
 1

Document Number: DSP1042 2

Date: 2009-08-06 3

Version: 1.0.0e 4

System Virtualization Profile 5

Information for Work-in-Progress version: 6

This document is subject to change at any time without further notice. 7

It expires on: 2010-03-31 8

Target version for final status: 1.0.0e 9

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback 10

 11

 12

Document Type: Specification 13

Document Status: DMTF Work in Progress - Expires 2010-03-31 14

Document Language: E 15

http://www.dmtf.org/standards/feedback�

System Virtualization Profile DSP1042

2 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Copyright Notice 16

Copyright © 2007, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 17

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 18
management and interoperability. Members and non-members may reproduce DMTF specifications and 19
documents, provided that correct attribution is given. As DMTF specifications may be revised from time 20
to time, the particular version and release date should always be noted. 21

Implementation of certain elements of this standard or proposed standard may be subject to third party 22
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 23
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 24
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 25
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 26
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 27
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 28
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 29
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 30
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 31
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 32
implementing the standard from any and all claims of infringement by a patent owner for such 33
implementations. 34

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 35
such patent may relate to or impact implementations of DMTF standards, visit 36
http://www.dmtf.org/about/policies/disclosures.php. 37

http://www.dmtf.org/about/policies/disclosures.php�

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 3

CONTENTS 38

1 Scope .. 9 39
2 Normative references .. 9 40
3 Terms and definitions .. 10 41
4 Symbols and abbreviated terms.. 12 42
5 Synopsis .. 12 43
6 Description .. 13 44

6.1 Profile relationships... 13 45
6.2 System virtualization class schema.. 16 46
6.3 Virtual system configurations.. 18 47
6.4 Resource allocation .. 19 48
6.5 Snapshots ... 20 49

7 Implementation.. 20 50
7.1 Host system .. 20 51
7.2 Profile registration ... 20 52

7.2.1 This profile ... 21 53
7.2.2 Scoped resource allocation profiles... 21 54

7.3 Representation of hosted virtual systems... 21 55
7.3.1 Profile conformance for hosted virtual systems... 22 56
7.3.2 CIM_VirtualSystemSettingData.VirtualSystemType property...................................... 22 57

7.4 Virtual system management capabilities .. 22 58
7.4.1 CIM_VirtualSystemManagementCapabilities class ... 22 59
7.4.2 CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[] 60

array property... 22 61
7.4.3 CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[] 62

array property... 22 63
7.4.4 CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[] 64

array property... 23 65
7.4.5 CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array 66

property.. 23 67
7.4.6 Grouping Rules for implementations of methods of the 68

CIM_VirtualSystemManagementService class.. 23 69
7.5 Virtual system definition and modification... 24 70

7.5.1 CIM_VirtualSystemSettingData.InstanceID property... 24 71
7.5.2 CIM_VirtualSystemSettingData.ElementName property ... 24 72
7.5.3 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property................................ 25 73
7.5.4 CIM_VirtualSystemSettingData.VirtualSystemType property...................................... 25 74

7.6 Virtual resource definition and modification .. 25 75
7.7 Virtual system snapshots .. 26 76

7.7.1 Virtual system snapshot service and capabilities .. 26 77
7.7.2 Virtual system snapshot representation... 27 78
7.7.3 Designation of the last applied snapshot ... 27 79
7.7.4 Designation of the most current snapshot in branch ... 27 80
7.7.5 Virtual system snapshot capabilities.. 28 81

8 Methods... 28 82
8.1 General behavior of extrinsic methods ... 28 83

8.1.1 Resource allocation requests .. 28 84
8.1.2 Method results ... 29 85
8.1.3 Asynchronous processing.. 29 86

8.2 Methods of the CIM_VirtualSystemManagementService class.. 30 87
8.2.1 CIM_VirtualSystemManagementService.DefineSystem() method............................. 30 88
8.2.2 CIM_VirtualSystemManagementService.DestroySystem() method........................... 32 89

System Virtualization Profile DSP1042

4 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

8.2.3 CIM_VirtualSystemManagementService.AddResourceSettings() method 90
(Conditional)... 33 91

8.2.4 CIM_VirtualSystemManagementService.ModifyResourceSettings() method 35 92
8.2.5 CIM_VirtualSystemManagementService.ModifySystemSettings() method................ 36 93
8.2.6 CIM_VirtualSystemManagementService.RemoveResourceSettings() method 37 94

8.3 Methods of the CIM_VirtualSystemSnapshotService class.. 38 95
8.3.1 CIM_VirtualSystemSnapshotService.CreateSnapshot() method 38 96
8.3.2 VirtualSystemSnapshotService.DestroySnapshot() method 40 97
8.3.3 VirtualSystemSnapshotService.ApplySnapshot() method.. 41 98

8.4 Profile conventions for operations .. 42 99
8.4.1 CIM_AffectedJobElement .. 42 100
8.4.2 CIM_ComputerSystem .. 43 101
8.4.3 CIM_ConcreteJob.. 43 102
8.4.4 CIM_Dependency .. 43 103
8.4.5 CIM_ElementCapabilities .. 43 104
8.4.6 CIM_ElementConformsToProfile ... 43 105
8.4.7 CIM_HostedDependency... 43 106
8.4.8 CIM_HostedService... 43 107
8.4.9 CIM_LastAppliedSnapshot .. 43 108
8.4.10 CIM_MostCurrentSnapshotInBranch... 43 109
8.4.11 CIM_ReferencedProfile ... 43 110
8.4.12 CIM_RegisteredProfile... 44 111
8.4.13 CIM_ServiceAffectsElement .. 44 112
8.4.14 CIM_SnapshotOfVirtualSystem ... 44 113
8.4.15 CIM_System .. 44 114
8.4.16 CIM_VirtualSystemManagementCapabilities .. 44 115
8.4.17 CIM_VirtualSystemManagementService... 44 116
8.4.18 CIM_VirtualSystemSnapshotService... 44 117
8.4.19 CIM_VirtualSystemSnapshotCapabilities .. 44 118
8.4.20 CIM_VirtualSystemSnapshotServiceCapabilities .. 44 119

9 Use Cases... 44 120
9.1 General assumptions.. 45 121
9.2 Discovery, localization, and inspection ... 45 122

9.2.1 SLP-Based discovery of CIM object managers hosting implementations of this 123
Profile... 46 124

9.2.2 Locate conformant implementations using the EnumerateInstances() operation 47 125
9.2.3 Locate conformant implementations using the ExecuteQuery() operation................. 47 126
9.2.4 Locate host systems represented by central instances of this profile 47 127
9.2.5 Locate implementations of scoped resource allocation profiles 48 128
9.2.6 Locate virtual system management service .. 48 129
9.2.7 Determine the capabilities of an implementation... 49 130
9.2.8 Locate hosted resource pools of a particular resource type.. 50 131
9.2.9 Obtain a set of central instances of scoped resource allocation profiles..................... 50 132
9.2.10 Determine implemented resource types.. 51 133
9.2.11 Determine the default resource pool for a resource type .. 52 134
9.2.12 Determine the resource pool for a resource allocation request or an allocated 135

resource ... 53 136
9.2.13 Determine valid settings for a resource type ... 53 137
9.2.14 Determine implementation class specifics... 54 138
9.2.15 Determine the implementation class for a resource type .. 55 139
9.2.16 Locate virtual systems hosted by a host system ... 55 140

9.3 Virtual system definition, modification, and destruction.. 56 141
9.3.1 Virtual system definition... 56 142
9.3.2 Virtual system modification .. 58 143
9.3.3 Destroy virtual system ... 62 144

