

1
2

3

4

5

6

7

8

9

10

Document Number: DSP1057

Date: 2009-10-19

Version: 1.0.0c

Virtual System Profile

Information for Work-in-Progress version:

This document is subject to change at any time without further notice.

It expires on: 2010-03-31

Target version for final status: 1.0.0c

Provide any comments through the DMTF Feedback Portal:
http://www.dmtf.org/standards/feedback

Document Type: Specification

Document Status: DMTF Work in Progress - expires 2010-03-31

Document Language: E

http://www.dmtf.org/standards/feedback

Virtual System Profile

2 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

Copyright Notice 11

Copyright © 2007, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29
30

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time
to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or inaccu-
rate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any
party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, dis-
close, or identify any such third party patent rights, or for such party’s reliance on the standard or incorpo-
ration thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party im-
plementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or
claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn
or modified after publication, and shall be indemnified and held harmless by any party implementing the
standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 31

http://www.dmtf.org/about/policies/disclosures.php

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 3

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

CONTENTS

1 Scope .. 9
2 Normative references .. 9

2.1 Approved references... 9
2.2 Other references ... 10

3 Terms and definitions .. 10
4 Symbols and abbreviated terms.. 11
5 Synopsis.. 12
6 Description .. 13

6.1 Profile relationships... 13
6.2 Virtual system class schema .. 16
6.3 Virtual system concepts: Definition, instance, representation, and configuration 17
6.4 Virtual system states and transitions .. 18

6.4.1 Virtual system states.. 18
6.4.2 Virtual system state transitions .. 19
6.4.3 Summary of virtual system states and virtual system state transitions 20

7 Implementation.. 22
7.1 Virtual system ... 22

7.1.1 CIM_ComputerSystem.EnabledState property ... 22
7.1.2 CIM_ComputerSystem.RequestedState property ... 23

7.2 Virtual resource... 25
7.3 Virtual system configuration.. 25

7.3.1 Structure .. 25
7.3.2 The "state" virtual system configuration... 25
7.3.3 The "defined" virtual system configuration... 26
7.3.4 Implementation approaches for "state" and "defined" virtual system configuration 26
7.3.5 Other types of virtual system configurations.. 27
7.3.6 CIM_VirtualSystemSettingData.Caption property ... 27
7.3.7 CIM_VirtualSystemSettingData.Description property.. 28
7.3.8 CIM_VirtualSystemSettingData.ElementName property ... 28
7.3.9 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property................................ 28
7.3.10 CIM_VirtualSystemSettingData.VirtualSystemType property 28
7.3.11 CIM_ElementSettingData.IsDefault property... 28
7.3.12 CIM_ElementSettingData.IsNext property... 29

7.4 Profile registration ... 30
7.4.1 This profile ... 30
7.4.2 Scoped profiles .. 30

7.5 Capabilities ... 30
7.6 Client state management.. 30
7.7 Power state management... 31

7.7.1 CIM_AssociatedPowerManagementService.PowerState property 31
8 Methods... 31

8.1 Extrinsic methods.. 32
8.1.1 CIM_ComputerSystem.RequestStateChange() method .. 32
8.1.2 CIM_PowerManagementService.RequestPowerStateChange() method................... 32

8.2 Profile conventions for operations .. 33
8.2.1 CIM_ComputerSystem .. 33
8.2.2 CIM_ConcreteJob.. 33
8.2.3 CIM_ElementSettingData .. 34
8.2.4 CIM_EnabledLogicalElementCapabilities.. 34
8.2.5 CIM_ReferencedProfile ... 34
8.2.6 CIM_RegisteredProfile... 34
8.2.7 CIM_VirtualSystemSettingData ... 34
8.2.8 CIM_VirtualSystemSettingDataComponent .. 34

9 Use-cases ... 34
9.1 Virtual system detection and inspection ... 34

Virtual System Profile

4 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

115

116
117
118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134
135
136

9.1.1 Discover conformant virtual systems using SLP ... 34
9.1.2 Determine a virtual system’s state and other properties ... 35
9.1.3 Determine the "defined" virtual system configuration .. 36
9.1.4 Determine the virtual system structure .. 37
9.1.5 Determine resource type support .. 38
9.1.6 Determine the next boot configuration... 42

9.2 Virtual system operation ... 42
9.2.1 Change virtual system state .. 42
9.2.2 Activate virtual system ... 43

10 CIM elements .. 43
10.1 CIM_AffectedJobElement ... 44
10.2 CIM_ComputerSystem.. 45
10.3 CIM_ConcreteJob... 45
10.4 CIM_ElementConformsToProfile .. 45
10.5 CIM_ElementSettingData ... 46
10.6 CIM_EnabledLogicalElementCapabilities... 47
10.7 CIM_PowerManagementService .. 47
10.8 CIM_ReferencedProfile... 47
10.9 CIM_RegisteredProfile.. 48
10.10 CIM_SettingsDefineState ... 48
10.11 CIM_VirtualSystemSettingData .. 48
10.12 CIM_VirtualSystemSettingDataComponent ... 49

Annex A (Informative) Virtual system modeling — background information ... 50
Annex B (Informative) Implementation details ... 53
Annex C (Informative) Change Log ... 57
Annex D (Informative) Acknowledgements.. 58

Figures
Figure 1 – Profiles related to system virtualization ... 16
Figure 2 – Virtual System Profile: Class diagram ... 16
Figure 3 – Virtual system states.. 21
Figure 4 – Virtual system representation and virtual system configuration .. 25
Figure 5 – Sample virtual system configuration.. 36
Figure 6 – Sample virtual system in "active" state .. 37
Figure 7 – Instance diagram: Profile conformance of scoped resources ... 38
Figure 8 – State-dependent presence of model elements.. 51
Figure 9 – Sample virtual system in "defined" state (Dual-configuration approach)................................... 53
Figure 10 – Sample virtual system in a state other than "defined" (Dual-configuration approach) 54
Figure 11 – Sample virtual system in the "defined" state (Single-configuration approach)........................ 55
Figure 12 – Sample virtual system in a state other than "defined" (Single-configuration approach).......... 56

Tables
Table 1 – Related profiles ... 12
Table 2 – Observation of virtual system states... 22
Table 3 – Observation of virtual system state transitions ... 24
Table 4 – CIM_ComputerSystem.RequestStateChange() method: Parameters....................................... 32
Table 5 – CIM_PowerManagementService.RequestPowerStateChange() method: Parameters 32
Table 6 – CIM elements: Virtual System Profile ... 44
Table 7 – Association: CIM_AffectedJobElement... 44

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 5

137
138
139
140
141
142
143
144
145
146

147

Table 8 – Class: CIM_ComputerSystem... 45
Table 9 – Class: CIM_ConcreteJob .. 45
Table 10 – Association: CIM_ElementConformsToProfile.. 46
Table 11 – Association: CIM_ElementSettingData... 46
Table 12 – Class: CIM_EnabledLogicalElementCapabilities.. 47
Table 13 – Association: CIM_ReferencedProfile .. 47
Table 14 – Class: CIM_RegisteredProfile... 48
Table 15 – Association: CIM_SettingsDefineState ... 48
Table 16 – Class: CIM_VirtualSystemSettingData ... 49
Table 17 – Association: CIM_VirtualSystemSettingDataComponent ... 49

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 7

148

149
150

151
152

Foreword

This profile - the Virtual System Profile (DSP1057) - was prepared by the System Virtualization, Partition-
ing and Clustering Working Group of the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Virtual System Profile

8 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

153

154
155
156
157
158

Introduction

The information in this specification should be sufficient for a provider or consumer of this data to identify
unambiguously the classes, properties, methods, and values that shall be instantiated and manipulated to
represent and manage the components described in this document. The target audience for this specifi-
cation is implementers who are writing CIM-based providers or consumers of management interfaces that
represent the components described in this document.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 9

159

161
162
163

165
166
167

169

Virtual System Profile

1 Scope 160

This profile - the Virtual System Profile - is an autonomous profile that defines the minimum object model
needed to provide for the inspection of a virtual system and its components. In addition, it defines optional
basic control operations for activating, deactivating, pausing, or suspending a virtual system.

2 Normative references 164

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved references 168

DMTF DSP0004, CIM Infrastructure Specification 2.5
http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf 170

171 DMTF DSP0200, CIM Operations over HTTP 1.3
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf 172

173 DMTF DSP1001, Management Profile Specification Usage Guide 1.0
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf 174

175 DMTF DSP1012, Boot Control Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf 176

177 DMTF DSP1022, CPU Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf 178

179 DMTF DSP1026, System Memory Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1026_1.0.pdf 180

181 DMTF DSP1027, Power State Management Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf 182

183 DMTF DSP1033, Profile Registration Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf 184

185 DMTF DSP1041, Resource Allocation Profile 1.1
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf 186

187 DMTF DSP1042, System Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1042_1.0.pdf 188

189 DMTF DSP1043, Allocation Capabilities Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf 190

191 DMTF DSP1044, Processor Device Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf 192

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1026_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP1042_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf

Virtual System Profile

10 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

193 DMTF DSP1045, Memory Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf 194

195 DMTF DSP1047, Storage Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf 196

197 DMTF DSP1052, Computer System Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf 198

199 DMTF DSP1059, Generic Device Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf 200

201 ISO/IEC Directives, Part2:2004, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 202

204

2.2 Other references 203

OPENSLP RFC2608, RFC Service Location Protocol Version 2
http://www.openslp.org/doc/rfc/rfc2608.txt 205

207

3 Terms and definitions 206

For the purposes of this document, the following terms and definitions apply. For the purposes of this
document, the terms and definitions given in DSP1033, DSP1001, and DSP1052 also apply. 208

210
211

213
214

216
217
218

219
220
221
222

 223
224

indicates a course of action permissible within the limits of the document 225

226
227

indicates a course of action permissible within the limits of the document 228

3.1 209
can
used for statements of possibility and capability, whether material, physical, or causal

3.2 212
cannot
used for statements of possibility and capability, whether material, physical, or causal

3.3 215
conditional
 indicates requirements strictly to be followed in order to conform to the document and from which no de-
viation is permitted when the specified conditions are met

3.4
mandatory
indicates requirements strictly to be followed in order to conform to the document and from which no de-
viation is permitted

3.5
may

3.6
need not

http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.openslp.org/doc/rfc/rfc2608.txt

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 11

230
231

rofile
234
235

237
238
239

241
242
243

245
, without mention-246

ing or excluding others, or that a certain course of action is preferred but not necessarily required 247

248
249

indicates that a certain possibility or course of action is deprecated but not prohibited 250

251
252

indicates that this profile does not define any constraints for the referenced CIM element 253

 254
255

 providers that realize the classes specified by this profile

257
258

an application that exploits facilities specified by this profile 259

 platform
lizing infrastructure provided by a host system enabling the deployment of virtual systems 262

ols and abbreviated terms

264
265

Common Information Model 266

3.7 229
optional
indicates a course of action permissible within the limits of the document

3.8 232
referencing p233
indicates a profile that owns the definition of this class and can include a reference to this profile in its
"Related Profiles" table

3.9 236
shall
indicates requirements strictly to be followed in order to conform to the document and from which no de-
viation is permitted

3.10 240
t shall no

indicates requirements strictly to be followed in order to conform to the document and from which no de-
viation is permitted

3.11 244
should
indicates that among several possibilities, one is recommended as particularly suitable

3.12
should not

3.13
unspecified

3.14
implementation
a set of CIM256

3.15
client

3.16 260
virtualization261
virtua

4 Symb263

4.1
CIM

Virtual System Profile

12 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

 268
269

271
ttingData 272

274
 protocol 275

276
277
278

280
 281

282

 283

284

285

286

287

288

s the minimum object model needed to provide for the 289
290
291

The instance of the CIM_ComputerSys al system shall be the central in-292
stance and the scoping instance of this293

elated profile e t m context of this profile. 294
DSP1052

4.2 267
CIMOM
CIM object manager

4.3 270
RASD
CIM_ResourceAllocationSe

4.4 273
SLP
service location

4.5
VS
virtual system

4.6 279
VSSD
CIM_VirtualSystemSettingData

5 Synopsis

Profile Name: Virtual System

Version: 1.0.0

Organization: DMTF

CIM Schema Version: 2.22

Central Class: CIM_ComputerSystem

Scoping Class: CIM_ComputerSystem

This profile is an autonomous profile that define
inspection of a virtual system and its components. In addition, it defines optional basic control operations
for activating, deactivating, pausing, or suspending a virtual system.

tem class representing a virtu
 profile.

Table 1 lists r s that this profile dep nds on, or tha ay be used in
 lists additional related profiles; these relationships are not further specified in this profile. 295

Table 1 – Related profiles 296

Profile Name Organizati
on

Version Relationship Description

Profile Registration DMTF 1.0 Mandatory The profile that specifies registered profiles.

Computer System DMTF 1.0 Specialization
ed to

The abstract autonomous profile that speci-
fies the minimum object model need
define a basic computer system.

Power State Management DMTF 1.0 Optional The component profile that specifies an ob-

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 13

Profile Name Organizati
on

Version Relationship Description

ject model needed to describe and manage
the power state of server systems.

Boot Control DMTF 1.0 Optional The component profile that specifies an ob-
ject model that represent boot configura-
tions, including boot devices and computer
system settings used during booting.

6 Description

This profile (DSP10

297

57, Virtual System Profile) specializes DSP1052 (Computer System Profile) that de-298
el needed to define a basic computing platform. The primary de-

 is that a virtual system and its components appear to a client in the
ng, control-301

nd specific aspects 302
303

304

fines the minimum top-level object mod299
sign objective applied by this profile300
same way as a non-virtual system. Typical management tasks such as enumerating, analyzi
ling, or configuring a system should be enabled without requiring the client to understa
of virtual systems.

6.1 Profile relationships

This profile (DSP1057) is complementary to DSP1042 (System Virtualization Profile):

 This profile focuses on virtualization aspects that relate to virtual systems and their virtual r
sources, such as modeling the structure of virtual systems and their resources. The profile in-
troduces the concept of virtual sy

305

e-306
307

stem configurations allowing the inspection of virtual system 308
configuration and state information. 309

 DSP1042 focuses on virtualization aspects that relate to host systems and their resources, such
as modeling the relationships between host re

310
sources and virtual resources. Further it ad-311

ecific tasks such as the creation or modification of virtual systems and 312
313

cture of profiles. For example, an implementation that instruments a virtualization 314
ent some of the following profiles: 315

 316

f and basic operations on virtual systems. 317



dresses virtualization-sp
their configurations.

Figure 1 shows a stru
platform may implem

This profile (DSP1057)

This profile enables the inspection o

DSP1042 318

DSP1042 enables the inspection of host systems, their capabilities, and their services for crea-
tion and manipulation of virtual systems.

esource-type-specific profiles

319
320

 R321

ble the inspection and operation of resources for one par-322
-323

ent pro-324
325

 326

327
328

Resource-type-specific profiles ena
ticular resource type. They apply to both virtual and host resources; they do not cover virtualiza
tion-specific aspects of resources. A client may exploit resource-type-specific managem
files for the inspection and manipulation of virtual and host resources in a similar manner.

