In the example shown in Figure 3 one resource pool is associated with the subject profile by the
- 298 CIM_ElementConformsToProfile association. By following this association it is apparent that type 9 (IB

HBA) conforms to this profile.

301

Figure 3 – Profile Registration Using Central Class

302 9.2.2 Determining Resource Types in Implementations Using Scoping Class 303 Registration Methodology

This use case assumes that the client knows the reference that refers to an instance of the CIM_RegisteredProfile class that represents an implementation of this profile. There are no CIM_ElementConformsToProfile associations from this instance of CIM_RegisteredProfile.

307 A client can determine which resource types this profile applies to as follows:

- 308 1) The client determines the scoping profile by following the CIM_ReferenceProfile association.
- The client determines the scoping class by following the CIM_ElementConformsToProfile
 association from the scoping CIM_RegisteredProfile instance to the scoping CIM_System
 instance.
- 312 3) The client determines all instances of CIM_ResourcePool that are associated by
 313 CIM_HostedResourcePool to the scoping class.
- For each instance of CIM_ResourcePool discovered in the previous step, the client checks
 whether the CIM_ElementConformsToProfile association is present for that pool.
- 5) For each of the associated CIM_ResourcePool instances that do not have the
 CIM_ElementConformsToProfile association the client obtains the ResourceType field,
 indicating that the resource type conforms to this profile.

319 The result is a list of resource types that conform to this profile.

320 In the example shown in Figure 4 there are no CIM_ElementConformsToProfile associations from the

321 instance of CIM_RegisteredProfile representing this profile that the client could traverse to the scoping

322 class, HOST_System. This instance of CIM_System "hosts" two resource pools, neither of which have a

323 CIM_ElementConformsToProfile association. The client can then determine the types of these pools: 9

- 324 (IB HBA) and 17 (Disk Drive). These resource types conform to the *Generic Device Resource*
- 325 Virtualization Profile.

326

327

Figure 4 – Profile Registration Using Scoping Class

328 9.3 Determining Resource Capabilities

329 Once the client has found a resource pool for the desired resource it can determine the possible values to 330 be used in an allocation request as follows:

- From the CIM_ResourcePool select all of the instances of CIM_AllocationCapabilities
 associated with the CIM_ElementCapabilities association. Each of these
 CIM_AllocationCapabilities instances describes a possible set of allocation request values.
 (Typically there would only be one.)
- From the selected CIM_AllocationCapabilities instance follow the
 CIM_SettingsDefineCapabilities with the ValueRole property set to 0 (Default) to find the default
 CIM_ResourceAllocationSetting instance values. (The example in Figure 5 shows a
 hypothetical PortSpeed property whose default value is 200.)

- 3) In a similar fashion, follow the CIM_SettingsDefineCapabilities with the ValueRange property
 set to Maximum, Minimum and Increments to find these values. (In the example the minimum
- 341
- set to Maximum, Minimum and Increments to find these values. (In the example the minimeration PortSpeed is 100, Maximum is 1000, and requests must be made in increments of 100.)

343

Figure 5 – Determining Resource Capabilities

10 CIM Elements

345 All CIM element requirements specified by the *Resource Allocation Profile* and the *Allocation Capabilities*

346 *Profile* are required by the *Generic Device Resource Virtualization Profile*. This clause specifies additional

347 requirements that modify or extend those of the *Resource Allocation Profile* and the *Allocation*

348 Capabilities Profile.

Table 2 shows the instances of CIM elements for this profile. Instances of the CIM elements shall be

implemented as described in Table 2. Sections 7 ("Implementation") and 8 ("Methods") may impose

351 additional requirements on these elements.

```
352
```

Table 2 – CIM Elements: Generic Device Resource Virtualization Profile

Element Name	Requirement	Description	
Classes			
CIM_AllocationCapabilities	Mandatory	See 10.1.	
CIM_ElementCapabilities	Mandatory	See 10.2.	
CIM_RegisteredProfile	Mandatory	See 10.3.	
Indications			
None defined in this profile			

353 10.1 CIM_AllocationCapabilities

- 354 CIM_AllocationCapabilities represents the allocation capabilities of a resource pool.
- 355 Table 3 provides information about the properties of CIM_AllocationCapabilities.
- 356

Table 3 – Class: CIM_AllocationCapabilities

Elements	Requirement	Notes
InstanceID	Mandatory	Кеу
ResourceType	Mandatory	See 7.3.
OtherResourceType	Conditional	This property shall be used if ResourceType matches 1 (Other).
RequestTypesSupported	Mandatory	None
SharingMode	Mandatory	None

357 **10.2 CIM_ElementCapabilities**

- 358 CIM_ElementCapabilities associates an instance of CIM_AllocationCapabilities with CIM_ResourcePool.
- 359 Table 4 defines the properties of CIM_ElementCapabilities.
- 360

Table 4 – Class: CIM_ElementCapabilities

Properties	Requirement	Notes
ManagedElement	Mandatory	Кеу
		Cardinality 1*
Capabilities	Mandatory	Кеу
		This property shall be a reference to the CIM_AllocationCapabilities instance.
		Cardinality *
Characteristics	Mandatory	

361 **10.3 CIM_RegisteredProfile**

362 An implementation shall use an instance of class CIM_RegisteredProfile to represent an implementation 363 of this profile. With the exception of the mandatory values specified for the properties in Table 5, the

behavior of the CIM_RegisteredProfile instance is in accordance with the *Profile Registration Profile*.

365

Table 5 – Class: CIM_RegisteredProfile

Elements	Requirement	Notes
RegisteredName	Mandatory	This property shall have a value of "Generic Device Resource Virtualization".
RegisteredVersion	Mandatory	This property shall have a value of "1.0.0".
RegisteredOrganization	Mandatory	This property shall have a value of 2 (DMTF).

366

	Generic Device Resource Virtualization Profile	DSP1059
367 368	(informative)	
369		
370	Change Log	
271		

Version	Date	Description
1.0.0	2009-07-15	DMTF Standard Release

372 373