9.4 Snapshot-related activities.. 62 145
9.4.1 Locate virtual system snapshot service ... 65 146

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 5

9.4.2 Determine capabilities of a virtual system snapshot service 65 147
9.4.3 Create snapshot... 66 148
9.4.4 Locate snapshots of a virtual system... 66 149
9.4.5 Locate the source virtual system of a snapshot .. 66 150
9.4.6 Locate the most current snapshot in a branch of snapshots 67 151
9.4.7 Locate dependent snapshots... 67 152
9.4.8 Locate parent snapshot ... 68 153
9.4.9 Apply snapshot .. 68 154
9.4.10 Destroy snapshot ... 69 155

10 CIM elements .. 69 156
10.1 CIM_AffectedJobElement ... 70 157
10.2 CIM_ConcreteJob... 70 158
10.3 CIM_Dependency ... 71 159
10.4 CIM_ElementCapabilities (Host system) .. 71 160
10.5 CIM_ElementCapabilities (Virtual system management service)... 71 161
10.6 CIM_ElementCapabilities (Virtual system snapshot service) ... 72 162
10.7 CIM_ElementCapabilities (Snapshots of virtual systems) .. 73 163
10.8 CIM_ElementConformsToProfile .. 73 164
10.9 CIM_HostedDependency.. 74 165
10.10 CIM_HostedService (Virtual system management service) ... 74 166
10.11 CIM_HostedService (Virtual system snapshot service).. 75 167
10.12 CIM_LastAppliedSnapshot ... 75 168
10.13 CIM_MostCurrentSnapshotInBranch.. 76 169
10.14 CIM_ReferencedProfile... 76 170
10.15 CIM_RegisteredProfile.. 77 171
10.16 CIM_ServiceAffectsElement (Virtual system management service) .. 77 172
10.17 CIM_ServiceAffectsElement (Virtual system snapshot service) ... 78 173
10.18 CIM_SnapshotOfVirtualSystem .. 78 174
10.19 CIM_System ... 79 175
10.20 CIM_VirtualSystemManagementCapabilities ... 79 176
10.21 CIM_VirtualSystemManagementService .. 79 177
10.22 CIM_VirtualSystemSettingData (Input)... 80 178
10.23 CIM_VirtualSystemSettingData (Snapshot).. 80 179
10.24 CIM_VirtualSystemSnapshotCapabilities ... 81 180
10.25 CIM_VirtualSystemSnapshotService.. 82 181
10.26 CIM_VirtualSystemSnapshotServiceCapabilities ... 82 182

 183

Figures 184

Figure 1 – Profiles related to system virtualization ... 16 185
Figure 2 – System Virtualization Profile: Class diagram... 17 186
Figure 3 – System Virtualization Profile instance diagram: Discovery, localization, and inspection........... 46 187
Figure 4 – Virtual system configuration based on input virtual system configurations and implementation 188

defaults.. 57 189
Figure 5 – Virtual system resource modification ... 61 190
Figure 6 – System Virtualization Profile: Snapshot example .. 64 191
 192

Tables 193

Table 1 – Related Profiles ... 12 194
Table 2 – DefineSystem() method: Parameters... 30 195
Table 3 – DefineSystem() method: Return code values .. 32 196

System Virtualization Profile DSP1042

6 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Table 4 – DestroySystem() method: Parameters... 33 197
Table 5 – DestroySystem() method: Return code values .. 33 198
Table 6 – AddResourceSettings() method: Parameters... 34 199
Table 7 – AddResourceSettings() method: Return code values .. 34 200
Table 8 – ModifyResourceSettings() method: Parameters .. 35 201
Table 9 – ModifyResourceSettings() Method: Return code values.. 36 202
Table 10 – ModifySystemSettings() Method: Parameters.. 37 203
Table 11 – ModifySystemSettings() Method: Return code values ... 37 204
Table 12 – RemoveResourceSettings() Method: Parameters ... 38 205
Table 13 – RemoveResourceSettings() Method: Return code values... 38 206
Table 14 – CreateSnapshot() method: Parameters ... 39 207
Table 15 – CreateSnapshot() method: Return code values... 40 208
Table 16 – DestroySnapshot() method: Parameters.. 40 209
Table 17 – DestroySnapshot() method: Return code values ... 41 210
Table 18 – ApplySnapshot() method: Parameters ... 41 211
Table 19 – ApplySnapshot() method: Return code values... 42 212
Table 20 – CIM Elements: System Virtualization Profile ... 69 213
Table 21 – Association: CIM_AffectedJobElement ... 70 214
Table 22 – Class: CIM_ConcreteJob .. 70 215
Table 23 – Class: CIM_Dependency Class... 71 216
Table 24 – Association: CIM_ElementCapabilities (Host System).. 71 217
Table 25 – Association: CIM_ElementCapabilities (Virtual system management) 72 218
Table 26 – Association: CIM_ElementCapabilities (Snapshot service)... 72 219
Table 27 – Association: CIM_ElementCapabilities (Snapshots of virtual systems) 73 220
Table 28 – Association: CIM_ElementConformsToProfile... 73 221
Table 29 – Association: CIM_HostedDependency.. 74 222
Table 30 – Association: CIM_HostedService (Virtual system management service) 74 223
Table 31 – Association: CIM_HostedService (Virtual system snapshot service) .. 75 224
Table 32 – Association: CIM_LastAppliedSnapshot ... 75 225
Table 33 – Association: CIM_MostCurrentSnapshotInBranch .. 76 226
Table 34 – Association: CIM_ReferencedProfile... 76 227
Table 35 – Class: CIM_RegisteredProfile ... 77 228
Table 36 – Association: CIM_ServiceAffectsElement (Virtual system management service)..................... 77 229
Table 37 – Association: CIM_ServiceAffectsElement ... 78 230
Table 38 – Association: CIM_SnapshotOfVirtualSystem .. 78 231
Table 39 – Class: CIM_VirtualSystemManagementCapabilities... 79 232
Table 40 – Class: CIM_VirtualSystemManagementCapabilities... 79 233
Table 41 – Class: CIM_VirtualSystemManagementService ... 80 234
Table 42 – Class: CIM_VirtualSystemSettingData (Input) .. 80 235
Table 43 – Class: CIM_VirtualSystemSettingData (Snapshot) ... 81 236
Table 44 – Class: CIM_VirtualSystemSnapshotCapabilities... 82 237
Table 45 – Class: CIM_VirtualSystemSnapshotService ... 82 238
Table 46 – Class: CIM_VirtualSystemSnapshotServiceCapabilities... 82 239
 240

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 7

Foreword 241

This profile (DSP1042, System Virtualization Profile) was prepared by the System Virtualization, 242
Partitioning and Clustering Working Group of the DMTF. 243

The DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and sys-244
tems management and interoperability. 245

System Virtualization Profile DSP1042

8 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Introduction 246

The information in this specification should be sufficient for a provider or consumer of this data to 247
unambiguously identify the classes, properties, methods, and values that shall be instantiated and 248
manipulated to represent and manage a host system, its resources, and related services, and to create 249
and manipulate virtual systems. The target audience for this specification is implementers who are writing 250
CIM-based providers or consumers of management interfaces that represent the components described 251
in this document. 252

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 9

System Virtualization Profile 253

1 Scope 254

This profile is an autonomous profile that specifies the minimum top-level object model needed for the 255
representation of host systems and the discovery of hosted virtual computer systems. In addition, it 256
specifies a service for the manipulation of virtual computer systems and their resources, including 257
operations for the creation, deletion, and modification of virtual computer systems and operations for the 258
addition or removal of virtual resources to or from virtual computer systems. 259

2 Normative references 260

The following referenced documents are indispensable for the application of this document. For dated 261
references, only the edition cited applies. For undated references, the latest edition of the referenced 262
document (including any amendments) applies. 263