Resource allocation profiles

Resource allocation profiles enable the inspection of existing resource allocations and of host
and other resources available for allocation. Resource allocation profiles are based on
DSP1041 and DSP1043, and they are scoped by DSP1042. A client may exploit resource allo-329

330 cation profiles to inspect all of the following:

Virtual System Profile

14 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

331

332
333

334

llocations 335

DSP1059

– the allocation of resources

– the allocation dependencies that virtual resources have on host resources and resource
pools

– the capabilities describing possible values for resource allocations

– the capabilities describing the mutability of resource a

 (Generic Device Resource Virtualization Profile) is a resource-type-independent re-336
source allocation profile that specifies the management of the allocation of basic virtual re-337
sources. For some resource types, specific resource allocation profiles are defined that address 338
resource-type-specific allocation aspects and capabilities. 339

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 15

DSP1043
Allocation

Capabilities
(Optional)

DSP1042
System Virtualization

DSP1041
Resource
Allocation
(Optional)

DSP1044
CPU Resource
Virtualization

(Optional)

Abstract
Component

Component

Autonomous

Abstract
Component

DSP1045
Memory Resource

Virtualization
(Optional)

DSP1050
Network Port

Resource
Virtualization

(Optional)

Component

Component

DSP1049
Storage Resource

Virtualization
(Optional)

Component

DSP1052
ComputerSystem

DSP1027
Power Stat
Manageme

(Optional)

DSP1033
Profile Registration

Component

DSP1057
Virtual System

DSP1004
Base Server
(Optional)

Autonomous

Abstract
Autonomous

Autonomous

DSP1022
CPU Profile
(Optional)

DSP1014
Ethernet Port P

(Optional)

Com

Com

DSP1012
Boot Control P

(Optional)

Com

DSP1026
System Mem

Profile
(Optional)

Com

DMTF
Management

Profiles
Related to

System
Virtualization

Com

DSP1059
Generic Device Re-
source Virtualization

(Optional)

Scoped By

Scoped By

Virtual System Profile

16 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

341

342

344
345
346

Figure 1 – Profiles related to system virtualization

6.2 Virtual system class schema 343

Figure 2 shows the class schema of this profile. It outlines the elements that are owned or specialized by
this profile, as well as the dependency relationships between elements of this profile and other profiles.
For simplicity in diagrams the prefix CIM_ has been removed from class and association names.

DSP1052 references additional classes in its class diagram that outline relationships with certain
resources, services, and protocol endpoints. This profile (DSP1057) provides no specialization of these
dependencies. For that reason they are not shown in the class diagram. For details, refer to

347
348

DSP1052
and to the component profiles referenced there.

349
350

ComputerSystem

(See Device Specific Profile, or
Resource Allocation Profile)

LogicalDevice

1

*

SystemDevice
(See Device Specific Profile or
Resource Allocation Profile)

ConcreteJob

1

*

AffectedJobElement

(See Profile Registration Profile)

RegisteredProfile

*

*

ElementConformsToProfile
(See Profile Registration Profile)

1 *

ReferencedProfile

EnabledLogicalElementCapabilities

1

0..1

ElementCapabilities

*

(See Power State Management Profile)

PowerManagementService

*

1

AssociatedPowerManagementService
(See Power State Management Profile)

(See System Virtualization Profile)

VirtualSystemManagementService

VirtualSystemSettingData

(See Resource Allocation Profile)

ResourceAllocationSettingData

1

*

VirtualSystemSetting-
DataComponent

0..1

*

0..1

*

ElementSettingData
*

1ServiceAffectsElement
(See System Virtualization Profile)

ElementSettingData
(See ResourceAllocation Profile)

0..1 1

SettingsDefineState

* 1

SettingsDefineState
(See Resource Allocation Profile)

 351

352

353

354

355
356

357
358

359
360
361

362
363

Figure 2 – Virtual System Profile: Class diagram

This profile specifies the use of the following classes and associations:

 the CIM_ComputerSystem class to represent virtual systems

 the CIM_RegisteredProfile class and the CIM_ElementConformsToProfile association to model
conformance with this profile

 the CIM_ReferencedProfile association to model dependencies between this profile and
resource-type-specific resource allocation profiles

 the CIM_EnabledLogicalElementCapabilities class and the CIM_ElementCapabilities
association to model capabilities of a virtual system such as characteristics of certain properties
or the set of potential state transitions

 the CIM_VirtualSystemSettingData class to model virtualization-specific aspects of a virtual
system

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 17

364
365
366

367
368
369

370
371

372
373
374

375
376
377

378

380

381
382
383
384
385
386

387
388
389
390

391
392
393
394
395
396
397

 the CIM_VirtualSystemSettingDataComponent association to model the aggregation of instan-
ces of the CIM_ResourceAllocationSettingData class to one instance of the CIM_VirtualSystem-
SettingData class, forming a virtual system configuration

 the CIM_SettingsDefineState association to model the relationship between an instance of the
CIM_ComputerSystem class representing a virtual system and an instance of the CIM_Virtual-
SystemSettingData class representing virtualization specific aspects of that virtual system

 the CIM_ElementSettingData association to model the relationship between an element and
configuration data applicable to the element

 the CIM_ConcreteJob class and the CIM_AffectedJobElement association to model a mecha-
nism that allows tracking of asynchronous tasks resulting from operations such as the optional
RequestStateChange() method applied to instances of the CIM_ComputerSystem class

In general, any mention of a class in this document means the class itself or its subclasses. For example,
a statement such as "an instance of the CIM_LogicalDevice class" implies an instance of the CIM_Logi-
calDevice class or a subclass of the CIM_LogicalDevice class.

For information about modeling concepts applied in this profile, see Annex A.

6.3 Virtual system concepts: Definition, instance, representation, and configu-379
ration

The term virtual system definition refers to a virtualization platform’s internal description of a virtual sys-
tem and its virtual resources. A typical realization of a virtual system definition is an entry within a configu-
ration file with a set of formal configuration statements. The virtual system definition may be regarded as
the recipe that a virtualization platform uses in the process of creating a virtual system instance. Except
for persistent resource allocations, a virtual system definition does not cause the reservation or consump-
tion of resources.

The term virtual system instance refers to a virtualization platform’s internal representation of the virtual
system and its components. A typical realization of a virtual system instance is a set of interrelated data
structures in memory. During instantiation all elements of a virtual system instance are allocated such that
the virtual system is enabled to perform tasks.

The term virtual system representation refers to the set of CIM class instances that represent the current
state of a virtual system instance. A virtual system representation consists of one top-level instance of the
CIM_ComputerSystem class and a set of aggregated instances of the CIM_LogicalDevice class. The
state of the system and logical devices is thus represented by the set of property values in these in-
stances. Virtualization specific state is not yet represented; for that purpose the next paragraph intro-
duces a virtualization specific state extension to the virtual system representation. The presence of in-
stances of the CIM_LogicalDevice class within the virtual system representation is controlled by speciali-
zations of DSP1041. The specializations describe how instances of the CIM_LogicalDevice class are
added or removed from the virtual system representation as virtual resources are allocated or de-
allocated.

398
399
400

401
402
403
404

405
406

407
408
409
410
411

The term virtual system configuration refers to an aggregation of instances of the CIM_SettingData class:
One top-level instance of the CIM_VirtualSystemSettingData class and a set of aggregated instances of
the CIM_ResourceAllocationSettingData class. This profile specifies the use of virtual system configura-
tions for two principal purposes:

 Virtual system configurations are used for the representation of configuration information, in par-
ticular for the representation of virtual system definitions.

 Virtual system configurations are used for the representation of virtualization specific "State" that
extends the virtual system representation. A single "state" virtual system configuration is associ-
ated to a virtual system. Elements of the "state" virtual system configuration extend corresponding
elements of the virtual system representation with virtualization-specific properties. A variety of vir-
tual system configurations may be associated with the "state" configuration via the CIM_Element-

Virtual System Profile

18 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

412
413

414
415

SettingData association. An example is the representation of the virtual system definition by a
separate "Defined" virtual system configuration.

Virtualization platforms may support modifications on virtual system definitions or virtual system instances
through various means, for example through direct configuration file editing, through a command-line in-
terface, through a program interface, or through a CIM-based interface as modeled in DSP1042. Regard-
less of the mechanism used to effect a modification on a virtual system definition or a virtual system in-
stance that modification becomes visible to clients through the CIM model view defined in this profile
(DSP1057), as expressed by the respective virtual system configuration or the virtual system representa-
tion.

416
417
418
419
420

422
423
424

426
427

429
430
431
432
433

435
436
437
438
439
440
441

443
444
445

447
448
449
450

452
453

6.4 Virtual system states and transitions 421

This subclause informally describes virtual system states and virtual system state transitions. Clause 7
normatively specifies how states and state transitions are observed, and a mechanism for the initiation of
state transitions.

6.4.1 Virtual system states 425

This subclause describes various virtual system states and their semantics. Normative requirements for
the observation of virtual system states are specified in 7.1.1 .

6.4.1.1 Semantics of the "defined" state 428

In the "defined" state a virtual system is defined at the virtualization platform, but the virtual system and its
virtual resources need not be instantiated by the virtualization platform. A virtual system in the "defined"
state is not enabled to perform tasks. In this state the virtual system does not consume any resources of
the virtualization platform, with the exception of persistent resource allocations that remain allocated re-
gardless of the virtual system state. An example is virtual disk allocations.

6.4.1.2 Semantics of the "active" state 434

In the "active" state a virtual system is instantiated at the virtualization platform. Generally the virtual re-
sources are enabled to perform tasks. For example, virtual processors of the virtual system are enabled
to execute instructions. Other virtual resources are enabled to perform respective resource-type-specific
tasks. Nevertheless some virtual resources may not be enabled to perform tasks for various reasons like
for example missing resource allocation. A virtual system is considered to be in the "active" state as soon
a transition is initiated from another state, and as long as a transition from the "active" state to another
state is not yet complete. Examples are the activation and deactivation of virtual systems.

6.4.1.3 Semantics of the "paused" state 442

In the "paused" state the virtual system and its virtual resources remain instantiated and resources remain
allocated as in the "active" state, but the virtual system and its virtual resources are not enabled to per-
form tasks.

6.4.1.4 Semantics of the "suspended" state 446

In the "suspended" state the state of the virtual system and its virtual resources are stored on non-volatile
storage. The system and its resources are not enabled to perform tasks. It is implementation-dependent
whether virtual resources continue to be represented by instances of the CIM_LogicalDevice class even if
some or all resources allocated to the virtual resources were de-allocated.

6.4.1.5 Vendor-defined states 451

Additional vendor-defined states for virtual systems are possible. This profile specifies mechanisms allow-
ing the observation of vendor-defined states, but does not specify vendor-specific state semantics.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 19

455
456
457

459
460

461
462
463

465
466

468
469
470

471
472
473
474

475
476
477
478

479
480
481

483
484
485
486
487

488
489

491
492
493

6.4.1.6 Semantics of the "unknown" state 454

"unknown" is a pseudo-virtual system state indicating that the present virtual system state cannot be de-
termined. For example, the implementation may not be able to contact the virtualization platform hosting
the virtual system because of networking problems.

6.4.2 Virtual system state transitions 458

This subclause describes various virtual system state transitions and their semantics. Normative require-
ments for the observation of virtual system state transitions are specified in 7.1.2 .

A virtual system state transition is the process of changing the state of a virtual system from an initial
state to a target state. It is implementation-dependent, at which point a state transition becomes visible
through the CIM model.

6.4.2.1 The "define" state transition 464

This is a virtualization-specific operation addressing the definition of new virtual system within a virtualiza-
tion platform. It is described in the System Virtualization and is named here for completeness only.

6.4.2.2 Semantics of the "activate" state transition 467

While performing the "activate" state transition from the "defined" state, missing resources are allocated
according to the virtual system definition, the virtual system and its virtual resources are instantiated and
enabled to perform tasks.

While performing an "activate" state transition from the "suspended" state back to the "active" state any
resources that were de-allocated during the transition to and while the system was in the "suspended"
state are re-allocated, all virtual resources are restored to their previous state and the virtual system is re-
enabled to perform tasks, continuing from the point before the system was suspended.

In both cases it is possible that some virtual resources were not instantiated for various reasons. For ex-
ample, a resource backing the virtual resource might not be available. In this case it is implementation
dependent whether the whole activation fails or whether the activation continues with a reduced set of
resources.

While performing an "activate" state transition from the "paused" state back to the "active" state the virtual
system and its resources are re-enabled to perform tasks continuing from the point before the system was
paused.

6.4.2.3 Semantics of the "deactivate" state transition 482

While performing the "deactivate" state transition the virtual system and its virtual resources are disabled
to perform tasks, non-persistent virtual resources are released, their backing resources are de-allocated,
and the virtual system instance is removed from the virtualization platform. If a "deactivate" state transi-
tion originates from the "suspended" state, previously saved state information of virtual system and re-
sources is removed. The virtual system remains defined at the virtualization platform.

NOTE The "deactivate" transition is assumed to be disruptive with respect to the virtual system and its components
performing tasks.

6.4.2.4 Semantics of the "pause" state transition 490

While performing the "pause" state transition the virtual system and its virtual resources are disabled to
perform tasks. The virtual system and its virtual resources remain instantiated with their backing re-
sources allocated.

Virtual System Profile

20 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

495
496
497

499
500
501
502

504
505

507
508
509

510
511
512

514
515
516

6.4.2.5 Semantics of the "suspend" state transition 494

While performing the "suspend" state transition the virtual system and its virtual resources are disabled to
perform tasks and the state of the virtual system and its resources are saved to non-volatile storage. Re-
sources may be de-allocated.

6.4.2.6 Semantics of the "shut down" state transition 498

While performing the "shut down" state transition from the "active" state, the software that is executed by
the virtual system is notified to shut down. It is assumed that the software then terminates all its tasks and
terminates itself. Subsequent steps of the "shut down" state transition should be the same as for the "de-
activate" state transition.

6.4.2.7 Semantics of the "reboot" state transition 503

While performing the "reboot" state transition, the software that is executed by the virtual system is noti-
fied to re-cycle or re-boot. Virtual resources remain instantiated with their backing resources allocated.

6.4.2.8 Semantics of the "reset" state transition 506

Logically the "reset" state transition consists of a "deactivate" state transition followed by an "activate"
state transition, except that resource are not de-allocated during deactivation and thus need not be re-
allocated during activation..

NOTE The "reset" transition is assumed to be disruptive with respect to the virtual system and its components per-
forming tasks, and state information of the virtual system and its resources may be lost, including state in-
formation saved during a previous "Suspend" state transition.

6.4.3 Summary of virtual system states and virtual system state transitions 513

Figure 3 summarizes virtual system states that are assumed by this profile and possible state transitions
between those states. Further, Figure 3 shows the mapping of virtual system states to properties of the
CIM_ComputerSystem class and the CIM_AssociatedPowerManagementService association.

 Virtual System Profile

VS State: defined
EnabledState: Disabled

PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: suspended
EnabledState: Enabled but Offline

PowerState: Sleep-Deep

Initial State

Final State

VS State: paused
EnabledState: Quiesce
PowerState: Sleep-Light

d
ea

ct
iv

at
e

/ s
h

u
td

o
w

n

s
u

s
p

e
n

d

pause

activate

a
ct

iv
at

e
 /

re
b

o
o

t
/ r

e
s

et

cr
ea

te
d

e
st

ro
y

(see System Virtualization Profile)

(see System Virtualization Profile)

 517

518 Figure 3 – Virtual system states

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 21

Virtual System Profile

22 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

520
521

522
523

524
525
526
527
528

530
531
532

533
534

536
537
538
539
540

541
542

543
544
545
546
547

548

7 Implementation 519

This clause details the requirements related to classes and their properties for implementations of this
profile. The CIM Schema descriptions for any referenced element and its sub-elements apply.

The list of all methods covered by this profile is in clause 8. The list of all properties covered by this profile
is in clause 10.

In references to CIM Schema properties that enumerate values, the numeric value is normative and the
descriptive text following it in parenthesis is informational. For example, in the statement "If an instance of
the CIM_VirtualSystemManagementCapabilities class contains the value 3 (DestroySystemSupported) in
an element of the SynchronousMethodsSupported[] array property", the "value 3" is normative text and
"(DestroySystemSupported)" is descriptive text.

7.1 Virtual system 529

The CIM_ComputerSystem class shall be used to represent virtual systems. One instance of the
CIM_ComputerSystem class shall exist for each virtual system that is conformant to this profile, regard-
less of its state.

This subclause and its secondary subclauses apply to instances of the CIM_ComputerSystem class that
represent virtual systems.

7.1.1 CIM_ComputerSystem.EnabledState property 535

The EnabledState property shall be implemented and used as the primary means to support the observa-
tion of virtual system state (see 6.4.1). Note that as a particular virtual system state is observed through
the value of the EnabledState property a state transition to a different state may already be in progress;
this issue is resolved by modeling the observation of state transitions through the value of the Re-
questedState property (see 7.1.2).

The "defined" and "active" states as defined in 6.4.1 shall be implemented; support of additional states is
optional.

Table 2 provides the normative mapping of virtual system states to values of the EnabledState property.
The value of the EnabledState property shall be set depending on the state of the virtual system. For ex-
ample, if a virtual system is in the "active" state then the EnabledState property should have a value of 2
(Enabled), but may have a value of 8 (Deferred) or 4 (Shutting Down) if respective conditions apply, as
defined by the description of the CIM_EnabledLogicalElement class in the CIM Schema.

Table 2 – Observation of virtual system states

Observation of
virtual system state

Requirement
CIM_ComputerSystem
EnabledState Property

Value

CIM_AssociatedPower-
ManagementSer-

vice.PowerState Property
Value (Optional)

"defined"
(See 6.4.1.1)

Mandatory 3 (Disabled)
8 (Off – Soft)

6 (Off – Hard)

"active"
(See 6.4.1.2)

Mandatory

2 (Enabled)
4 (Shutting Down)

8 (Deferred)
10 (Starting)

2 (On)

"paused"
(Optional)

(See 6.4.1.3)
Optional 9 (Quiesce) 3 (Sleep – Light)

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 23

Observation of
virtual system state

Requirement
CIM_ComputerSystem
EnabledState Property

Value

CIM_AssociatedPower-
ManagementSer-

vice.PowerState Property
Value (Optional)

"suspended"
(Optional)

(See 6.4.1.4)
Optional 6 (Enabled but Offline)

4 (Sleep – Deep)

7 (Hibernate (Off – Soft))

Vendor Defined
(Optional)

(See 6.4.1.5)
Optional 1 (Other)

1 (Other)
or

(0x7FFF-0xFFFF)

"unknown"
(Optional)

(See 6.4.1.6)
Optional 0 (Unknown) n/a

Unspecified
(Values shall not be used
by conformant implemen-

tations.)

Not supported
5 (Not Applicable)

7 (In Test)
n/a

NOTE Preferred values of the EnabledState property are shown in bold face; other possible values are shown in regular style.

The use of the values in the "CIM_AssociatedPowerManagementService.PowerState Property Value
(Optional)" column listed in

549
550

551
552
553
554
555
556

558
559
560
561

562

563
564

565
566
567

568

569
570
571

572
573
574
575
576
577

Table 2 is described in 7.7.1 .

NOTE This profile clearly distinguishes between the observation of virtual system state (as defined in this sub-
clause) and client state management (as defined in 7.6). In particular with respect to the observation of vir-
tual system state no mechanism is specified for determining a supported subset of virtual system states; in-
stead any virtual system state as defined by Table 2 is possible. Opposed to that the set of state transitions
that may be effected through client state management is modeled in 7.6 through the CIM_EnabledLogical-
ElementCapabilities class.

7.1.2 CIM_ComputerSystem.RequestedState property 557

The RequestedState property shall be implemented. The RequestedState property shall be used to indi-
cate whether the observation of virtual system state transitions is implemented, and if the observation of
virtual system state transitions is implemented the property shall indicate ongoing virtual system state
transitions.

The following provisions apply:

 If the observation of virtual system state transitions is not implemented, the RequestedState
property shall be set to a value of 12 (Not Applicable).

 If the observation of one or more virtual system state transitions is implemented, the value of
the RequestedState property shall be used to facilitate the observation of virtual system state
transitions. The following provisions apply:

– The RequestedState property shall not have a value of 12 (Not Applicable).

– The RequestedState property shall have a value designating the most recently requested
state transition according to Table 3. For example, if a virtual system is performing an "Ac-
tivate" state transition, then the RequestedState property shall have a value of 2 (Enabled).

– If a state transition completes successfully, the value of the EnabledState property shall re-
flect the "To" virtual system state as defined by Table 3, using values as defined by Table
2. For example, if a virtual system has successfully performed an "activate" state transition,
then it shall be in the "active" virtual system state and show a value of 2 (Enabled) for the
EnabledState property. The RequestedState property shall maintain the value designating
the most recently requested state transition according to Table 3.

Virtual System Profile

24 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

578
579
580

581
582

583
584
585

586
587

588

– If a state transition fails, the value of the EnabledState property shall represent the current
state of the virtual system as defined by Table 2. The RequestedState property shall have
a value of 5 (No Change).

– If the implementation is unable to access information about the most recent or pending
state transition the RequestedState property shall have a value of 5 (No Change).

NOTE State transitions may be observed even if client state management as described in 7.6 is not implemented.
For example, a state transition might be initiated by means inherent to the virtualization platform, or it might
be triggered during activation of the virtualization platform itself.

Table 3 provides the normative mapping of virtual system state transitions to values of the Requested-
State property and the RequestedState parameter.

Table 3 – Observation of virtual system state transitions

Observation of
Virtual System

Transition

Requireme
nt

"From"
Virtual

System State

"To"
Virtual

System State

RequestedState
Property and

Parameter Value

RequestPower
StateChange():
Property Value

Observation of
state transitions
not supported

n/a n/a n/a 12 (Not Applicable) n/a

"define"
(Optional)

(See 6.4.2.1)
Optional

No CIM_Com-
puterSystem

instance
"Defined"

Not applicable.
For definition of virtual systems see

System Virtualization.

"activate"
(Optional)

(See 6.4.2.2)
Optional

"Defined"
"Paused"

"Suspended"
"Active" 2 (Enabled) 2 (On)

"deactivate"
(Optional)

(See 6.4.2.3)
Optional

"Active"
"Paused"

"Suspended"
"Defined" 3 (Disabled) 8 (Off – Soft)

"pause"
(Optional)

(See 6.4.2.4)
Optional "Active" "Paused" 9 (Quiesce) 3 (Sleep–Light)

"suspend"
(Optional)

(See 6.4.2.5)
Optional

"Active"
"Paused"

"Suspended" 6 (Offline) 4 (Sleep –Deep)

"shut down"
(Optional)

(See 6.4.2.6)
Optional

"Active"
"Paused"

"Suspended"
"Defined" 4 (Shut Down) 8 (Off – Soft)

"reboot"
(Optional)

(See 6.4.2.7)
Optional

"Active"
"Paused"

"Suspended"
"Active" 10 (Reboot)

5 (Power Cycle
(Off – Soft))

"reset"
(Optional)

(See 6.4.2.8)
Optional

"Active"
"Paused"

"Suspended"
"Active" 11 (Reset)

9 (Power Cycle
(Off – Hard))

Information about
recent or pending

state transitions not
available

Optional n/a n/a 5 (No Change) n/a

NOTE Preferred values of the RequestedState property are shown in bold face; other possible values are shown in regular style.

NOTE This profile clearly distinguishes between the observation of virtual system state transitions (as defined in
this subclause) and client state management (as defined in

589
590
591
592
593
594

7.6). In particular with respect to the observation
of virtual system state transitions no mechanism is specified for determining a supported subset of virtual
system state transitions; instead any virtual system state transition as defined by Table 3 is possible. Op-
posed to that the set of state transitions that may be effected through client state management is modeled in
7.6 through the CIM_EnabledLogicalElementCapabilities class.

 Virtual System Profile

7.2 Virtual resource 595

Resources in system representations are specified by resource-type-specific profiles such as DSP1052 or 596
DSP1026. These resource-type-specific profiles may be implemented for one or more types of virtual re-
sources, omitting optional elements that model physical aspects.

597
598

599
600
601
602

605
606
607
608
609

Most resource-type-specific profiles specify that logical resources are represented by instances of the
CIM_LogicalDevice class, and are aggregated into a virtual system representation using the
CIM_SystemDevice association. This profile specifies the use of virtual system configurations for the ex-
tension of virtual system representations with virtualization-specific properties.

7.3 Virtual system configuration 603

7.3.1 Structure 604

A virtual system configuration shall consist of one instance of the CIM_VirtualSystemSettingData class as
the top-level object, and zero or more instances of the CIM_ResourceAllocationSettingData class. The
CIM_VirtualSystemSettingDataComponent association shall be used to associate the instance of the
CIM_VirtualSystemSettingData class with aggregated instances of the CIM_ResourceAllocationSetting-
Data class (see Figure 4).

ComputerSystem VirtualSystemSettingData

LogicalDevice ResourceAllocationSettingData

1

*

SystemDevice

1

*

VirtualSystemSetting-
DataComponent

Virtual system configurationVirtual system representation

presence depending
on resource allocation

0..1 1SettingsDefineState

0..1

*

ElementSettingData

* 1
SettingsDefineState

0..1

*

ElementSettingData
See device specific profile,
or Resource Allocation Profile

 610

611

613
614
615
616

617
618
619

620
621

Figure 4 – Virtual system representation and virtual system configuration

7.3.2 The "state" virtual system configuration 612

There shall be exactly one "state" virtual system configuration representing the virtualization specific state
of the virtual system. Elements of the "state" virtual system configuration add virtualization-specific prop-
erties to related elements in the virtual system representation. Elements of the "state" virtual system con-
figuration shall have the same lifecycle as their counterparts in the virtual system representation.

The top-level instance of the CIM_VirtualSystemSettingData class in the "state" virtual system configura-
tion shall be associated to the instance of the CIM_ComputerSystem class that represents the virtual sys-
tem through an instance of the CIM_SettingsDefineState association.

NOTE 1 See A.3 for a description of how the presence of instances of CIM classes and of property values within
instances may depend on the virtual system state.

622
623

NOTE 2 If DSP1041 is implemented for a particular resource type, it may require additional instances of the
CIM_SettingsDefineState association connecting instances of the CIM_ResourceAllocationSettingData class in the

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 25

Virtual System Profile

26 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

624
625

627
628
629
630
631

632
633

634
635

"State" virtual system configuration to related instances of the CIM_LogicalDevice class in the virtual system repre-
sentation.

7.3.3 The "defined" virtual system configuration 626

There shall exactly be one "defined" virtual system configuration representing the virtual system definition.
The top-level instance of the CIM_VirtualSystemSettingData class in the "defined" virtual system configu-
ration shall be associated to the top-level instance of the CIM_VirtualSystemSettingData class in the
"state" virtual system configuration through the CIM_ElementSettingData association with the IsDefault
property set to a value of 1 (Is Default).

The "Defined" virtual system configuration shall be present at all times regardless of the virtual system
state.

NOTE An implementation may coincide the "defined" virtual system configuration and the "state" vir-
tual system configuration; see 7.3.4 .

If DSP1041 is implemented for a particular resource type, it may require additional instances of the
CIM_ElementSettingData association to connect instances of the CIM_ResourceAllocationSettingData
class in the "State" virtual system configuration with their counterparts in the "defined" virtual system con-
figuration. The presence of these association instances is not required or defined by this profile
(DSP1057). However, this profile requires that any instances of the CIM_ElementSettingData association
that are required by

636
637
638
639
640

DSP1041 shall have an attribute set that is consistent with the attribute set of the in-
stance of the CIM_ElementSettingData association that associates the top-level instances of the
CIM_VirtualSystemSettingData class.

641
642
643

645

646
647
648
649
650

652
653
654

655
656
657

658
659

660
661

662
663

664

665

666
667
668

7.3.4 Implementation approaches for "state" and "defined" virtual system configura-644
tion

Implementations are not required to support separate virtual system configurations for the representation
of virtual system definition and virtual system instance: Implementations may apply either a dual-configu-
ration implementation approach (see 7.3.4.1) or a single-configuration implementation approach (see
7.3.4.2); an implementation shall not mix the two implementation approaches. For a detailed instance-
based description, see Annex B.

7.3.4.1 Dual-configuration implementation approach 651

This approach is applicable for implementations that support separate configurations for the representa-
tion of the virtual system definition and the virtual system instance. This approach allows the modeling of
divergent modifications on definition and instance.

With this dual-configuration approach, the "defined" and the "state" virtual system configurations shall be
composed of unique instances of the CIM_VirtualSystemSettingData class and the CIM_ResourceAlloca-
tionSettingData class in each configuration.

For the top-level instance of the CIM_VirtualSystemSettingData class in the "state" virtual system configu-
ration the following provisions apply:

 It shall be associated to the instance of the CIM_ComputerSystem class in the virtual system
representation through an instance of the CIM_SettingsDefineState association

 It shall be associated to its counterpart in the "defined" virtual system configuration through an
instance of the CIM_ElementSettingData association where

– the value of the IsDefault property shall be set to according to 7.3.11

– the value of the IsNext property shall be set to according to 7.3.12

 It shall be associated to any instance of the CIM_ResourceAllocationSettingData class that is
part of the "state" virtual system configuration via an instance of the CIM_VirtualSystemSetting-
DataComponent association

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 27

DSP1041 or profiles based on DSP1041 may require compliance to similar conditions with respect to in-
stances of the CIM_ResourceAllocationSettingData class and the CIM_LogicalDevice class. If resources
are allocated or de-allocated, respective instances of the CIM_ResourceAllocationSettingData class shall
be added to or removed from the "State" virtual system configuration along with the associations referring
to them.

669
670
671
672
673

674
675

677
678

679
680
681

682
683

684
685

686
687

688

689

690
691
692

NOTE The values of the properties within the instances of the CIM_ElementSettingData association depend on the
virtual system state and/or on the resource allocation state.