DMTF DSP0004, CIM Infrastructure Specification 2.5 264
http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf 265

DMTF DSP0200, CIM Operations over HTTP 1.3 266
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf 267

DMTF DSP0201, Representation of CIM in XML 2.3 268
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf 269

DMTF DSP1001, Management Profile Specification Usage Guide 1.0 270
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf 271

DMTF DSP1012, Boot Control Profile 1.0 272
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf 273

DMTF DSP1022, CPU Profile 1.0 274
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf 275

DMTF DSP1027, Power State Management Profile 1.0 276
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf 277

DMTF DSP1033, Profile Registration Profile 1.0 278
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf 279

DMTF DSP1041, Resource Allocation Profile 1.1 280
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf 281

DMTF DSP1043, Allocation Capabilities Profile 1.0 282
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf 283

DMTF DSP1044, Processor Device Resource Virtualization Profile 1.0 284
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf 285

DMTF DSP1045, Memory Resource Virtualization Profile 1.0 286
http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf 287

DMTF DSP1047, Storage Resource Virtualization Profile 1.0 288
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf 289

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf�
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf�
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf�
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf�
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf�

System Virtualization Profile DSP1042

10 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

DMTF DSP1052, Computer System Profile 1.0 290
http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf 291

DMTF DSP1053, Base Metrics profile 1.0 292
http://www.dmtf.org/standards/published_documents/DSP1053_1.0.pdf 293

DMTF DSP1057, Virtual System Profile 1.0 294
http://www.dmtf.org/standards/published_documents/DSP1057_1.0.pdf 295

DMTF DSP1059, Generic Device Resource Virtualization Profile 1.0 296
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf 297

ISO/IEC Directives, Part2:2004, Rules for the structure and drafting of International Standards, 298
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 299

3 Terms and definitions 300

For the purposes of this document, the following terms and definitions apply. For the purposes of this 301
document, the terms and definitions in DSP1033 and DSP1001 also apply. 302

3.1 303
can 304
used for statements of possibility and capability, whether material, physical, or causal 305

3.2 306
cannot 307
used for statements of possibility and capability, whether material, physical, or causal 308

3.3 309
conditional 310
indicates requirements to be followed strictly in order to conform to the document and from which no 311
deviation is permitted, when the specified conditions are met 312

3.4 313
mandatory 314
indicates requirements to be followed strictly in order to conform to the document and from which no 315
deviation is permitted 316

3.5 317
may 318
indicates a course of action permissible within the limits of the document 319

3.6 320
need not 321
indicates a course of action permissible within the limits of the document 322

3.7 323
optional 324
indicates a course of action permissible within the limits of the document 325

http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1053_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1057_1.0.pdf�
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf�
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype�

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 11

3.8 326
referencing profile 327
indicates a profile that owns the definition of this class and can include a reference to this profile in its 328
"Related Profiles" table 329

3.9 330
shall 331
indicates requirements to be followed strictly in order to conform to the document and from which no 332
deviation is permitted 333

3.10 334
shall not 335
indicates requirements to be followed strictly in order to conform to the document and from which no 336
deviation is permitted 337

3.11 338
should 339
indicates that among several possibilities, one is recommended as particularly suitable, without mention-340
ing or excluding others, or that a certain course of action is preferred but not necessarily required 341

3.12 342
should not 343
indicates that a certain possibility or course of action is deprecated but not prohibited 344

3.13 345
unspecified 346
indicates that this profile does not define any constraints for the referenced CIM element 347

3.14 348
implementation 349
a set of software components that realize the classes that are specified or specialized by this profile 350

3.15 351
client 352
application that exploits facilities specified by this profile 353

3.16 354
this profile 355
a reference to this DMTF management profile: DSP1042 (System Virtualization Profile) 356

3.17 357
virtualization platform 358
virtualizing infrastructure provided by a host system that enables the deployment of virtual systems 359

3.18 360
WBEM service 361
A component that provides a service accessible through a WBEM protocol. A single WBEM service 362
instance may be used by multiple WBEM client instances. The term WBEM service is used to denote 363
the entire set if components on the server side that is needed to provide the service. For example, in 364
typical WBEM infrastructures this includes a CIM object manager and a set of CIM providers. 365

System Virtualization Profile DSP1042

12 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

4 Symbols and abbreviated terms 366

The following symbols and abbreviations are used in this document. 367

4.1 368
RASD 369
resource allocation setting data 370

4.2 371
SLP 372
service location protocol 373

4.3 374
VS 375
virtual system 376

4.4 377
VSSD 378
virtual system setting data 379

5 Synopsis 380

Profile Name: System Virtualization 381

Version: 1.0.0 382

Organization: DMTF 383

CIM Schema Version: 2.22 384

Central Class: CIM_System 385

Scoping Class: CIM_System 386

This profile is an autonomous profile that defines the minimum object model for the representation of host 387
systems. It identifies component profiles that address the allocation of resources. It extends the object 388
model for the representation of virtual systems and virtual resources defined in DSP1057. 389

The central instance and the scoping instance of this profile shall be an instance of the CIM_System class 390
that represents a host system. 391

Table 1 lists DMTF management profiles that this profile depends on, or that may be used in the context 392
of this profile. 393

Table 1 – Related Profiles 394

Profile Name Organization Version Relationship Description

Profile Registration DMTF 1.0 Mandatory The DMTF management profile that de-
scribes the registration of DMTF
management profiles; see 7.2.

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 13

Profile Name Organization Version Relationship Description

Virtual System DMTF 1.0 Mandatory The autonomous DMTF management profile
that specifies the minimum object model
needed for the inspection and basic
manipulation of a virtual system; see 7.3.

Processor Device
Resource Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of processor re-
sources; see 7.2.2.

Memory Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of memory re-
sources; see 7.2.2.

Storage Adapter Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of storage
adapter resources; see 7.2.2.

Generic Device Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of generic re-
sources; see 7.2.2.

6 Description 395

This clause contains informative text only. 396

This profile defines a top-level object model for the inspection and control of system virtualization facilities 397
provided by host systems. It supports the following range of functions: 398

 the detection of host systems that provide system virtualization facilities 399

 the discovery of scoped host resources 400

 the discovery of scoped resource pools 401

 the inspection of host system capabilities for 402

– the creation and manipulation of virtual systems 403

– the allocation of resources of various types 404

 the inspection of resource pool capabilities 405

 the discovery of hosted virtual systems 406

 the inspection of relationships between host entities (host systems, host resources, and re-407
source pools) and virtual entities (virtual systems and virtual resources) 408

 the creation and manipulation of virtual systems using input configurations, predefined 409
configurations available at the host system, or both 410

 the creation and manipulation of snapshots that capture the configuration and state of a virtual 411
system at a particular point in time 412

6.1 Profile relationships 413

A client that is exploiting system virtualization facilities specified by this profile needs to be virtualization 414
aware. The specified model keeps that knowledge at an abstract level that is independent of a particular 415
system virtualization platform implementation or technology. 416

System Virtualization Profile DSP1042

14 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

This profile complements DSP1057. 417

 This profile focuses on virtualization aspects related to host systems and their resources, such 418
as modeling the relationships between host resources and virtual resources. Further it 419
addresses virtualization-specific tasks such as the creation or modification of virtual systems 420
and their configurations. 421

 DSP1057 defines a top-level object model for the inspection and basic operation of virtual 422
systems. It is a specialization of DSP1052 that defines a management interface for general-423
purpose computer systems. Consequently, the interface specified for the basic inspection and 424
operation of virtual systems is conformant with that specified for real systems. A client that is 425
exploiting capabilities specified by DSP1052 with respect to virtual systems that are instrument 426
conformant with DSP1057 can inherently handle virtual systems like real systems without being 427
virtualization aware. 428