7.3.4.2 Single-configuration implementation approach 676

This approach is applicable for implementations that do not support separate configurations for the repre-
sentation of the virtual system definition and virtual system instance.

With this approach, instances of the CIM_VirtualSystemSettingData class and the CIM_ResourceAlloca-
tionSettingData class are shared for both the "defined" virtual system configuration and the "state" virtual
system configuration.

For the top-level instance of the CIM_VirtualSystemSettingData class in the single virtual system configu-
ration the following provisions apply:

 It shall be associated to the instance of the CIM_ComputerSystem class in the virtual system
representation through an instance of the CIM_SettingsDefineState association

 It shall be associated to itself through an instance of the CIM_ElementSettingData association
where

– the value of the IsDefault property shall be set to according to 7.3.11

– the value of the IsNext property shall be set to according to 7.3.12

 It shall be associated to any instance of the CIM_ResourceAllocationSettingData class that is
part of the single virtual system configuration via an instance of the CIM_VirtualSystemSetting-
DataComponent association

DSP1041 or profiles based on DSP1041 may require compliance to similar conditions with respect to in-
stances of the CIM_ResourceAllocationSettingData class and the CIM_LogicalDevice class, such that as
resources are allocated or de-allocated, respective instances of the CIM_SettingsDefineState association
and the CIM_ElementSettingData association are required to be added to or removed from instances of
the CIM_ResourceAllocationSettingData class.

693
694
695
696
697

698
699

701
702
703

705

706

707
708
709
710

NOTE The values of the properties within the instances of the CIM_ElementSettingData association depend on the
virtual system state and/or on the resource allocation state.

7.3.5 Other types of virtual system configurations 700

Additional virtual system configurations may be associated to the "state" virtual system configuration
through the CIM_ElementSettingData association. For details about the "next" configuration (the configu-
ration that will be used during the next activation of the virtual system), see 7.3.12.

7.3.6 CIM_VirtualSystemSettingData.Caption property 704

The implementation of the Caption property is optional.

If the Caption property is implemented, the provisions in this subclause apply.

If the Caption property is implemented for the CIM_ComputerSystem class, the value of the Caption
property in the instance of the CIM_VirtualSystemSettingData class in the "state" virtual system configura-
tion of a virtual system shall be identical to the value of the Caption property in the instance of the
CIM_ComputerSystem class representing the virtual system.

Virtual System Profile

28 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

712

713

714
715
716

718
719

720
721
722
723

725

726

727
728

729
730
731

733

734

735

736
737

738
739
740
741
742

743
744

7.3.7 CIM_VirtualSystemSettingData.Description property 711

The implementation of the Description property is optional.

If the Description property is implemented, the provisions in this subclause apply.

The value of the Description property in the instance of the CIM_VirtualSystemSettingData class in the
"state" virtual system configuration of a virtual system shall be identical to the value of the description
property in the instance of the CIM_ComputerSystem class representing the virtual system.

7.3.8 CIM_VirtualSystemSettingData.ElementName property 717

The value of the ElementName property reflects a name for the virtual system configuration assigned by
an end-user or administrator.

If the ElementName property is implemented for the CIM_ComputerSystem class, the value of the Ele-
mentName property in the instance of the CIM_VirtualSystemSettingData class in the "state" virtual sys-
tem configuration of a virtual system shall be identical to the value of the ElementName property in the
instance of the CIM_ComputerSystem class representing the virtual system.

7.3.9 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property 724

The implementation of the VirtualSystemIdentifier property is optional.

If the VirtualSystemIdentifier property is implemented, the provisions in this subclause apply.

The value of the VirtualSystemIdentifier property reflects a name for the virtual system assigned by the
implementation during virtual system creation. A typical example is a human-readable user ID.

The value of the VirtualSystemIdentifier property shall be unique for each instance of the
CIM_VirtualSystemSettingData class that represents a virtual system (or its definition) within the scope of
a host system.

7.3.10 CIM_VirtualSystemSettingData.VirtualSystemType property 732

The implementation of the VirtualSystemType property is optional.

If the VirtualSystemType property is implemented, the provisions in this subclause apply.

The value of the VirtualSystemType property reflects a specific type for the virtual system.

NOTE The VirtualSystemType property is defined primarily for programmatic use rather than for conveying a virtual
system type to end-users.

Restrictive conditions may be implied by a virtual system type; these conditions are implementation-
dependent and are not specified in this profile. For example, a system type of "OS1 Container" might be
defined indicating that a virtual system of that type is used to run an operating system named "OS1". An-
other example might be a system type of "CommunicationController", indicating that the virtual system
runs special-purpose software enabling it to act as a communication server.

The virtual system type may change during the lifetime of the virtual system. For example, a change may
be effected through the use of inherent management facilities available with the virtualization platform or
through facilities defined by DSP1042 that enable a client to modify virtual system configurations. 745

747
748
749
750
751

7.3.11 CIM_ElementSettingData.IsDefault property 746

The IsDefault property shall be implemented. Each top-level CIM_VirtualSystemSettingData instance in a
"state" virtual system configuration and the top-level CIM_VirtualSystemSettingData instance in the re-
lated "defined" virtual system configuration shall be associated through an instance of the CIM_Element-
SettingData association. The value of the IsDefault property shall be used to designate the "defined" vir-
tual system configuration among all configurations associated with the "state" virtual system configuration.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 29

752

753
754

755

756

757
758
759
760

761
762

764

765

766
767
768
769

770
771
772
773

774

775
776

777
778

779
780
781

782
783

784
785

786
787

788
789
790

The value of the IsDefault property shall be set as follows:

 The IsDefault property shall have a value of 1 (Is Default) if the related virtual system configura-
tion is the "defined" virtual system configuration.

 In all other cases, the IsDefault property shall have a value of 2 (Is Not Default).

 The IsDefault property shall not have a value of 0 (Unknown).

 In the set of all virtual system configurations that are associated to a top-level instance of the
CIM_VirtualSystemSettingData class in a "state" virtual system configuration exactly one con-
figuration shall be referenced by an instance of the CIM_ElementSettingData association with a
value of 1 (Is Default) for the IsDefault property.

The "defined" virtual system configuration is the fall-back default that shall be used for virtual system acti-
vation if no other configuration is marked through the IsNext property.

7.3.12 CIM_ElementSettingData.IsNext property 763

The implementation of the IsNext property is optional.

If the IsNext property is implemented, the provisions in this subclause apply.

The IsNext property may be used to designate the "next" virtual system configuration. The "next" virtual
system configuration is the virtual system configuration that will be used for the next activation of the vir-
tual system; if no configuration is marked as the "next" virtual system configuration, the "default" virtual
system configuration is used for the next activation.

If the IsNext property is implemented, the value of the IsNext instances of the CIM_ElementSettingData
association associating a top-level instance of the CIM_VirtualSystemSettingData class in a "state" virtual
system configuration and a top-level instance of the CIM_VirtualSystemSettingData class in a related vir-
tual system configuration shall be set as follows:

 The IsNext property shall have one of the following values:

– a value of 0 (Unknown) if it is not known whether the referenced virtual system configura-
tion will be used for the next activation

– a value of 1 (Is Next) if the referenced virtual system configuration is established to be
used for subsequent activations of the virtual system

– a value of 3 (Is Next For Single Use) if the referenced virtual system configuration is estab-
lished to be used for just the next activation of the virtual system in preference of the de-
fault and or the persistently established next configuration.

– In all other cases the IsNext property shall have a value of 2 (Is Not Next). In this case the
"default" virtual system configuration is used for the next virtual system activation.

 In the set of all virtual system configurations that are associated with a top-level instance of the
CIM_VirtualSystemSettingData class in a "state" virtual system configuration, there shall be

– at most one configuration that is referenced by an instance of the CIM_ElementSettingData
association with a value of 1 (Is Next)

– at most one configuration that is referenced by an instance of the CIM_ElementSettingData
association with a value of 3 (Is Next For Single Use) for the IsNext property. This configu-
ration shall be given preference over one that is designated with a value of 1 (Is Next).

Virtual System Profile

30 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

793
794
795
796
797

799

800
801
802

803

804
805
806
807

808
809
810
811

814
815
816
817
818

819
820

822

823
824
825

826

827
828

829

830
831
832

7.4 Profile registration 791

7.4.1 This profile 792

The implementation of this profile shall be indicated by an instance of the CIM_RegisteredProfile class in
the CIM Interop namespace. Each instance of the CIM_ComputerSystem class that represents a virtual
system manageable through this profile shall be a central instance of this profile by associating it to the
instance of the CIM_RegisteredProfile class through an instance of the CIM_ElementConformsToProfile
association.

7.4.2 Scoped profiles 798

For a scoped profiles the following conditions shall be met:

 The instance of the CIM_RegisteredProfile class that represents the implementation of this pro-
file and instances of the CIM_RegisteredProfile class that represent an implementation of the
scoped profile shall be associated through instances of the CIM_ReferencedProfile association.

 One of the following conditions shall be met:

a) Instances of the CIM_ElementConformsToProfile association shall associate any central
instance of the scoped profile that is associated to the central instance of this profile
through the CIM_SystemDevice association, and the instance of the CIM_RegisteredPro-
file class that represents an implementation of the scoped profile.

b) No instances of the CIM_ElementConformsToProfile association shall associate any cen-
tral instance of the scoped profile that is associated to the central instance of this profile
through the CIM_SystemDevice association, and the instance of the CIM_RegisteredPro-
file class that represents an implementation of the scoped profile.

7.5 Capabilities 812

7.5.1.1 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property 813

The RequestedStatesSupported property shall not have a value of NULL. An empty array indicates that
client state management is not implemented. A non-empty array indicates that client state management is
implemented for a particular virtual system and lists the supported state transitions. The list of supported
state transitions depends on the current virtual system state. The subset of state transitions that are sup-
ported for each state is implementation dependent. The maximal set is defined by Table 3.

NOTE The value of this property is volatile. It may change at any time, including the cases where an empty list
changes to a non-empty list and vice versa.

7.6 Client state management 821

The implementation of client state management is conditional.

Condition: The CIM_ComputerSystem instance that represents a virtual system is associated through the
CIM_ElementCapabilities association to an instance of the CIM_EnabledLogicalElementCapabilities
class, and in that instance the value the RequestedStatesSupported property is a non-empty array.

If client state management is implemented, the provisions in this subclause apply.

Client state management comprises the facilities provided by the implementation that enable a client to
request virtual system state transitions.

If client state management is implemented, an implementation shall do all of the following:

 implement the CIM_EnabledLogicalElementCapabilities class according to 7.5.1.1 to indicate
the availability of client state management support, and the set of state transitions that are ap-
plicable

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 31

833  implement method RequestStateChange()

 if it implements DSP1027 for virtual systems, implement the RequestPowerStateChange()
method

834
835

837

838

7.7 Power state management 836

The implementation of power state management is optional.

If power state management is implemented, the provisions in this subclause apply.

The implementation of power state management requires the implementation of DSP1027. DSP1027
specifies

839
840

 how to indicate that DSP1027 is implemented 841

842
843

 how to implement the CIM_PowerManagementService class and the CIM_Associated-
PowerManagementService association

If the observation of power states is implemented as specified by DSP1027, then the observation of vir-
tual system states as defined in

844
845 7.1.1 and the observation of virtual system state transitions as defined in

7.1.2 shall also be implemented. If power state management is implemented as specified by DSP1027,
then client state management as specified in

846
847 8.1.1 shall also be implemented.

NOTE The implementation of DSP1027 in the context of virtual systems is intended to support clients that use fa-
cilities specified by

848
DSP1027 in preference of facilities specified in this profile (DSP1057). For example,

such clients may use the CIM_AssociatedPowerManagementService.PowerState property in favor of the
CIM_ComputerSystem.EnabledState property to determine the virtual system state, or may use the
CIM_PowerManagementService.RequestPowerStateChange() method in favor of the CIM_EnabledLogical-
Element.RequestStateChange() method to effect virtual system state transitions.

849
850
851
852
853

855

856

857

7.7.1 CIM_AssociatedPowerManagementService.PowerState property 854

The implementation of the PowerState property is conditional.

Condition: All of the following

 Client state management is implemented (see 7.5.1.1)

 DSP1027 is implemented. 858

859

860
861
862
863

If the PowerState property is implemented, the provisions in this subclause apply.

The CIM_AssociatedPowerManagmentService association shall be used to convey the virtual system
state in addition to the CIM_ComputerSystem.EnabledState property. In this case, the PowerState prop-
erty shall contain a value that corresponds to the virtual system state as defined in Table 2. For example,
if the virtual system state is "active", then the PowerState property shall have a value of 2 (On).

A client preferring to use mechanisms defined by DSP1027 may translate the value of the PowerState
property of an instance of the CIM_AssociatedPowerManagementService association that is referring to
an instance of the CIM_ComputerSystem class representing a virtual system by translating that value
according to

864
865
866
867
868

870
871

872

Table 2. For example, if the PowerState property has a value of 2 (On), then a client shall
conclude that the virtual system state is "active".

8 Methods 869

This clause details the requirements for supporting intrinsic CIM operations and extrinsic methods for the
CIM elements defined by this profile.

The CIM Schema descriptions for any referenced method and its parameters apply.

Virtual System Profile

32 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

875

876

877

878
879

880

8.1 Extrinsic methods 873

8.1.1 CIM_ComputerSystem.RequestStateChange() method 874

The implementation of the RequestStateChange() method is conditional.

Condition: Client state management is implemented (see 7.6).

If the RequestStateChange() method is implemented, the provisions in this subclause apply.

Detailed requirements for the CIM_ComputerSystem.RequestStateChange() method are specified in
Table 4.

Table 4 – CIM_ComputerSystem.RequestStateChange() method: Parameters

Qualifiers Name Type Description/Values

IN RequestedState uint16 The requested virtual system state transition
according to the transformation defined in
Table 3.

OUT Job CIM_ConcreteJob REF A reference to the job that performs the task
(NULL if the task is completed on return).

IN TimeoutPeriod datetime A timeout period that specifies the maximum
amount of time that the client expects the
transition to the new state to take.

For return code values, see the CIM Schema description of this method in the CIM_EnabledLogical-
Element class.

881
882

883

885

886

887

No standard messages are defined.

8.1.2 CIM_PowerManagementService.RequestPowerStateChange() method 884

The implementation of the RequestPowerStateChange() method is conditional.

Condition: All of the following

 Client state management is implemented (see 7.5.1.1)

 DSP1027 is implemented. 888

889

890
891
892

893

If the RequestPowerStateChange() method is implemented, the provisions in this subclause apply.

The RequestPowerStateChange() method shall enable the request of virtual system state transitions
through this alternative method. Detailed requirements for the CIM_PowerManagementService.Request-
StateChange() method are specified in Table 5.

Table 5 – CIM_PowerManagementService.RequestPowerStateChange() method: Parameters

Qualifiers Name Type Description/Values

IN PowerState uint16 See 8.1.2.1 .

IN ManagedElement CIM_ComputerSystem
REF

See 8.1.2.2 .

IN Time datetime See 8.1.2.3 .

OUT Job CIM_ConcreteJob REF A reference to the job that
performs the task (null if
the task is completed on
return). For details, see

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 33

Qualifiers Name Type Description/Values

the CIM Schema descrip-
tion of this parameter.