Figure 1 shows the structure of DMTF management profiles related to system virtualization. 429

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 15

DSP1043
Allocation

Capabilities
(Optional)

DSP1042
System Virtualization

DSP1041
Resource
Allocation
(Optional)

DSP1044
CPU Resource
Virtualization

(Optional)

Abstract
Component

Component

Autonomous

Abstract
Component

DSP1045
Memory Resource

Virtualization
(Optional)

DSP1050
Network Port

Resource
Virtualization

(Optional)

Component

Component

DSP1049
Storage Resource

Virtualization
(Optional)

Component

DSP1052
ComputerSystem

DSP1027
Power Stat
Manageme

(Optional)

DSP1033
Profile Registration

Component

DSP1057
Virtual System

DSP1004
Base Server
(Optional)

Autonomous

Abstract
Autonomous

Autonomous

DSP1022
CPU Profile
(Optional)

DSP1014
Ethernet Port P

(Optional)

Com

Com

DSP1012
Boot Control P

(Optional)

Com

DSP1026
System Mem

Profile
(Optional)

Com

DMTF
Management

Profiles
Related to

System
Virtualization

Com

DSP1059
Generic Device Re-
source Virtualization

(Optional)

Scoped By

Scoped By

System Virtualization Profile DSP1042

16 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 431

Figure 1 – Profiles related to system virtualization 432

For example, an implementation that instruments a virtualization platform may implement some of the fol-433
lowing DMTF management profiles: 434

 This profile 435

This profile enables the inspection of host systems, their resources, their capabilities, and their 436
services for creation and manipulation of virtual systems. 437

 DSP1057 438

DSP1057 enables the inspection of and basic operations on virtual systems. 439

 Resource-type-specific profiles 440

Resource-type-specific profiles enable the inspection and operation of resources for one 441
particular resource type. They apply to both virtual and host resources; they do not cover 442
virtualization-specific aspects of resources. A client may exploit resource-type-specific profiles 443
for the inspection and manipulation of virtual and host resources in a similar manner. 444

 Resource allocation profiles 445

Resource allocation profiles enable the inspection and management of resource allocation re-446
quests, allocated resources, and resources available for allocation. Resource allocation profiles 447
are based on DSP1041 and on DSP1043. Resource allocation profiles are scoped by this 448
profile. A client may exploit resource allocation profiles for the inspection of 449

– allocated resources 450

– allocation dependencies that virtual resources have on host resources and resource pools 451

– capabilities that describe possible values for allocation requests 452

– capabilities that describe the mutability of resource allocations 453

For some resource types, specific resource allocation profiles are specified that address re-454
source-type-specific resource allocation aspects and capabilities. Examples are DSP1044 and 455
DSP1047. 456

The management of the allocation of basic virtual resources that are not covered by a resource-457
type-specific resource allocation profile is specified in DSP1059. 458

6.2 System virtualization class schema 459

Figure 2 shows the complete class schema of this profile. It outlines elements that are specified or 460
specialized by this profile, as well as the dependency relationships between elements of this profile and 461
other profiles. For simplicity in diagrams, the prefix CIM_ has been removed from class and association 462
names. 463

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 17

ComputerSystem

(See " Virtual System Profile")

VirtualSystemSettingData

(See "Virtual System Profile")

VirtualSystemManagementService

LogicalDevice

(See "Resource Allocation Profile"
or device type specific profile)

ResourceAllocationSettingData

(See "Resource Allocation Profile")

ResourcePool

(See "Resource Allocation Profile")

*

1
SettingsDefineState
(See "Resource Allocation Profile")

0..1

1

S
et

tin
gs

D
ef

in
eS

ta
te

(S
ee

 "
V

irt
ua

l S
ys

te
m

 P
ro

fil
e"

)

ResourcePoolConfigurationService

(See "Resource Allocation Profile")

1 0..1

HostedService1

*

S
ys

te
m

D
ev

ic
e

(S
ee

 "
R

es
ou

rc
e

A
llo

ca
tio

n
P

ro
fil

e"

or
 d

ev
ic

e
ty

pe
 s

pe
ci

fic
 p

ro
fil

e)

AllocationCapabilities

(See "Allocation Capabilities Profile")

1

*

ElementCapabilities
(See "Allocation Capabilities Profile")

VirtualSystemManagementCapabilities

1..*

0..1

SettingsDefineCapabilities
(See "Allocation Capabilities Profile")

1*

ServiceAffectsElement
(See "Resource Allocation Profile")

*

0..1

S
er

vi
ce

A
ffe

ct
sE

le
m

en
t

ConcreteJob1 *AffectedJobElement

*

1

C
on

cr
et

eC
om

po
ne

nt
(S

ee
 "

R
es

ou
rc

e
A

llo
ca

tio
n

P
ro

fil
e"

)

1

*
ElementAllocatedFromPool
(See "Resource Allocation Profile")

*

1

H
os

te
dR

es
ou

rc
eP

oo
l

(S
ee

 "
R

es
ou

rc
e

A
llo

ca
tio

n
P

ro
fil

e"
)

0..1
* ElementSettingData

(See "Virtual System Profile")

1

*

H
os

te
dD

ep
en

de
nc

y

1

*

HostedDependency
(See "Resource Allocation Profile")

*
0..1

ElementSettingData
(See "Resource Allocation Profile")

RegisteredProfile

1 1

ElementCapabilities

1 *

ReferencedProfile

1

*
ConcreteComponent
(See "Virtual System Profile")

System

1

*

ElementConformsToProfile

0..1

0..1

Dependency

0..1 1

ElementCapabilities

VirtualSystemSnapshotServiceCapabilitiesVirtualSystemSnapshotService

1 1

ElementCapabilities

*

0..1

S
er

vi
ce

A
ffe

ct
sE

le
m

en
t

0..1

0..1

0..1

La
st

A
pp

lie
dS

na
ps

ho
t

0..1

0..1

M
os

tC
ur

re
nt

S
na

ps
ho

tIn
B

ra
nc

h

0..1

*

S
na

ps
ho

tO
fV

irt
ua

lS
ys

te
m

VirtualSystemSnapshotCapabilities
1

* ElementCapabilities

EnabledLogicalElementCapabilities

(See " Virtual System Profile")

10..1

*

0..1

S
er

vi
ce

A
ffe

ct
sE

le
m

en
t

EnabledLogicalElement

(See "Resource Allocation Profile")

ManagedSystemElement

(See "Resource Allocation Profile")

0..1

*

ResourceAllocationFromPool
(See "Resource Allocation Profile")

464
 465

Figure 2 – System Virtualization Profile: Class diagram 466

This profile specifies the use of the following classes and associations: 467

 the CIM_RegisteredProfile class and the CIM_ElementConformsToProfile association for the 468
advertisement of conformance to this profile 469