For return code values, see the CIM Schema description of this method in the CIM_PowerManagement-
Service class.

894
895

896

898

899
900
901
902

904
905

907

908

909

911

912

913

914

915

916

917

918

919

No standard messages are defined.

8.1.2.1 PowerState parameter 897

The PowerState parameter encodes the requested new virtual system state.

The translation defined by Table 3 shall be used to interpret values of the PowerState parameter of the
CIM_PowerManagementService.RequestPowerStateChange() method as a request for a virtual system
state transition. For example, if value "On" is specified on a particular power state change request for a
virtual system, then an "activate" state transition shall be performed.

8.1.2.2 ManagedElement parameter 903

The value of the ManagedElement parameter shall be used to identity the virtual system to which the op-
eration applies.

8.1.2.3 Time parameter 906

The implementation of the Time parameter is optional.

If the Time parameter is implemented, the provisions in this subclause apply.

The Time parameter shall indicate the point in time when the power state shall be set.

8.2 Profile conventions for operations 910

The default list of operations for all classes is:

GetInstance()

EnumerateInstances()

EnumerateInstanceNames()

For classes that are referenced by an association, the default list also includes

Associators()

AssociatorNames()

References()

ReferenceNames()

8.2.1 CIM_ComputerSystem 920

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 921

922 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.2 CIM_ConcreteJob 923

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 924

Virtual System Profile

34 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

925 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.3 CIM_ElementSettingData 926

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 927

928 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.4 CIM_EnabledLogicalElementCapabilities 929

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 930

931 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.5 CIM_ReferencedProfile 932

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 933

934 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.6 CIM_RegisteredProfile 935

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 936

937 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.7 CIM_VirtualSystemSettingData 938

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 939

940 NOTE Related profiles may define additional requirements on operations for the profile class.

8.2.8 CIM_VirtualSystemSettingDataComponent 941

All operations in the default list in 8.2 shall be implemented as defined in DSP0200. 942

943

945
946

948

949

950

951

952

953

954

956
957

NOTE Related profiles may define additional requirements on operations for the profile class.

9 Use-cases 944

The following use-cases and object diagrams illustrate use of this profile. They are for informational pur-
poses only and do not introduce behavioral requirements for implementations of the profile.

9.1 Virtual system detection and inspection 947

This set of use cases describes how a client can

 discover virtual systems

 determine the state and properties of a virtual system

 determine the "defined" virtual system configuration

 determine the virtual system structure

 determine resource type support

 detect and inspect the boot configuration for the virtual system

9.1.1 Discover conformant virtual systems using SLP 955

This use case describes how to locate instances of the CIM_ComputerSystem class that represent virtual
systems that are central instances of this profile. This is a two-step process:

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 35

958
959
960
961

962
963

964
965
966

967
968

969

970

971

972
973

974

975
976

977
978
979
980
981

982
983
984

985
986
987

988
989

990
991

992
993

995
996

997

998
999

1000
1001

1002
1003

1) The service location protocol (SLP) is used to locate CIM object managers (CIMOMs) where
this profile is implemented. A CIMOM using SLP facilities provides information about itself to
SLP in form of an SLP service template. The service template may contain information about
the set of profiles that is implemented at the CIMOM.

2) Normal CIM enumeration and association resolution is used to find instances of the CIM_Com-
puterSystem class that represent central instances of this profile.

Assumption: This profile is registered at least one CIMOM that maintains a registration with a SLP Direc-
tory Agent; the registration included information about registered profiles. The client is able to make SLP
calls and invoke intrinsic CIM operations.

A client can locate instances of the CIM_ComputerSystem class that represent virtual systems that are
central instances of this profile as follows:

1) The client invokes the SLPFindSrvs() SLP function:

– The value of the srvtype parameter is set to "service:wbem"

– The value of the scopelist parameter is set to "default"

– The value of the filter parameter is set to "(RegisteredProfilesSupported=DMTF:Virtual
System)"

The result is a list of URLs that identify CIMOMs where this profile is implemented.

2) The client contacts each of the CIMOMs and enumerates or queries the CIM_RegisteredProfile
class.

 As input, the client needs to use the address information of one server obtained in step 1)
and issue the intrinsic EnumerateInstanceNames() CIM operation on the CIM_Registered-
Profile class. Alternatively, the client may issue the intrinsic ExecuteQuery CIM operation
and specify a where clause that, for example, limits the value ranges for the Registered-
Name and RegisteredVersion properties of the CIM_RegisteredProfile class.

 As a result, the client receives a list of references to instances of the CIM_RegisteredPro-
file class that represent implementations of this profile at the intended target location. On a
query operation this list already is limited according to the input selection criteria.

3) The client selects one reference and resolves the CIM_ElementConformsToProfile association
from the instance of the CIM_RegisteredProfile class to instances of the CIM_ComputerSystem
class.

 As input, the client needs to provide the reference to an instance of the CIM_Registered-
Profile class that was selected from the result set obtained in step 2.

 As a result, the client receives a list of references referencing instances of the CIM_
ComputerSystem class that represents virtual systems.

Result: The result is that the client knows a set of references referencing instances of the CIM_Compu-
terSystem class that represent virtual systems that are central instances of this profile.

9.1.2 Determine a virtual system’s state and other properties 994

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile.

The client can determine the virtual system’s state and other properties as follows:

1) The client calls the intrinsic GetInstance() CIM operation with the InstanceName parameter ref-
erencing the instance of the CIM_ComputerSystem class that represents the virtual system as
the input parameter. As a result the client receives an instance of the CIM_ComputerSystem
class that describes the virtual system.

2) The client uses the value of the EnabledState property to determine the virtual system state ac-
cording to the translation rules specified in 7.1.1 .

Virtual System Profile

36 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1004
1005
1006
1007

1009
1010
1011
1012
1013

Result: The client knows the property set defined by the CIM_ComputerSystem class describing the af-
fected virtual system, in particular the virtual system state. Many virtual system properties and in particu-
lar the virtual system state may change any time; consequently, the result only describes the virtual sys-
tem at the moment it was provided by the instrumentation.

9.1.3 Determine the "defined" virtual system configuration 1008

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile. The virtual system is assumed to be
configured as shown in Figure 5 with the "Virtual system configuration ("defined")" configuration. In this
example the implementation applies the dual-configuration implementation approach (see 7.3.4.1) as de-
scribed in Annex B.

EnabledState = 3 (Disabled)
RequestedState = 5 (No Change)

SystemA : ComputerSystem

InstanceID = "FE24AC0930DE4A62"
VirtualSystemIdentifier = "SystemA"
VirtualSystemType = "Default"

SystemA : VirtualSystemSettingData

InstanceID = "FE24AC09300E4A9A"
ResourceType = 3 (Processor)
AllocationUnits = "Processor"
VirtualQuantity = 2
Reservation = 2
Limit = 2
Weight = 100
AutomaticAllocation = True

Processor1 : ResourceAllocationSettingData

VirtualSystemSetting-
DataComponent

Memory : ResourceAllocationSettingData

"defined" virtual system configuration

Disk1 : ResourceAllocationSettingData

Port1 : ResourceAllocationSettingData

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VSSD_Of_SystemA : ElementSettingData

InstanceID = "FE24AC09301A56C3"
VirtualSystemIdentifier = NULL
VirtualSystemType = NULL

SystemA : VirtualSystemSettingData

"state" virtual system configuration virtual system
representation

SettingsDefineState

 1014

1015

1016

1017
1018
1019

1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033

Figure 5 – Sample virtual system configuration

The client can determine the "defined" virtual system configuration as follows:

1) The client resolves the CIM_SettingsDefineState association from the instance of the
CIM_ComputerSystem class representing the virtual system to the top-level instance of the
CIM_VirtualSystemSettingData class in the "state" Virtual System configuration.

2) The client resolves the CIM_ElementSettingData association from the "state" instance of the
CIM_VirtualSystemSettingData class that represents the virtual aspects of the virtual system to
instances of the CIM_VirtualSystemSettingData class with the constraint that the CIM_Element-
SettingData.IsDefault property has a value of 2 (IsDefault). The result is a reference referring to
an instance of the CIM_VirtualSystemSettingData class that represents the top-level object of
the desired virtual system configuration.

3) The client obtains the referenced instance of the CIM_VirtualSystemSettingData class using the
intrinsic getInstance() CIM operation and analyzes its properties. For example, the client might
analyze the VirtualSystemIdentifier property, which reflects the (end-user interpretable) name
used for the virtual system ("SystemA" in Figure 5), or the VirtualSystemType property, which
reflects a particular virtual system type that the virtualization platform assigned for the respec-
tive virtual system ("Default" in Figure 5). Note that the InstanceID property contains an opaque
ID for the instance; the structure of InstanceID values is implementation dependent and not
known to clients.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 37

1034
1035
1036

1037
1038
1039
1040

1041
1042
1043

1045
1046

1047

1048

1049

1050
1051
1052

1053
1054
1055

4) The client resolves the CIM_VirtualSystemSettingDataComponent association from the instance
of the CIM_VirtualSystemSettingData class to instances of the CIM_ResourceAllocationSetting-
Data class.

5) The client obtains instances of the CIM_ResourceAllocationSettingData class using the intrinsic
getInstance() CIM operation and analyzes properties of these instances. For example, the cli-
ent might analyze the Reservation property. The Reservation property reflects the amount of
host resource that is allocated for the virtual resource while the virtual system is instantiated.

Result: The client knows the virtual system configuration in terms of one instance of the CIM_Virtual-
SystemSettingData class and a set of aggregated instances of the CIM_ResourceAllocationSettingData
class.

9.1.4 Determine the virtual system structure 1044

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile.

 The virtual system configuration is assumed to be the same as for use case described in 9.1.3 .

 The virtual system is assumed to be in the "active" state.

 The virtual system is assumed to be structured as shown in Figure 6.

 The set of attributes for each logical resource is not shown; this set of attributes depends on the
type of logical resource and may be specified in the context of respective resource-type-specific
profiles.

To avoid cluttering the diagram, an instance of the CIM_ElementSettingData association between the
"defined" and the "state" instance of the CIM_ResourceAllocationSettingData class is shown for proces-
sor configurations only.

EnabledState = 2 (Enabled)
RequestedState = 5 (No Change)

SystemA : ComputerSystem

InstanceID = "FE24AC09300E4A62"
VirtualSystemIdentifier = System A"
VirtualSystemType = "Default"

SystemA : VirtualSystemSettingData

InstanceID = "FE24AC09300E4A9A"
ResourceType = 3 (Processor)
AllocationUnits = "Processor"
VirtualQuantity = 2
Reservation = 2
Limit = 2
Weight = 100
AutomaticAllocation = True

Processor1 : ResourceAllocationSettingData

VirtualSystemSetting-
DataComponent

Memory : ResourceAllocationSettingData

"Defined"
virtual system configuration

Disk1 : ResourceAllocationSettingData

Port1 : ResourceAllocationSettingData

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VSSD_Of_SystemA : ElementSettingData

Processor1 : LogicalDevice

Processor2 : LogicalDevice

Memory : LogicalDevice

SystemDevice

Disk1 : LogicalDevice

Port1 : LogicalDevice

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

RASD_Of_Processor : ElementSettingData

InstanceID = "FE24AC09301A56C3"
VirtualSystemIdentifier = "System A"
VirtualSystemType = "Default"

SystemA : VirtualSystemSettingData

InstanceID = "FE24AC09301A56EE"
ResourceType = 3 (Processor)
AllocationUnits = "Processor"
VirtualQuantity = 2
Reservation = 2
Limit = 2
Weight = 100
AutomaticAllocation = True

Processor1 : ResourceAllocationSettingData

VirtualSystemSetting-
DataComponent

Memory : ResourceAllocationSettingData

Disk1 : ResourceAllocationSettingData

Port1 : ResourceAllocationSettingData

"State"
virtual system configuration

virtual system
representation

SettingsDefineState

ElementSettingData

ElementSettingData

ElementSettingData

Note: Only one instance
shown of association
ElementSettingData.

 1056

1057

1058

Figure 6 – Sample virtual system in "active" state

A client can determine the virtual system structure as follows:

Virtual System Profile

38 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1059
1060

1061
1062

1063
1064

1065
1066

1067
1068
1069

1071

1) The client may apply the use case described in 9.1.2 to obtain state information and other prop-
erties of the CIM_ComputerSystem instance that represents the virtual system.

2) The client may apply the use case described in 9.1.3 to obtain information about the virtual sys-
tem configuration.

3) The client resolves the CIM_SystemDevice association from the instance of the CIM_Computer-
System class that represents the virtual system to instances of the CIM_LogicalDevice class.

4) The client obtains instances of the CIM_LogicalDevice class that were returned in step 3) and
analyzes properties of interest.

Result: The client knows the virtual system structure as expressed through the virtual system configura-
tions ("defined" and "state") and through the set of objects representing the virtual system and its compo-
nents.

9.1.5 Determine resource type support 1070

This subset of use cases describes how to determine whether implementations of resource-type-specific
profiles are present for logical devices in scope of a virtual system. Examples are the DSP1022 for the
management of virtual processors with the CIM_Processor class as the central class, or

1072
DSP1026 for the

management of virtual memory with the CIM_Memory class as the central class.
1073
1074

DSP1033 defines how an implementation of a profile advertises conformance to the profile. For example, 1075
1076
1077

Figure 7 shows an instance of the CIM_ComputerSystem class named VS1 that is associated to an in-
stance of the CIM_RegisteredProfile class named RPVS.

VS1 : ComputerSystem

(See CPU Profile)

CPU1 : Processor

(See CPU Profile)

RPCPU : RegisteredProfile

(See CPU Profile)

CPU2 : Processor

(See System Memory Profile)

MEM1 : Memory

(See System Memory Profile)

RPMEM : RegisteredProfile

RPVS : RegisteredProfile

ElementConformsToProfile

SystemDevice
(see referenced profile) ReferencedProfile

conformance traversal “Virtual System”
conformance traversal “System Memory“

conformance traversal “CPU” Conformance traversal “System Memory”

ElementConformsToProfile
(see Profile Registration Profile)

("Central class methodology" only)

conformance traversal “System Memory”

NOTE: This (artificial) example assumes that
� “Central class profile implementation advertisement” is implemented for processors
� “Scoping class profile implementation advertisement” is implemented for memory 1078

1079 Figure 7 – Instance diagram: Profile conformance of scoped resources

If profile addressing the management of scoped resources are implemented, then DSP1033 specifies to
implement either the "central class profile implementation advertisement methodology" or the "scoped
class profile implementation advertisement methodology".

1080
1081
1082

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 39

1083
1084
1085

1086
1087
1088
1089

1091
1092
1093

1094
1095

1096
1097
1098

1099
1100

1101

1102

1103
1104
1105

1106
1107

1108
1109

1110

1111

1112
1113

1114
1115

1116

With the "central class profile implementation advertisement methodology" the approach is straight for-
ward: Any central instance of a profile is associated with the respective instance of the
CIM_RegisteredProfile class through the CIM_ElementConformsToProfile association.

With the "Scoped Class Profile Implementation Advertisement Methodology" the CIM_ElementConforms-
ToProfile association is not implemented for scoped profiles and resources; instead, conformance of
scoped resources to respective scoped profiles is implied by the presence of scoped instances of the
CIM_RegisteredProfile class.

9.1.5.1 Determine resource type support of scoped resources (central class methodology) 1090

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile; see 9.1.1. A situation as shown in
Figure 7 for processors is assumed.

The first part of this use case determines the profile implementation advertisement methodology for proc-
essors.

1) The client resolves the CIM_ElementConformsToProfile association to locate associated in-
stances of the CIM_RegisteredProfile class, invoking the intrinsic AssociatorNames() CIM op-
eration as follows:

– The value of the ObjectName parameter references the instance of the CIM_Computer-
System class.

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

– The result is a list of references referring to instances of the CIM_RegisteredProfile class
representing implementations of this profile; if the operation is successful, the size of the
result set is 1.

2) The client resolves the CIM_ReferencedProfile association to locate scoped instances of the
CIM_RegisteredProfile class, invoking the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to the reference referring to the instance of
the CIM_RegisteredProfile class obtained in step 1).

– The value of the AssocClass parameter is set to "CIM_ReferencedProfile".

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

– The result is a list of instances of the CIM_RegisteredProfile class representing implemen-
tations of scoped profiles.

3) The client iterates over the list obtained in step 2), selecting only instances where the Regis-
teredName property has a value of "CPU".

– The result is a list of instances of the CIM_RegisteredProfile class that represents imple-
mentations of scoped profiles implementing DSP1022 (CPU Profile) . 1117

1118
1119
1120

1121
1122

1123

1124

1125

4) The client resolves the CIM_ElementConformsToProfile association for each of the instances of
the CIM_RegisteredProfile class from step 3) to locate at least one associated instance of the
CIM_Processor class, invoking the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to the reference taken from the instance of
the CIM_RegisteredProfile class obtained in step 3).

– The value of the AssocClass parameter is set to "CIM_ReferencedProfile".

– The value of the ResultClass parameter is set to "CIM_Processor".

– The result is a list of instances of the CIM_Processor class that are central instances of
DSP1022; the list may be empty. 1126

Virtual System Profile

40 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1127
1128

If for any of the results from step 4) at least one instance of the CIM_Processor class was detected, then
the central class profile implementation advertisement methodology is applied by the implementation with
respect to implementations of DSP1022; this is the case in this example. If no such instances were de-
tected, then the scoping class profile implementation advertisement methodology would have been ap-
plied.

1129
1130
1131

At this point the client has validated that DSP1022 is implemented as a scoped profile of this profile, and
that the central class profile implementation advertisement methodology is applied by the implementation
with respect to

1132
1133

DSP1022. 1134

1135 In the second part of this use case it is now the responsibility of the client for any detected scoped in-
stance of the CIM_Processor class to validate that DSP1022 is indeed implemented. The use case de-
scribes how to locate such instances, and perform the validation:

1136
1137

1138
1139

1140
1141

1142

1143

1144
1145

1146
1147
1148

1149
1150

1151

1152

1153

5) Client resolves the CIM_SystemDevice association from the central instance to associated vir-
tual resources, invoking the intrinsic AssociatorNames() CIM operation as follows:

– The value of the ObjectName parameter is set referring to the instance of the CIM_Compu-
terSystem class.

– The value of the AssocClass parameter is set to "CIM_SystemDevice".

– The value of the ResultClass parameter is set to "CIM_Processor".

– The result is a list of references referring to scoped instances of the CIM_Processor class
representing virtual processors.

6) For each reference returned by step 5) the client resolves the CIM_ElementConformsToProfile
association to locate associated instances of the CIM_RegisteredProfile class, invoking the in-
trinsic Associators() CIM operation as follows:

– The value of parameter ObjectName is set referring to an instance of the CIM_Processor
class.

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

– The result is a list of instances of the CIM_RegisteredProfile class; if the operation is suc-
cessful, the size of the list is either 0 or 1. A size of 1 indicates that a version of DSP1022
is implemented for the particular processor; a size of 0 indicates that

1154
DSP1022 is not im-

plemented for the particular processor.
1155
1156

1157 Result: The client knows the set of scoped instances of the CIM_Processor class that represents proces-
sors of the assumed virtual system, and whether the instances are central instances of DSP1022, that is,
whether

1158
DSP1022 is implemented in the context of these instances. 1159

1161
1162
1163

1164
1165

1166
1167
1168

1169
1170

1171

9.1.5.2 Determine resource type support of scoped resources (scoping class methodology) 1160

Assumption: The client has a reference referring an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile; see 9.1.1. A situation as shown in
Figure 7 for the "Memory" resource type is assumed.

The first part of this use case determines the profile implementation advertisement methodology for
memory.

1) The client resolves the CIM_ElementConformsToProfile association to locate associated in-
stances of the CIM_RegisteredProfile class, invoking the intrinsic AssociatorNames() CIM op-
eration as follows:

– The value of the ObjectName parameter is set to the reference referring to the instance of
the CIM_ComputerSystem class.

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 41

1172

1173
1174
1175

1176
1177

1178
1179

1180

1181

1182
1183

1184
1185

1186

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

– The result is a list of references referring to instances of the CIM_RegisteredProfile class
representing implementations of this profile; if the operation is successful, the size of the
result set is 1.

2) The client resolves the CIM_ReferencedProfile association to locate scoped instances of the
CIM_RegisteredProfile class, invoking the intrinsic Associators() CIM operation as follows:

– The value of parameter ObjectName is set to the reference referring to the instance of the
CIM_RegisteredProfile class obtained in step 1).

– The value of the AssocClass parameter is set to "CIM_ReferencedProfile".

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

– The result is a list of instances of the CIM_RegisteredProfile class that represent imple-
mentations of scoped profiles.

3) The client iterates over the list obtained in step 2), selecting only instances where the Regis-
teredName property has a value of "System Memory".

– The result is a list of instances of the CIM_RegisteredProfile class that represents imple-
mentations of scoped profiles implementing DSP1026 (System Memory Profile). 1187

1188
1189
1190

1191
1192

1193

1194

1195

4) The client resolves the CIM_ElementConformsToProfile association for each of the instances of
the CIM_RegisteredProfile class from step 3) to locate at least one associated instance of the
CIM_Memory class, invoking the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to the reference taken from the instance of
the CIM_RegisteredProfile class obtained in step 3).

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

– The value of the ResultClass parameter is set to "CIM_Memory".

– The result is a list of instances of the CIM_Memory class that are central instances of the
scoped DSP1026. The list may be empty. 1196

1197
1198

If for any of the results from step 4) no instance of the CIM_Memory class was detected, then the scoping
class profile implementation advertisement methodology is applied by the implementation with respect to
implementations of DSP1026; this is the case in this example. If any such instances were detected, then
the central class profile implementation advertisement methodology would have been applied.

1199
1200

At this point the client has validated that DSP1026 is implemented as a scoped profile of this profile, and
that the scoping class profile implementation advertisement methodology is applied by the implementati-
on with respect to

1201
1202

DSP1026. 1203

1204 In the second part of this use case the client now may assume for any detected scoped instance of the
CIM_Memory class that DSP1026 is implemented. The use case describes how to locate such instances: 1205

1206
1207

1208
1209

1210

1211

1212
1213

1214

5) The client resolves the CIM_SystemDevice association from the central instance to associated
virtual resources, invoking the intrinsic AssociatorNames() CIM operation as follows:

– The value of the ObjectName parameter is set to the reference referring to the instance of
the CIM_ComputerSystem class.

– The value of the AssocClass parameter is set to "CIM_SystemDevice".

– The value of the ResultClass parameter is set to "CIM_Memory".

– The result is a list of references referring to scoped instances of the CIM_Memory class
that represents virtual memory.

Result: The client knows the set of scoped instances of the CIM_Memory class that represents memory
in the assumed virtual system, and that these are central instances of DSP1026. 1215

Virtual System Profile

42 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1217
1218

1219
1220
1221

1222
1223

1224

1225

1226

1227
1228
1229

1230
1231
1232

1233
1234

1235
1236

1238
1239

1241
1242
1243

1244
1245
1246

1247
1248
1249

1250
1251
1252
1253
1254

1255
1256
1257
1258
1259
1260

9.1.6 Determine the next boot configuration 1216

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile.

1) The client resolves the CIM_ElementSettingData association to find instances of the CIM_Boot-
ConfigSetting class that describe the boot configuration of the virtual system, invoking the intrin-
sic References() CIM operation as follows:

– the ObjectName parameter referring to the instance of the CIM_ComputerSystem class
that represents the virtual system

– the ResultClass parameter set to a value of "CIM_ElementSettingData"

– the Role parameter set to a value of "ManagedElement"

The result of this step is a set of instances of the CIM_ElementSettingData association.

2) The client analyzes the result set of the previous step and selects that instance of the CIM_Ele-
mentSettingData association that has the IsNext property set to a value of 3 (Is Next For Single
Use) or, if there is no such instance, that has the IsNext property set to a value of 1 (Is Next).

The result of this step is an instance of the CIM_ElementSettingData association where the Set-
tingData property refers to the instance of the CIM_BootConfigSetting class that is used for the
next boot process.

3) The client obtains the instance of the CIM_BootConfigSetting class, using the intrinsic GetIn-
stance() CIM operation with the InstanceName parameter referring to that instance.

Result: The client knows the boot configuration that is used during the next "Activate" virtual system state
transition.

9.2 Virtual system operation 1237

This set of use cases describes how a client can perform basic operations on virtual system, like activat-
ing, deactivating, pausing or resuming a virtual system.

9.2.1 Change virtual system state 1240

This use case is a generic use case that describes the generic procedure to effect a virtual system state
change. A number of use cases follow that describe the effects on objects and association instances rep-
resenting virtual systems, their components, and relationships as defined in this profile.

Assumption: The client has a reference referring to an instance of the CIM_ComputerSystem class that
represents a virtual system that is a central instance of this profile. The client intends to effect a virtual
system state transition. (For a list of virtual system state transitions defined by this profile, see Table 3.)

1) The client applies the rules outlined in 7.1.2 to determine a value for the RequestedState pa-
rameter of the CIM_EnabledLogicalElement.RequestStateChange() method that designates
the intended state transition.

2) The client resolves the CIM_ElementCapabilities association from the instance of the
CIM_ComputerSystem class to find the instance of the CIM_EnabledLogicalElementCapabilities
class that describes capabilities of the virtual system; if there is no associated instance of
CIM_EnabledLogicalElementCapabilities, then client state management is not supported for the
virtual system.

3) The client analyzes the RequestedStatesSupported property to check whether it contains an
element that designates the intended state transition as determined by step 1). If the Re-
questedStatesSupported property does not contain a respective element, then the intended
state transition is not supported for the virtual system as a client state management activity.
This may be a temporary situation. Also it might still be possible to effect the state transition us-
ing other means, such as the native capabilities of the virtualization platform.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 43

1261
1262
1263

1264

1265

1266
1267

1268

1269
1270
1271

1272
1273
1274
1275
1276

1277
1278
1279

1281
1282

1283
1284

1285
1286
1287
1288

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

1299
1300

1302
1303
1304

1305

4) The client invokes the RequestStateChange method on the instance of the CIM_Computer-
System class that represents the virtual system, using a value for the RequestedState parame-
ter as determined in step 1).

5) The client checks the return code.

– If the return code is zero, the virtual system state transition was performed as requested.

– If the return code is 1, the RequestStateChange method is not implemented by the imple-
mentation. This should not occur if the checks above were performed.

– If the return code is 2, an error occurred.

– If the return code is 0x1000, the implementation has decided to perform the state transition
as an asynchronous task. The client may monitor progress by analyzing the instance of the
CIM_ConcreteJob class returned through the Job parameter.

If the operation is performed as an asynchronous task, the client may obtain intermediate instances of the
CIM_ComputerSystem class representing the virtual system (see 9.1.2). These would show values for the
EnabledState and RequestedState properties that indicate an ongoing state transition. For example, dur-
ing an "activate" virtual system state transition the EnabledState property might show a value of 10 (Start-
ing) and the RequestedState property might have a value of 2 (Enabled).

Result: The virtual system performs the intended virtual system state transition. The client may next ob-
tain the actual virtual system state by, for example, following the procedures outlined the use case in
9.1.2.

9.2.2 Activate virtual system 1280

Assumption: This use case is predicated on the assumptions described in 9.2.1 and the same starting
point described in 9.1.3.

1) The client applies the steps in the use case described in 9.2.1 to perform an "activate" transi-
tion, for example using a value of 2 (Enabled) for the RequestedState parameter.

2) The client verifies that the operation was executed successfully, making sure that either a return
code of 0 results or, if the state change is performed as an asynchronous task, by checking that
the result of the respective instance of the CIM_ConcreteJob class indicates a successful com-
pletion.

If the operation is performed as an asynchronous task, a client may obtain intermediate elements of the
virtual system structure (see 9.1.4). This structure might be incomplete during the state transition. For
example, if a client resolves associations to instances of the CIM_LogicalDevice class that represent the
virtual resources as shown in Figure 6 (such as, for example, the CIM_SystemDevice association from
the instance of the CIM_ComputerSystem class representing the virtual system, or the CIM_ElementSet-
tingData association from the instance of the CIM_ResourceAllocationSettingData class representing the
virtual resource allocation), then the client might observe that some virtual resources are already allo-
cated and represented through instances of the CIM_LogicalDevice class, while other virtual resources
are not yet allocated to the virtual system and not yet represented through instances of the CIM_Logical-
Device class.

Result: The virtual system is in the "active" state as shown in the use case described in Figure 6 and in
9.1.4.

10 CIM elements 1301

Table 6 lists CIM elements that are defined or specialized for this profile. Each CIM element shall be im-
plemented as described in Table 6. The CIM Schema descriptions for any referenced element and its
sub-elements apply.

Sections 7 ("Implementation") and 8 ("Methods") may impose additional requirements on these elements.

Virtual System Profile

44 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1306 Table 6 – CIM elements: Virtual System Profile

Element Requirement Notes

Classes

CIM_AffectedJobElement Conditional See 10.1 .

CIM_ComputerSystem Mandatory See 10.2 .

CIM_ConcreteJob Conditional See 10.3 .

CIM_ElementCapabilities Conditional See DSP1052, clause 10 .

CIM_ElementConformsToProfile Mandatory See 10.4 .

CIM_ElementSettingData Mandatory See 10.5 .

CIM_EnabledLogicalElementCapab
ilities

Optional See 10.6 .

CIM_PowerManagementService Optional See 10.7 .

CIM_ReferencedProfile Conditional See 10.8 .

CIM_RegisteredProfile Mandatory See 10.9 .

CIM_SettingsDefineState Mandatory See 10.10 .

CIM_VirtualSystemSettingData Mandatory See 10.11 .

CIM_VirtualSystemSettingDataCom
ponent

Conditional See 10.12 .

Indications

None defined in this profile

10.1 CIM_AffectedJobElement 1307

The implementation of the CIM_AffectedJobElement association is conditional. 1308

1309

1310

1311
1312
1313

1314

1315

Condition: The CIM_ConcreteJob class is implemented; see 10.3 .