System Virtualization Profile DSP1042

18 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 the CIM_ReferencedProfile association for the representation of a scoping relationship between 470
this profile and scoped DMTF management profiles 471

 the CIM_System class for the representation of host systems 472

 the CIM_HostedDependency association for the representation of the hosting relationship be-473
tween a host system and hosted virtual systems 474

 the CIM_VirtualSystemManagementService class for the representation of virtual system 475
management services available at a host system, providing operations like the creation and 476
modification of virtual systems and their components 477

 the CIM_HostedService association for the representation of the relationship between a host 478
system and services that it provides 479

 the CIM_VirtualSystemManagementCapabilities class for the representation of optional fea-480
tures, properties, and methods available for the management of virtual systems hosted by a 481
host system 482

 the CIM_ElementCapabilities association for the representation of the relationship between a 483
host system, a virtual system or a service, and their respective capabilities 484

 the CIM_ServiceAffectsElement association for the representation of the relationship between 485
defined services and affected elements like virtual systems or virtual system snapshots 486

 the CIM_VirtualSystemSettingData class for the representation of snapshots (in addition to the 487
use of that class for the representation of virtual aspects of a virtual system as specified by 488
DSP1057) 489

 the CIM_VirtualSystemSnapshotService class for the representation of snapshot-related ser-490
vices available at a host system 491

 the CIM_VirtualSystemSnapshotServiceCapabilities class for the representation of optional fea-492
tures, properties, and methods available for the management of snapshots of virtual systems 493

 the CIM_VirtualSystemSnapshotCapabilities class for the representation of optional features, 494
properties, and methods available for the management of snapshots relating to one particular 495
virtual system 496

 the CIM_SnapshotOfVirtualSystem association for the representation of the relationship be-497
tween a snapshot of a virtual system and the virtual system itself 498

 the CIM_Dependency association for dependencies among virtual system snapshots 499

 the CIM_LastAppliedSnapshot association for the representation of the relationship between a 500
virtual system and the snapshot that was most recently applied to it 501

 the CIM_MostCurrentSnapshotInBranch association for the representation of the relationship 502
between a virtual system and the snapshot that is the most current snapshot in a sequence of 503
snapshots captured from the virtual system 504

 the CIM_ConcreteJob class and the CIM_AffectedJobElement association to model a mecha-505
nism that allows tracking of asynchronous tasks resulting from operations such as the optional 506
CreateSystem() method of the CIM_VirtualSystemManagementService class 507

In general, any mention of a class in this document means the class itself or its subclasses. For example, 508
a statement such as "an instance of the CIM_LogicalDevice class" implies an instance of the CIM_Logi-509
calDevice class or a subclass of the CIM_LogicalDevice class. 510

6.3 Virtual system configurations 511

This profile extends the use of virtual system configurations. DSP1057 defines a virtual system 512
configuration as one top-level instance of the CIM_VirtualSystemSettingData class that aggregates zero 513

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 19

or more instances of the CIM_ResourceAllocationSettingData class through the CIM_VirtualSystemSet-514
tingDataComponent association. 515

DSP1057 defines the concept of virtual system configurations and applies it to the following types of 516
virtual system configurations: 517

 the "State" virtual system configuration, which represents a virtualization-specific state that ex-518
tends a virtual system representation 519

 the "Defined" virtual system configuration, which represents virtual system definitions 520

 the "Next" virtual system configuration, which represents the virtual system configuration that 521
will be used for the next activation of a virtual system 522

This profile applies the concept of virtual system configurations and defines the following additional types 523
of virtual system configurations: 524

 the "Input" virtual system configuration, which represents configuration information for new vir-525
tual systems 526

 the "Reference" virtual system configuration, which represents configuration information that 527
complements an "Input" virtual system configuration for a new virtual system 528

 the "Snapshot" virtual system configuration, which represents snapshots of virtual systems 529

6.4 Resource allocation 530

An allocated resource is a resource subset or resource share that is allocated from a resource pool. An 531
allocated resource is obtained based on a resource allocation request. Both allocated resources and 532
resource allocation requests are represented through instances of the 533
CIM_ResourceAllocationSettingData class. 534

A virtual resource or a comprehensive set of virtual resources is the representation of an allocated re-535
source. For example, a set of virtual processors represent an allocated processor resource. 536

Resource allocation is the process of obtaining an allocated resource based on a resource allocation re-537
quest. This profile distinguishes two types of resource allocation: 538

 Persistent Resource Allocation 539

Persistent resource allocation occurs while virtual resources are defined and supporting re-540
sources are persistently allocated from a resource pool. 541

 Transient Resource Allocation 542

Transient resource allocation occurs as virtual resources are instantiated and supporting re-543
sources are temporarily allocated from a resource pool for the lifetime of the virtual resource in-544
stance. 545

EXAMPLE 1: Persistent Resource Allocation: File-based virtual disk 546

A host file is persistently allocated as the virtual disk is defined. The file remains persistently allocated 547
while the virtual disk remains defined even while the virtual system is not instantiated. 548

EXAMPLE 2: Transient Resource Allocation: Host memory 549

A contiguous chunk of host memory is temporarily allocated to support virtual memory as the scoping vir-550
tual system is instantiated. The memory chunk remains allocated for the time that the virtual system 551
remains instantiated. 552

EXAMPLE 3: Transient Resource Allocation: I/O bandwidth 553

An I/O bandwidth is temporarily allocated as the scoping virtual system is instantiated. The I/O bandwidth 554
remains allocated only while the virtual system remains instantiated. 555

System Virtualization Profile DSP1042

20 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

It is a normal situation that within one implementation large numbers of virtual systems are defined such 556
that obtaining the sum of all resource allocation requests would overcommit the implementation’s capabili-557
ties. Nevertheless, the implementation is able support virtual systems or resources in performing their 558
tasks if it ensures that only a subset of such virtual systems or resources is active at a time that the sum 559
of their allocated resources remains within the implementation’s capabilities. 560

6.5 Snapshots 561

A snapshot is a reproduction of the virtual system as it was at a particular point in the past. A snapshot 562
contains configuration information and may contain state information of the virtual system and its 563
resources, such as the content of virtual memory or the content of virtual disks. A snapshot can be applied 564
back into the virtual system any time, reproducing a situation that existed when the snapshot was cap-565
tured. 566

The extent of snapshot support may vary: an implementation may support full snapshots, snapshots that 567
capture the virtual system’s disks only, or both. Further, an implementation may impose restrictions on the 568
virtual system state of the source virtual system—for example, supporting the capturing of snapshots only 569
while the virtual system is in the "Defined" state. The extent of snapshot support is modeled through spe-570
cific capabilities classes. 571

Implementations may establish relationships between snapshots. For example, snapshots may be or-572
dered by their creation time. 573

This profile specifies mechanisms for the creation, application, and destruction of snapshots. It specifies a 574
snapshot model that enables the inspection of snapshot-related configuration information such as the 575
virtual system configurations that were effective when the snapshot was captured. Relationships between 576
snapshots are also modeled. 577

This profile specifies mechanisms that enable the inspection of configuration information of snapshots 578
and their related virtual systems only. This profile does not specify mechanisms for the inspection of the 579
content that was captured in a snapshot, such as raw virtual memory images or raw virtual disk images. 580

7 Implementation 581

This clause details the requirements related to classes and their properties for implementations of this 582
profile. The CIM Schema descriptions for any referenced element and its sub-elements apply. 583

The list of all required methods can be found in 8 ("Methods") and the list of all required properties can be 584
found in 10 ("CIM elements"). 585

Where reference is made to CIM Schema properties that enumerate values, the numeric value is norma-586
tive and the descriptive text following it in parentheses is informational. For example, in the statement "If 587
an instance of the CIM_VirtualSystemManagementCapabilities class contains the value 588
3 (DestroySystemSupported) in an element of the SynchronousMethodsSupported[] array property," the 589
value "3" is normative text and "(DestroySystemSupported)" is informational text. 590

7.1 Host system 591

The CIM_System class shall be used for the representation of host systems. There shall be one instance 592
of the CIM_System class for each host system that is managed conformant to this profile. 593

7.2 Profile registration 594

DSP1033 describes how an implementation of a profile shall advertise that a profile is implemented. 595

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 21

7.2.1 This profile 596

The implementation of this profile shall be indicated by an instance of the CIM_RegisteredProfile class in 597
the CIM Interop namespace. Each instance of the CIM_System class that represents a host system that 598
is manageable through this profile shall be a central instance of this profile by associating it with the 599
instance of the CIM_RegisteredProfile class through an instance of the CIM_ElementConformsToProfile 600
association. 601