If the CIM_AffectedJobElement association is implemented, the provisions in this subclause apply.

The CIM_AffectedJobElement association shall associate an instance of the CIM_ComputerSystem class
representing a virtual system and an instance of the CIM_ConcreteJob class representing an ongoing
virtual system state transition.

Table 7 lists the requirements for this association.

Table 7 – Association: CIM_AffectedJobElement

Elements Requirement Notes

AffectedElement Mandatory Key: Reference to an instance of
the CIM_ComputerSystem class
that represents a virtual system

Cardinality: 1

AffectingElement Mandatory Key: Reference to an instance of
the CIM_ConcreteJob class that
represents an ongoing virtual sys-
tem state transition task

Cardinality: *

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 45

10.2 CIM_ComputerSystem 1316

The use of the CIM_ComputerSystem class is specialized in DSP1052 and further refined in this profile. 1317

The requirements in Table 8 are in addition to those mandated by DSP1052. 1318

1319 Table 8 – Class: CIM_ComputerSystem

Elements Requirement Notes

Caption Optional None.

Description Optional None

ElementName Optional None

EnabledState Mandatory See 7.1.1 .

RequestedState Mandatory See 7.1.2 .

RequestStateChange() Conditional See 8.1.1 .

10.3 CIM_ConcreteJob 1320

The implementation of the CIM_ConcreteJob class is conditional. 1321

1322

1323

1324
1325

1326

1327

Condition: Asynchronous execution of methods is implemented; see 8.1 .

If the CIM_ConcreteJob class is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_ConcreteJob class to represent an asynchronous
task.

Table 9 lists requirements for elements of this class.

Table 9 – Class: CIM_ConcreteJob

Element Requirement Description

JobState Mandatory See CIM Schema.

TimeOfLastStateChange Mandatory See CIM Schema.

10.4 CIM_ElementConformsToProfile 1328

The CIM_ElementConformsToProfile association shall associate each instance of the CIM_Registered-
Profile class representing an implementation of this profile with each instance of the CIM_Computer-
System class representing a virtual system that is manageable through that profile implementation.

1329
1330
1331

Virtual System Profile

46 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1332

1333

Table 10 lists the requirements for this association.

Table 10 – Association: CIM_ElementConformsToProfile

Element Requirement Notes

ConformantStandard Mandatory Key: Reference to an instance of
the CIM_RegisteredProfile class
that represents an implementation
of this profile

Cardinality: *

ManagedElement Mandatory Key: Reference to an instance of
the CIM_ ComputerSystem class
that represents a conformant virtual
system

Cardinality: *

10.5 CIM_ElementSettingData 1334

The CIM_ElementSettingData association associates the top-level instance of the CIM_VirtualSystemSet-
tingData class in a "state" virtual system configuration and top-level instances of the CIM_VirtualSystem-
SettingData class in other virtual system configurations.

1335
1336
1337

1338

1339

Table 11 lists the requirements for this association.

Table 11 – Association: CIM_ElementSettingData

Element Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of
the CIM_VirtualSystemSettingData
class that represents the virtualiza-
tion-specific properties of the virtual
system

Cardinality: 0..1

See 7.3.3 for additional restrictions
on the cardinality.

SettingData Mandatory Key: Reference to an instance of
the CIM_VirtualSystemSettingData
class that represents a virtual sys-
tem configuration

Cardinality: *

See 7.3.3 for additional restrictions
on the cardinality.

IsDefault Mandatory See 7.3.11 .

IsCurrent Unspecified

IsNext Mandatory See 7.3.12 .

IsMinimum Mandatory Shall be set to 1 (Not Applicable)

IsMaximum Mandatory Shall be set to 1 (Not Applicable)

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 47

NOTE 1 The cardinality of the ManagedElement role is 0..1 (and not 1) because there are instances of the CIM_VirtualSystem-
SettingData class that do not have an associated instance of the CIM_VirtualSystemSettingData class through the
CIM_ElementSettingData association.

NOTE 2 The cardinality of the SettingData role is * (and not 1) because there are instances of the CIM_VirtualSystemSetting-
Data class that do not have an associated instance of the CIM_VirtualSystemSettingData class through the CIM_Ele-
mentSettingData association.

10.6 CIM_EnabledLogicalElementCapabilities 1340

The use of the CIM_EnabledLogicalElementCapabilities class is specialized in DSP1052. 1341

The requirements denoted in Table 12 are in addition to those mandated by DSP1052. 1342

1343 Table 12 – Class: CIM_EnabledLogicalElementCapabilities

Element Requirement Notes

RequestedStatesSupported[] Mandatory See 7.5.1.1 .

10.7 CIM_PowerManagementService 1344

The CIM_PowerManagementService class is specialized by DSP1027. This profile (DSP1057) specifies
additional optional (see

1345
1346

1348

1349

1350

1351
1352
1353
1354

7.7) and conditional (see 8.1.2) elements.

10.8 CIM_ReferencedProfile 1347

The implementation of the CIM_ReferencedProfile association is conditional.

Condition: A scoped resource allocation profile is implemented; see 7.4.2 .

If the CIM_ReferencedProfile association is implemented, the provisions in this subclause apply.

An instance of the CIM_ReferencedProfile association shall associate each instance of the CIM_Regis-
teredProfile class representing an implementation of this profile with instances of the
CIM_RegisteredProfile class representing implementations of profiles that model the management of
logical elements in scope of virtual systems.

This profile (DSP1057) refines requirements of DSP1033 by establishing conditions for the support of the
CIM_ReferencedProfile association.

1355
1356

1357
1358

1359

1360

The implementation of the CIM_ReferencedProfile association is conditional with respect to the presence
of an instance of the CIM_RegisteredProfile class representing a profile that is scoped by this profile.

Table 13 contains the requirements for this association.

Table 13 – Association: CIM_ReferencedProfile

Element Requirement Notes

Antecedent Mandatory Key: Reference to an instance of
the CIM_RegisteredProfile class
that represents an instance of a
resource profile describing logical
elements

Cardinality: 1

Virtual System Profile

48 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

Dependent Mandatory Key: Reference to an instance of
the CIM_RegisteredProfile class
that represents an implementation
of this profile

Cardinality: 0..*

10.9 CIM_RegisteredProfile 1361

The use of the CIM_RegisteredProfile class is specialized by DSP1033. 1362

The requirements denoted in Table 14 are in addition to those mandated by DSP1033. 1363

1364 Table 14 – Class: CIM_RegisteredProfile

Elements Requirement Notes

RegisteredOrganization Mandatory Shall be set to 2 (DMTF)

RegisteredName Mandatory Shall be set to "Virtual System"

RegisteredVersion Mandatory Shall be set to the version of this
profile: "1.0".

10.10 CIM_SettingsDefineState 1365

An instance of the CIM_SettingsDefineState association shall associate each instance of the
CIM_ComputerSystem class representing a virtual system with the instance of the
CIM_VirtualSystemSettingData class that represents the virtualization-specific properties of that virtual
system and is the top-level instance of the "state" virtual system configuration.

1366
1367
1368
1369

1370

1371

Table 15 contains the requirements for this association.

Table 15 – Association: CIM_SettingsDefineState

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of
the CIM_ComputerSystem class
that represents a virtual system

Cardinality: 0..1

See 7.3.2 for additional restrictions
on the cardinality.

SettingData Mandatory Key: Reference to an instance of
the CIM_VirtualSystemSettingData
class that represents the virtualiza-
tion-specific properties of a virtual
system.

Cardinality: 1

NOTE The cardinality of the ManagedElement role is 0..1 (and not 1) because there are instances of the CIM_VirtualSystem-
SettingData class that do not have an associated instance of the CIM_ComputerSystem class through the CIM_Settings-
DefineState association.

10.11 CIM_VirtualSystemSettingData 1372

The CIM_VirtualSystemSettingData class models virtualization-specific aspects of a virtual system. 1373

1374 Table 16 contains the requirements for this class.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 49

1375 Table 16 – Class: CIM_VirtualSystemSettingData

Element Requirement Notes

InstanceID Mandatory Key

Caption Optional See 7.3.6 .

Description Optional See 7.3.7 .

ElementName Mandatory See 7.3.8 .

VirtualSystemIdentifier Optional See 7.3.9 .

VirtualSystemType Optional See 7.3.10 .

10.12 CIM_VirtualSystemSettingDataComponent 1376

The implementation of the CIM_VirtualSystemSettingData component association is conditional. 1377

Condition: Component profiles of this profile are implemented, such as DSP1044, DSP1045 or DSP1059. 1378

1379
1380

1381
1382
1383
1384

1385

1386

If the CIM_VirtualSystemSettingDataComponent association is implemented, the provisions in this sub-
clause apply.

An instance of the CIM_VirtualSystemSettingDataComponent association shall associate each instance
of the CIM_VirtualSystemSettingData class representing the virtual aspects of a virtual system with in-
stances of the CIM_ResourceAllocationSettingData class representing virtual aspects of virtual resources
of that virtual system.

Table 17 contains the requirements for this association.

Table 17 – Association: CIM_VirtualSystemSettingDataComponent

Elements Requirement Notes

GroupComponent Mandatory Key: Reference to an instance of
the CIM_VirtualSystemSettingData
class that represents the virtual
aspects of a virtual system

Cardinality: 1

PartComponent Mandatory Key: Reference to an instance of
the CIM_ResourceAllocationSet-
tingData class that represents vir-
tual aspects of a virtual resource

Cardinality: 0..*

 1387

Virtual System Profile

50 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1388

1389

1390

1391

1393
1394
1395
1396
1397

1398
1399
1400
1401

1402
1403
1404
1405
1406

1407
1408
1409

1411
1412
1413
1414

1415

1416
1417

1418
1419
1420
1421
1422

1423
1424
1425
1426

1427
1428

1429

1430

Annex A
(Informative)

Virtual system modeling — background information

A.1 Concepts: Model, view, controller 1392

This profile (like any profile) specifies only an interface or view to an otherwise opaque internal model
maintained by an implementation. This profile does not specify how a virtual system is modeled within an
implementation; this profile specifies only a view of that internal model and some control elements. The
view enables a client to observe the internal model; the control elements enable a client to effect model
changes that in turn become visible through the view.

The view is specified in terms of CIM classes and CIM associations; the control elements are specified in
terms of CIM methods. For that reason the term CIM model is frequently used instead of view. This is ac-
ceptable as long as it is understood that a CIM model in fact just represents an interface or view to the
internal model maintained by the implementation.

The implementation presents instances of CIM classes and associations on request from clients. These
instances are fed with data that the implementation obtains from the internal model, using implementa-
tion-specific means. The implementation executes CIM methods on request from clients. CIM methods
are realized using implementation-specific control mechanisms such as program or command-line inter-
faces, for example.

This profile does not specify restrictions on the internal model itself. For example, the implementation is
free to decide which elements of its internal model it exposes through the view defined by this profile, and
in most cases the CIM view exposes only a very limited subset of the internal model.

A.2 Aspect-oriented modeling approach 1410

One possible approach to model system virtualization would be to specify virtualization-specific derived
classes for virtual systems and components. For example, to model a virtual system one could model a
CIM_VirtualComputerSystem class extending the CIM_ComputerSystem class with virtualization-specific
properties and methods.

This inheritance-based modeling approach was not applied for various reasons:

 A virtual system should appear to a virtualization-unaware client exactly like a non-virtual com-
puter system.

 The single-inheritance modeling approach is not suited for various management domains being
modeled on top of the same set of base classes. For example, if the CIM_VirtualComputerSys-
tem and CIM_PartitionedComputerSystem classes were both derived from the CIM_Computer-
System class, then a particular instance could represent either a virtual system or a partitioned
system, but not both.

 Many virtualization platforms support the concepts of virtual system definition and virtual system
instance. The definition is a formal description of the virtual system; the instance is the internal
representation of the virtual system in the "active" state. Ideally, both definition and instance are
described using the same set of CIM classes.

Instead, a large part of the model specified by this profile is based on classes derived from CIM_Setting-
Data:

 Settings allow virtualization-specific information to be modeled separately from the target class.

 Settings are ideally suited to model descriptive data, such as virtual resource definitions.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 51

1431
1432

1433
1434
1435

 Settings are easily aggregated into larger configurations, such as virtual system configuration
covering the virtual system itself and all of its resources.

 Settings allow extending the property set of existing classes in an aspect-oriented way. Various
aspects, such as "virtualization" and "partitioning," can exist in parallel for the same managed
element.

A.3 Presence of model information 1436

DSP1001 (the Management Profile Specification Usage Guide) requires an autonomous profile to specify
a central class and a scoping class.

1437
DSP1052 specifies the CIM_ComputerSystem class for both the cen-

tral and scoping class. This profile (DSP1057) specializes
1438

DSP1052, and thus is required to use the
CIM_ComputerSystem class (or a derived class) for central and scoping class as well.

1439
1440

1441
1442

DSP1001 further requires that an instance of that class must be present at all times. Figure 8 illustrates
that this requirement in some cases causes a potential model representation problem.

LD

CS VSSD

In this example
not present while the

virtual system is in the
"defined" state.

VSSD

RASD

RASD

RASD

Internal model within implementation

CIM model view

VS definition VS instance

settings system & resources

VS "defined" VS "active"

VS definition VS instance

VSSD

RASD

RASD

RASD

CS VSSD

LD

LD

RASD

RASD

RASD

settings system & resources

CIM model view

Internal model within implementation

?

Example:
Definition file

Example:
Definition file

Example:
Memory data structures1443

1444

1445
1446
1447
1448
1449
1450

Figure 8 – State-dependent presence of model elements

The left side of Figure 8 shows a virtual system in the "defined" state. In this example the virtualization
platform distinguishes between virtual system definition and virtual system instance; the virtual system
instance does not exist while the virtual system is in the "defined" state. Nevertheless, the implementation
is required to represent a (virtual) computer system through an instance of the CIM_ComputerSystem
class during its complete lifecycle, including periods when the virtual system is only defined but not active
and instantiated at the virtualization platform. This causes a model representation problem: Many proper-

Virtual System Profile

52 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1451
1452

1453
1454
1455
1456

1457

1458
1459

1460
1461
1462

ties of the CIM_ComputerSystem class (with instances labeled "CS" in Figure 8) model information about
a stateful virtual system instance, but not about a stateless virtual system definition.

For that reason the property set of the CIM_ComputerSystem class can only be completely presented by
the implementation while the virtual system is instantiated. While the virtual system is in the "defined"
state, respective properties of the instance of the CIM_ComputerSystem class representing the virtual
system are one of the following:

 undefined and have a value of NULL

 fed from the virtual system definition instead of from the (in this state, non-existent) virtual sys-
tem instance (This is indicated by the dashed curved arrows in Figure 8.)

The right side of Figure 8 shows the same virtual system in the "active" state. Because in this state the
virtual system instance exists in addition to the virtual system definition, data is directly fed from the virtual
system instance into the system and resources part of the CIM model.