7.2.2 Scoped resource allocation profiles 602

An implementation of this profile may indicate that it is capable of representing the allocation of resources 603
to support virtual resources by implementing scoped resource-allocation DMTF management profiles. 604

The support of scoped resource-allocation profiles is conditional with respect to the presence of an in-605
stance of the CIM_RegisteredProfile class in the Interop namespace that represents the scoped resour-606
ce–allocation profile implementation and is associated with the instance of the CIM_RegisteredProfile 607
class that represents an implementation of this profile through an instance of the CIM_ReferencedProfile 608
association. 609

Resource-allocation DMTF management profiles are based on DSP1041 and DSP1043. The resource-610
allocation DMTF management profiles that are scoped by this profile are listed in Table 1, starting with 611
DSP1044. 612

An implementation that provides conditional support for inspecting and managing the allocation of re-613
sources of one particular resource type shall apply one of the following implementation approaches: 614

 If a resource-type-specific resource-allocation DMTF management profile is specified for that re-615
source type, that profile should be implemented. 616

 If no resource-type-specific resource-allocation DMTF management profile exists at version 1.0 617
or later, DSP1059 should be implemented. 618

For any implementation of a scoped-resource-allocation DMTF management profile, all of the following 619
conditions shall be met: 620

 The instance of the CIM_RegisteredProfile class that represents the implementation of this pro-621
file and the instance of the CIM_RegisteredProfile class that represents the implementation of 622
the scoped resource-allocation DMTF management profile shall be associated through an in-623
stance of the CIM_ReferencedProfile association. 624

 One of the following conditions regarding profile implementation advertisement shall be met: 625

– Central Class Profile Implementation Advertisement: 626
Instances of the CIM_ElementConformsToProfile association shall associate each instance 627
of the CIM_ResourcePool class that is a central instance of the scoped-resource-allocation 628
DMTF management profile with the instance of the CIM_RegisteredProfile class that repre-629
sents an implementation of the scoped-resource-allocation DMTF management profile. 630

– Scoping Class Profile Implementation Advertisement: 631
No instances of the CIM_ElementConformsToProfile association shall associate any in-632
stance of the CIM_ResourcePool class that is a central instance of the scoped-resource-633
allocation DMTF management profile with the instance of the CIM_RegisteredProfile class 634
that represents an implementation of the scoped-resource-allocation DMTF management 635
profile. 636

7.3 Representation of hosted virtual systems 637

This profile strengthens the requirements for the representation of virtual system configurations specified 638
by DSP1057 for hosted virtual systems. 639

System Virtualization Profile DSP1042

22 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

7.3.1 Profile conformance for hosted virtual systems 640

Any virtual system that is hosted by a conformant host system shall be represented by an instance of the 641
CIM_ComputerSystem class that is a central instance of DSP1057. That instance shall be associated with 642
the instance of the CIM_System class that represents the conformant host system through an instance of 643
the CIM_HostedDependency association. 644

7.3.2 CIM_VirtualSystemSettingData.VirtualSystemType property 645

The value of the VirtualSystemType property shall be equal to an element of the 646
VirtualSystemTypesSupported[] array property in the instance of the 647
CIM_VirtualSystemManagementCapabilities class that is associated with the instance of the 648
CIM_VirtualSystemManagementService class that represents the host system, or shall be NULL if the 649
value of the VirtualSystemTypesSupported[] array property is NULL (see 7.4.2). 650

7.4 Virtual system management capabilities 651

This subclause models capabilities of virtual system management in terms of the 652
CIM_VirtualSystemManagementCapabilities class. 653

7.4.1 CIM_VirtualSystemManagementCapabilities class 654

An instance of the CIM_VirtualSystemManagementCapabilities class shall be used to represent the virtual 655
system management capabilities of a host system. That instance shall be associated with the instance of 656
the CIM_System class that represents the host system through the CIM_ElementCapabilities association. 657

7.4.2 CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[] array 658
property 659

The implementation of the VirtualSystemTypesSupported[] array property is optional. The 660
VirtualSystemTypesSupported[] array property should be implemented. 661

If the VirtualSystemTypesSupported[] array property is implemented, the provisions in this subclause 662
apply. 663

Array values shall designate the set of supported virtual system types. If the 664
VirtualSystemTypesSupported[] array property is not implemented (has a value of NULL), the 665
implementation does not externalize the set of implemented virtual system types, but internally still may 666
exhibit different types of virtual systems. 667

7.4.3 CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[] 668
array property 669

The implementation of the SynchronousMethodsSupported[] array property is optional. The 670
SynchronousMethodsSupported[] array property should be implemented. 671

If the SynchronousMethodsSupported[] array property is implemented, the provisions in this subclause 672
apply. 673

Array values shall designate the set of methods of the CIM_VirtualSystemManagementService class that 674
are implemented with synchronous behavior only. A NULL value or an empty value set shall be used to 675
indicate that no methods are implemented with synchronous behavior. If a method is designated within 676
the value set of the SynchronousMethodsSupported[] property, that method shall always exhibit 677
synchronous behavior and shall not be designated within the value set of the 678
AsynchronousMethodsSupported[] property. 679

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 23

7.4.4 CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[] 680
array property 681

The implementation of the AsynchronousMethodsSupported[] array property is optional. The 682
AsynchronousMethodsSupported[] array property should be implemented. 683

If the AsynchronousMethodsSupported[] array property is implemented, the provisions in this subclause 684
apply. 685

Array values shall designate the set of methods of the CIM_VirtualSystemManagementService class that 686
are implemented with synchronous and potentially with asynchronous behavior. A NULL value or an 687
empty value set shall be used to indicate that no methods are implemented with asynchronous behavior. 688
If a method is designated with a value in the AsynchronousMethodsSupported[] array property, it may 689
show either synchronous or asynchronous behavior. 690

7.4.5 CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array 691
property 692

The implementation of the IndicationsSupported[] array property is optional. The IndicationsSupported[] 693
array property should be implemented. 694

If the IndicationsSupported[] array property is implemented, the provisions in this subclause apply. 695

Array values shall designate the set of types of indications that are implemented. A NULL value or an 696
empty value set shall be used to indicate that indications are not implemented. 697

7.4.6 Grouping Rules for implementations of methods of the 698
CIM_VirtualSystemManagementService class 699

The grouping rules specified in this subclause shall be applied for implementations of methods of the 700
CIM_VirtualSystemManagementService class. Within a group either all methods or no method at all shall 701
be implemented; nevertheless synchronous and asynchronous behavior may be mixed. 702

7.4.6.1 Virtual system definition and destruction 703

If virtual system definition and destruction are implemented, the DefineSystem() and DestroySystem() 704
methods of the CIM_VirtualSystemManagementService class shall be implemented, and the values 705
2 (DefineSystemSupported) and 3 (DestroySystemSupported) shall be set in the 706
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties within the 707
instance of the CIM_VirtualSystemManagementCapabilities class that describes capabilities of the imple-708
mentation. 709

If virtual system definition and destruction are not implemented, the values 2 (DefineSystemSupported) 710
and 3 (DestroySystemSupported) shall not be set in the SynchronousMethodsSupported[] or 711
AsynchronousMethodsSupported[] array properties of the instance of the 712
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-713
ties of the host system. 714

7.4.6.2 Virtual resource addition and removal 715

If the addition and removal of virtual resources to or from virtual systems are implemented, the 716
AddResourceSettings() and RemoveResourceSettings() methods of the 717
CIM_VirtualSystemManagementService class shall be implemented, and the values 718
1 (AddResourceSettingsSupported) and 7 (RemoveResourceSettingsSupported) shall be set in the 719
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance 720
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management 721
capabilities of the host system. 722

System Virtualization Profile DSP1042

24 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

If the addition and removal of virtual resources to virtual systems is not implemented, the values 723
1 (AddResourceSettingsSupported) and 7 (RemoveResourceSettingsSupported) shall not be set in the 724
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance 725
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management 726
capabilities of the host system. 727

7.4.6.3 Virtual system and resource modification 728

If the modification of virtual systems and virtual resources is implemented, the ModifyResourceSettings() 729
and ModifySystemSettings() methods of the CIM_VirtualSystemManagementService class shall be 730
implemented, and the values 5 (ModifyResourceSettingsSupported) and 731
6 (ModifySystemSettingsSupported) shall be set in the SynchronousMethodsSupported[] or 732
AsynchronousMethodsSupported[] array properties of the instance of the 733
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-734
ties of the host system. 735

If the modification of virtual systems and virtual resources is not implemented, the values 736
5 (ModifyResourceSettingsSupported) and 6 (ModifySystemSettingsSupported) shall not be set in the 737
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance 738
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management 739
capabilities of the host system. 740

7.5 Virtual system definition and modification 741

This profile specifies methods for the definition and modification of virtual systems. These method 742
specifications use the CIM_VirtualSystemSettingData class for the parameterization of system-specific 743
properties. Subsequent subclauses specify: 744

 how a client shall prepare instances of the CIM_VirtualSystemSettingData class that are used 745
as a parameter for a method that defines or modifies a virtual system 746

 how an implementation shall interpret instances of the CIM_VirtualSystemSettingData class that 747
are used as a parameter for a method that defines or modifies a virtual system 748

Definition requests for virtual systems are modeled through the 749
CIM_VirtualSystemManagementService.DefineSystem() method, and modification requests for virtual 750
system properties are modeled through the 751
CIM_VirtualSystemManagementService.ModifySystemSettings() method. 752

7.5.1 CIM_VirtualSystemSettingData.InstanceID property 753

A client shall set the value of the InstanceID property to NULL if the instance of the 754
CIM_VirtualSystemSettingData class is created locally. A client shall not modify the value of the 755
InstanceID property in an instance of the CIM_VirtualSystemSettingData class that was received from an 756
implementation and is sent back to the implementation as a parameter of a modification method. 757

The structure of the value of the InstanceID property is implementation specific. A client shall treat the 758
value as an opaque entity and shall not depend on the internal structure of the value. 759

An implementation shall use a non-NULL value to identify an existing instance of the 760
CIM_VirtualSystemSettingData class. If the value does not identify an instance of the 761
CIM_VirtualSystemSettingData class, an implementation shall return a return code that indicates an inva-762
lid parameter (see 8.2.4.3). 763

7.5.2 CIM_VirtualSystemSettingData.ElementName property 764

The implementation of the ElementName property is optional. 765

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 25

If the ElementName property is implemented for virtual system definition and modification, the provisions 766
in this subclause apply. 767

A client may set the value of the ElementName property to assign a user-friendly name to a virtual sys-768
tem. 769

In definition and modification requests, an implementation shall use the value of the ElementName prop-770
erty to assign a user-friendly name to the new virtual system. The user-friendly name does not have to be 771
unique within the set of virtual systems that are defined at the host system. 772

If the implementation supports modification requests that affect the value of the ElementName property, 773
the implementation shall support the CIM_EnabledLogicalElementCapabilities class for virtual systems as 774
specified in DSP1052. 775

7.5.3 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property 776

The implementation of the VirtualSystemIdentifier property is optional. 777

If the VirtualSystemIdentifier property is implemented for virtual system definition and modification, the 778
provisions in this subclause apply. 779

A client should set the value of the VirtualSystemIdentifier property to explicitly request an identifier for the 780
new virtual system. A client may set the value of the VirtualSystemIdentifier property to NULL. 781

An implementation shall use the value of the VirtualSystemIdentifier property to assign an identifier to the 782
new virtual system. If the value of the VirtualSystemIdentifier property is NULL, the value of the 783
VirtualSystemIdentifier property for the new virtual system is unspecified (implementation dependent). 784

Some implementations may accept an implementation-dependent pattern that controls the assignment of 785
a value to the VirtualSystemIdentifier property. For example, an implementation might interpret a regular 786
expression like "^VM\d{1,6}\s" to assign a value to the VirtualSystemIdentifier property that starts with the 787
letters "VM" and is followed by at least one and not more than six digits. 788

7.5.4 CIM_VirtualSystemSettingData.VirtualSystemType property 789

The implementation of the VirtualSystemType property is optional. 790

If the VirtualSystemType property is implemented for virtual system definition and modification, the 791
provisions in this subclause apply. 792

A client may set the value of the VirtualSystemType property to explicitly request a virtual system type for 793
the new virtual system. A client may set the value of the VirtualSystemType property to NULL, requesting 794
the implementation to assign a virtual system type according to rules specified in this subclause. If 795
requesting a value other than NULL, the client should determine the list of valid system types in advance 796
(see 9.2.7). 797

An implementation shall use the value of the VirtualSystemType property to assign a type to the new vir-798
tual system. If the value of the VirtualSystemType property is NULL, the implementation shall assign a 799
virtual system type in an implementation-dependent way. If the requested virtual system type is not sup-800
ported, an implementation shall fail the method execution with an error code of 4 (Method execution failed 801
because invalid parameters were specified by the client). 802

7.6 Virtual resource definition and modification 803

This profile specifies how to define and modify virtual resources using methods of the virtual system 804
management service. In these method specifications, the CIM_ResourceAllocationSettingData class is 805
used for parameterization of resource allocation specific properties. For specifications that define the use 806
of the CIM_ResourceAllocationSettingData class, see DSP1041, DSP1043, and profiles that specialize 807
these (such as for example, DSP1059). DSP1041 describes the use of the 808

System Virtualization Profile DSP1042

26 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

CIM_ResourceAllocationSettingData class, and DSP1043 introduces the concept of allowing a client to 809
determine the acceptable value sets for values of properties of the CIM_ResourceAllocationSettingData 810
class in virtual resource definition and modification requests. 811

7.7 Virtual system snapshots 812

This subclause models the representation and manipulation of snapshots of virtual systems. 813

The implementation of virtual system snapshots is optional. 814

If virtual system snapshots are implemented, the provisions in this subclause apply. 815

7.7.1 Virtual system snapshot service and capabilities 816

This subclause models elements of virtual system snapshot management in terms of the 817
CIM_VirtualSystemSnapshotService class and the CIM_VirtualSystemSnapshotServiceCapabilities class. 818

7.7.1.1 Virtual system snapshots 819

The implementation of virtual system snapshots is optional. 820

If virtual system snapshots are implemented, the provisions in this subclause apply. 821

The implementation includes the creation, destruction, and application of virtual system snapshots. 822

If virtual system snapshots are implemented, the following conditions shall be met: 823

 the CIM_VirtualSystemSnapshotService class shall be implemented and the following methods 824
shall be implemented: 825

– CreateSnapshot(), for at least one type of snapshot 826

– DestroySnapshot() 827

– ApplySnapshot() 828

 There shall be exactly one instance of the CIM_VirtualSystemSnapshotService class associated 829
to the central instance of this profile through an instance of the CIM_HostedService association. 830

If virtual system snapshots are not implemented, the CIM_VirtualSystemSnapshotService class shall not 831
be implemented. 832

7.7.1.2 CIM_VirtualSystemSnapshotServiceCapabilities class 833

The provisions in this subclause are conditional. 834

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 835

If the CIM_VirtualSystemSnapshotServiceCapabilities class is implemented, the provisions in this 836
subclause apply. 837