Note that the situation is different for virtual resources. DSP1041 does not require an instance of the
CIM_LogicalDevice class to be present at all times; consequently, instances of the CIM_LogicalDevice
class appear only as long as their scoping virtual system is instantiated.

1463
1464
1465

1467
1468
1469
1470
1471
1472
1473
1474
1475

A.4 Model extension through settings 1466

The right side of Figure 8 illustrates another modeling approach applied by this profile: The extension of
the virtual system representation with virtualization-specific properties through settings. The upper right
part of Figure 8 shows how the virtual system itself is represented by an instance of the CIM_Computer-
System class (labeled "CS") and virtual resources are represented by instances of the
CIM_LogicalDevice class(labeled "LD"). On the right side these instances are associated with setting
classes that extend the property set of computer system and resource representations with virtualization-
specific information (labeled VSSD for the virtual system extension and RASD for the set of virtual re-
source extensions). This profile specifies an approach where these extensions are modeled by the same
set of classes that are used to represent a virtual system definition.

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 53

1476

1477

1478

1479

1481
1482
1483

1484
1485
1486
1487
1488
1489

Annex B
(Informative)

Implementation details

B.1 Dual-configuration implementation approach 1480

Figure 9 shows an example of a virtual system in the "defined" state. There are two virtual system con-
figurations: The virtual system configuration on the left is the "Defined" virtual system configuration: the
virtual system configuration on the right is the "state" virtual system configuration.

Note that in this example virtual resource VS1_Disk has a persistently allocated resource that remains
allocated regardless of the virtual system state. Consequently, an instance of the CIM_LogicalDisk class
(tagged VS1_Disk) represents the disk in the "defined" state already, and virtualization-specific properties
are represented by an instance of the CIM_ResourceAllocationSettingData class (tagged State_-
RASD_VS1_Disk) in the "state" virtual system configuration that is associated through the CIM_Set-
tingsDefineState association.

VS1 : ComputerSystem

State_RASD_VS1_Disk : ResourceAllocationSettingData

VS1_Disk : LogicalDisk

SystemDevice

Virtual system representation
(representing virtual system instance)

Definition_VSSD_VS1 : VirtualSystemSettingData

Definition_RASD_VS1_Mem : ResourceAllocationSettingData

Definition_RASD_VS1_Proc : ResourceAllocationSettingData

VirtualSystemSettingDataComponent

"defined"
virtual system configuration
(representing virtual system definition)

IsDefault = 1 (Is Default)
IsNext = 1 (Is Next)

Definition_ESD_VS1 : ElementSettingData

SettingsDefineState

State_VSSD_VS1 : VirtualSystemSettingData

VirtualSystemSettingDataComponent

"state"
 virtual system configuration

(representing virtualization specific state extension
of virtual system instance)

Note: Elements and property
values may not exist because the
virtual system instance may not
exist or may be incomplete in the
„Defined“ state.

Note: Only one association
instance shown.

Definition_RASD_VS1_Disk : ResourceAllocationSettingData

 1490

1491 Figure 9 – Sample virtual system in "defined" state (Dual-configuration approach)

Virtual System Profile

54 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1492 The same system is shown in Figure 10 in a state other than the "defined" state.

VS1 : ComputerSystem

State_VSSD_VS1 : VirtualSystemSettingData

State_RASD_VS1_Mem : ResourceAllocationSettingData

SettingsDefineState

VS1_Mem : Memory

VS1_Proc : Processor

State_RASD_VS1_Proc : ResourceAllocationSettingData

SystemDevice

VirtualSystemSettingDataComponent

"state"
virtual system configuration

(representing virtualization specific state
of Virtual System Instance)

Virtual system representation
(representing virtual system instance)

Definition_VSSD_VS1 : VirtualSystemSettingData

Definition_RASD_VS1_Mem : ResourceAllocationSettingData

Definition_RASD_VS1_Proc : ResourceAllocationSettingData

VirtualSystemSettingDataComponent

"defined"
virtual system configuration
(representing virtual system definition)

IsDefault = 1 (Is Default)
IsNext = 1 (Is Next)

Definition_ESD_VS1 : ElementSettingData

Note: Only one association
instance shown.

Definition_RASD_VS1_Disk : ResourceAllocationSettingData State_RASD_VS1_Disk : ResourceAllocationSettingData

VS1_Disk : LogicalDisk

 1493

1494

1495
1496
1497
1498

1499
1500
1501
1502

Figure 10 – Sample virtual system in a state other than "defined" (Dual-configuration approach)

Resources for virtual resources were allocated, and virtual resources are represented by instances of the
CIM_LogicalDevice class. Virtualization-specific properties are represented as instances of the CIM_Re-
sourceAllocationSettingData class in the "state" virtual system configuration that are associated through
instances of the CIM_SettingsDefineState association.

NOTE 1 This profile specifies a CIM view of virtual systems. This profile does not specify restrictions on the internal
model maintained by the implementation to ensure that all resources are allocated during system activation;
instead, the implementation is free to decide whether activation is successful or fails if some virtual re-
sources are not able to be allocated.

1503
1504
1505
1506
1507
1508
1509

NOTE 2 If DSP1041 is implemented for a particular resource type, it may require that, as virtual resources are allo-
cated or de-allocated, respective instances of the CIM_LogicalDevice class are created or destroyed in the
virtual system representation, and that these instances are connected to their counterpart in the "state" vir-
tual system configuration through respective instances of the CIM_SettingsDefineState association, and that
the instances in the "state" virtual system configuration are connected to their counterpart in the "defined"
virtual system configuration through respective instances of the CIM_ElementSettingData association with
the IsDefault property set to 1 (Is Default).

 Virtual System Profile

B.2 Single-configuration implementation approach 1510

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 55

1511
1512
1513
1514
1515
1516

1517
1518
1519
1520
1521
1522

Figure 11 shows an example in which a virtual system is in the "defined" state. Only one set of instances
of the CIM_VirtualSystemSettingData class and the CIM_ResourceAllocationSettingData class compose
a single virtual system configuration instance that acts as the "defined" and as the "state" virtual system
configuration. The single configuration instance is associated to the instance of the CIM_ComputerSys-
tem class representing the virtual system through an instance of the CIM_SettingsDefineState associa-
tion.

Note that in this example virtual resource VS1_Disk has a persistently allocated resource that remains
allocated regardless of the virtual system state. Consequently, an instance of the CIM_LogicalDisk class
tagged VS1_Disk represents the disk in the "defined" state already, and virtualization-specific properties
are represented by an instance of the CIM_ResourceAllocationSettingData class tagged State_RASD-
_VS1_Disk in the "state" virtual system configuration that is associated through the CIM_SettingsDefine-
State association.

VS1 : ComputerSystem

VS1_Disk : LogicalDisk

SystemDevice

Virtual system representation
(representing virtual system instance)

Single_VSSD_VS1 : VirtualSystemSettingData

Single_RASD_VS1_Mem : ResourceAllocationSettingData

Single_RASD_VS1_Proc : ResourceAllocationSettingData

VirtualSystemSettingDataComponent

Virtual system configuration
(representing virtual system definition)

IsDefault = 1 (Is Default)
IsNext = 1 (Is Next)

Single_ESD_VS1 : ElementSettingData

SettingsDefineState

SettingsDefineState

Note: Only one association
instance shown. Single_RASD_VS1_Disk : ResourceAllocationSettingData

 1523

1524 Figure 11 – Sample virtual system in the "defined" state (Single-configuration approach)

Virtual System Profile

56 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1525 In Figure 12 the same virtual system is shown in a state other than "defined".

VS1 : ComputerSystem

VS1_Mem : Memory

SystemDevice

Virtual system representation
(representing virtual system instance)

Single_VSSD_VS1 : VirtualSystemSettingData

Single_RASD_VS1_Mem : ResourceAllocationSettingData

Single_RASD_VS1_Proc : ResourceAllocationSettingData

VirtualSystemSettingDataComponent

Virtual system configuration
(representing both virtual system definition, and
virtualization specific state of virtual system instance)

IsDefault = 1 (Is Default)
IsNext = 1 (Is Next)

Single_ESD_VS1 : ElementSettingData

SettingsDefineState

VS1_Proc : Processor
SettingsDefineState

SettingsDefineState

Note: Only one association
instance shown.

SIngle_RASD_VS1_Disk : ResourceAllocationSettingData

VS1_Disk : LogicalDisk
SettingsDefineState

 1526

1527

1528
1529
1530
1531

Figure 12 – Sample virtual system in a state other than "defined" (Single-configuration approach)

Resources for virtual resources were allocated. Virtual resources are represented by instances of the
CIM_LogicalDevice class, with virtualization-specific properties represented as instances of the CIM_Re-
sourceAllocationSettingData class in the "state" virtual system configuration and associated through in-
stances of the CIM_SettingsDefineState association.

NOTE If DSP1041 is implemented for a particular resource type, it may require that, as virtual resources are allo-
cated or de-allocated and respective instances of the CIM_LogicalDevice class are created or destroyed in
the virtual system representation, these instances are connected to their counterpart in the "state" virtual
system configuration through respective instances of the CIM_SettingsDefineState association.

1532
1533
1534

DSP1041
may also require that the instances in the "state" virtual system configuration are connected to their counter-
part in the "defined" virtual system configuration through respective instances of the
CIM_ElementSettingData association with the IsDefault property set to 1 (Is Default); in the single-
configuration implementation approach, these association instances connect elements of the single virtual
system configuration to themselves.

1535
1536
1537
1538
1539
1540

1541

 Virtual System Profile

Version 1.0.0c DMTF Work in Progress - expires 2010-03-31 57

1542

1543

1544

1545

1546

Annex C
(Informative)

Change Log

Version Date Description

1.0.0a 05/07/2007 Released as preliminary standard.

1.0.0 07/09/2009 Released as DMTF standard.

 1547

Virtual System Profile

58 DMTF Work in Progress - expires 2010-03-31 Version 1.0.0c

1548

1549

1550

1551

1552

1554

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

Annex D
(Informative)

Acknowledgements

The authors wish to acknowledge the following people.

 Editor: 1553

– Michael Johanssen – IBM

 Participants from the DMTF System Virtualization, Partitioning and Clustering Working Group: 1555

– Gareth Bestor – IBM

– Chris Brown – HP

– Mike Dutch - Symantec

– Jim Fehlig – Novell

– Kevin Fox – Sun Microsystems, Inc.

– Ron Goering – IBM

– Steve Hand - Symantec

– Daniel Hiltgen – EMC / VMware

– Michael Johanssen – IBM

– Larry Lamers – EMC / VMware

– Andreas Maier - IBM

– Aaron Merkin – IBM

– John Parchem – Microsoft

– Joanne Saathof - CPubs

– Nihar Shah – Microsoft

– David Simpson – IBM

– Carl Waldspurger – EMC / VMware

	1 Scope
	2 Normative references
	2.1 Approved references
	2.2 Other references

	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Synopsis
	6 Description
	6.1 Profile relationships
	6.2 Virtual system class schema
	6.3 Virtual system concepts: Definition, instance, representation, and configuration
	6.4 Virtual system states and transitions
	6.4.1 Virtual system states
	6.4.1.1 Semantics of the "defined" state
	6.4.1.2 Semantics of the "active" state
	6.4.1.3 Semantics of the "paused" state
	6.4.1.4 Semantics of the "suspended" state
	6.4.1.5 Vendor-defined states
	6.4.1.6 Semantics of the "unknown" state

	6.4.2 Virtual system state transitions
	6.4.2.1 The "define" state transition
	6.4.2.2 Semantics of the "activate" state transition
	6.4.2.3 Semantics of the "deactivate" state transition
	6.4.2.4 Semantics of the "pause" state transition
	6.4.2.5 Semantics of the "suspend" state transition
	6.4.2.6 Semantics of the "shut down" state transition
	6.4.2.7 Semantics of the "reboot" state transition
	6.4.2.8 Semantics of the "reset" state transition

	6.4.3 Summary of virtual system states and virtual system state transitions

	7 Implementation
	7.1 Virtual system
	7.1.1 CIM_ComputerSystem.EnabledState property
	7.1.2 CIM_ComputerSystem.RequestedState property

	7.2 Virtual resource
	7.3 Virtual system configuration
	7.3.1 Structure
	7.3.2 The "state" virtual system configuration
	7.3.3 The "defined" virtual system configuration
	7.3.4 Implementation approaches for "state" and "defined" virtual system configuration
	7.3.4.1 Dual-configuration implementation approach
	7.3.4.2 Single-configuration implementation approach

	7.3.5 Other types of virtual system configurations
	7.3.6 CIM_VirtualSystemSettingData.Caption property
	7.3.7 CIM_VirtualSystemSettingData.Description property
	7.3.8 CIM_VirtualSystemSettingData.ElementName property
	7.3.9 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property
	7.3.10 CIM_VirtualSystemSettingData.VirtualSystemType property
	7.3.11 CIM_ElementSettingData.IsDefault property
	7.3.12 CIM_ElementSettingData.IsNext property

	7.4 Profile registration
	7.4.1 This profile
	7.4.2 Scoped profiles

	7.5 Capabilities
	7.5.1.1 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property

	7.6 Client state management
	7.7 Power state management
	7.7.1 CIM_AssociatedPowerManagementService.PowerState property

	8 Methods
	8.1 Extrinsic methods
	8.1.1 CIM_ComputerSystem.RequestStateChange() method
	8.1.2 CIM_PowerManagementService.RequestPowerStateChange() method
	8.1.2.1 PowerState parameter
	8.1.2.2 ManagedElement parameter
	8.1.2.3 Time parameter

	8.2 Profile conventions for operations
	8.2.1 CIM_ComputerSystem
	8.2.2 CIM_ConcreteJob
	8.2.3 CIM_ElementSettingData
	8.2.4 CIM_EnabledLogicalElementCapabilities
	8.2.5 CIM_ReferencedProfile
	8.2.6 CIM_RegisteredProfile
	8.2.7 CIM_VirtualSystemSettingData
	8.2.8 CIM_VirtualSystemSettingDataComponent

	9 Use-cases
	9.1 Virtual system detection and inspection
	9.1.1 Discover conformant virtual systems using SLP
	9.1.2 Determine a virtual system’s state and other properties
	9.1.3 Determine the "defined" virtual system configuration
	9.1.4 Determine the virtual system structure
	9.1.5 Determine resource type support
	9.1.5.1 Determine resource type support of scoped resources (central class methodology)
	9.1.5.2 Determine resource type support of scoped resources (scoping class methodology)

	9.1.6 Determine the next boot configuration

	9.2 Virtual system operation
	9.2.1 Change virtual system state
	9.2.2 Activate virtual system

	10 CIM elements
	10.1 CIM_AffectedJobElement
	10.2 CIM_ComputerSystem
	10.3 CIM_ConcreteJob
	10.4 CIM_ElementConformsToProfile
	10.5 CIM_ElementSettingData
	10.6 CIM_EnabledLogicalElementCapabilities
	10.7 CIM_PowerManagementService
	10.8 CIM_ReferencedProfile
	10.9 CIM_RegisteredProfile
	10.10 CIM_SettingsDefineState
	10.11 CIM_VirtualSystemSettingData
	10.12 CIM_VirtualSystemSettingDataComponent