An instance of the CIM_VirtualSystemSnapshotServiceCapabilities class shall be used to represent the 838
capabilities of the virtual system snapshot service of a host system. The instance shall be associated with 839
the instance of the CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot 840
service through the CIM_ElementCapabilities association. 841

In the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that describes virtual system 842
snapshot service, all of the following values shall be set in either the SynchronousMethodsSupported[] 843
array property or the AsynchronousMethodsSupported[] array property: 844

 2 (CreateSnapshotSupported) 845

 3 (DestroySnapshotSupported) 846

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 27

 4 (ApplySnapshotSupported) 847

The implementation of the SynchronousMethodsSupported[] array property is conditional with respect to 848
at least one of the snapshot methods being implemented with synchronous behavior. A NULL value or an 849
empty value set shall be used to indicate that no methods are implemented with synchronous behavior. If 850
a method is designated within the value set of the SynchronousMethodsSupported[] property, that 851
method shall always exhibit synchronous behavior and shall not be designated within the value set of the 852
AsynchronousMethodsSupported[] property. 853

The implementation of the AsynchronousMethodsSupported[] array property is conditional with respect to 854
at least one of the snapshot methods being implemented with aynchronous behavior. A NULL value or an 855
empty value set shall be used to indicate that no methods are implemented with asynchronous behavior. 856

Further the SnapshotTypesSupported[] array property shall have a non-NULL value and contain at least 857
one element. Each element of the SnapshotTypesSupported[] array property shall designate one sup-858
ported type of snapshot. 859

7.7.2 Virtual system snapshot representation 860

The provisions in this subclause are conditional. 861

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 862

If the representation of virtual system snapshots is implemented, the provisions in this subclause apply. 863

Snapshots of virtual systems shall be represented by instances of the CIM_VirtualSystemSettingData 864
class. Each such instance shall be associated with the instance of the CIM_ComputerSystem class that 865
represents the virtual system that was the source of the snapshot through an instance of the 866
CIM_SnapshotOfVirtualSystem association. 867

7.7.3 Designation of the last applied snapshot 868

The provisions in this subclause are conditional. 869

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 870

If the designation of the last applied snapshot is implemented, the provisions in this subclause apply. 871

If a snapshot was applied to a virtual system, an instance of the CIM_LastAppliedSnapshot association 872
shall connect the instance of the CIM_ComputerSystem class that represents the virtual system and the 873
instance of the CIM_VirtualSystemSettingData class that represents the snapshot. The association 874
instance shall be actualized as different snapshots are applied. 875

7.7.4 Designation of the most current snapshot in branch 876

The implementation of the representation the most current snapshot in a branch is conditional. 877

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 878

If the designation of the most current snapshot in a branch is implemented, the provisions in this 879
subclause apply. 880

A branch of snapshots taken from a virtual system is started in one of two ways: 881

 A virtual system snapshot is applied to a virtual system. 882

In this case, the virtual system snapshot becomes the most current snapshot of a newly started 883
branch. 884

 A virtual system snapshot is captured from a virtual system. 885

System Virtualization Profile DSP1042

28 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

In this case, the virtual system snapshot becomes the most current snapshot in the branch. If no 886
branch exists, a new branch is created. 887

7.7.5 Virtual system snapshot capabilities 888

The provisions in this subclause are optional. 889

If virtual system snapshot capabilities are implemented, the provisions in this subclause apply. 890

This subclause models snapshot related capabilities of a virtual system in terms of the 891
CIM_VirtualSystemSnapshotCapabilities class. 892

7.7.5.1 CIM_VirtualSystemSnapshotCapabilities.SnapshotTypesEnabled[] array property 893

An implementation shall use the SnapshotTypesEnabled[] array property to convey information about the 894
enablement of snapshot types The value set of the SnapshotTypesEnabled[] array property shall desig-895
nate those snapshot types that are presently enabled (that is, may be invoked by a client). 896

NOTE: Elements may be added and removed from the array property as respective snapshot types are enabled for 897
the virtual system; the conditions for such changes are implementation specific. 898

7.7.5.2 CIM_VirtualSystemSnapshotCapabilities.GuestOSNotificationEnabled property 899

The implementation of the GuestOSNotificationEnabled property is optional. 900

If the GuestOSNotificationEnabled property is implemented, the provisions in this subclause apply. 901

An implementation may use the GuestOSNotificationEnabled property to convey information about the 902
capability of the guest operating system that is running within a virtual system to receive notifications 903
about an imminent snapshot operation. The behavior of the guest operating system in response to such a 904
notification is implementation dependent. For example, the guest operating system may temporarily sus-905
pend operations on virtual resources that might interfere with the snapshot operation. 906

8 Methods 907

This clause defines extrinsic methods and profile conventions for intrinsic methods. The specifications 908
provided in this clause apply in addition to the descriptions provided in the CIM Schema. 909

8.1 General behavior of extrinsic methods 910

This subclause models behavior applicable to all extrinsic methods that are specified in this profile. 911

8.1.1 Resource allocation requests 912

Some methods specify the ResourceSettings[] array parameter. If set to a value other than NULL, each 913
element of the ResourceSettings[] array parameter shall contain an embedded instance of the CIM_Re-914
sourceAllocationSettingData class that describes a resource allocation request for a virtual resource or 915
coherent set of virtual resources. 916

The use of the CIM_ResourceAllocationSettingData class as input for operations is specified in DSP1041. 917

One instance of the CIM_ResourceAllocationSettingData class may affect one virtual resource or a coher-918
ent set of virtual resources. For example, one instance of CIM_ResourceAllocationSettingData that has 919
the value of the ResourceType property set to 3 (Processor) and the value of the VirtualQuantity property 920
set to 2 requests the allocation of two virtual processors. 921

If one or more resources are not available, or not completely available, during the execution of a method 922
that requests the allocation of persistently allocated resources into a virtual system configuration, the 923
implementation may deviate from requested values, may ignore virtual resource allocation requests, or 924

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 29

both as long as the resulting virtual system is or remains potentially operational. Otherwise, the 925
implementation shall fail the method execution. 926

8.1.2 Method results 927

If a particular method is not implemented, a value of 1 (Not Supported) shall be returned. 928

If synchronous execution of a method succeeds, the implementation shall set a return value of 929
0 (Completed with No Error). 930

If synchronous execution of a method fails, the implementation shall set a return value of 2 (Failed) or a 931
more specific return code as specified with the respective method. 932

If a method is executed as an asynchronous task, the implementation shall perform all of the following ac-933
tions: 934

 Set a return value of 4096 (Job Started). 935

 Set the value of the Job output parameter to refer to an instance of the CIM_ConcreteJob class 936
that represents the asynchronous task. 937

 Set the values of the JobState and TimeOfLastStateChange properties in that instance to repre-938
sent the state and last state change time of the asynchronous task. 939

In addition, the implementation may present state change indications as task state changes occur. 940

If the method execution as an asynchronous task succeeds, the implementation shall perform all of the 941
following actions: 942

 Set the value of the JobState property to 7 (Completed). 943

 Provide an instance of the CIM_AffectedJobEntity association with property values set as fol-944
lows: 945

– The value of the AffectedElement property shall refer to the object that represents the top-946
level entity that was created or modified by the asynchronous task. For example, for the 947
DefineSystem() method, this is an instance of the CIM_ComputerSystem class, and for 948
the CreateSnapshot() method, this is an instance of the CIM_VirtualSystemSettingData 949
class that represents a snapshot of a virtual system. 950

– The value of the AffectingElement property shall refer to the instance of the 951
CIM_ConcreteJob class that represents the completed asynchronous task. 952

– The value of the first element in the ElementEffects[] array property (ElementEffects[0]) 953
shall be set to 5 (Create) for the DefineSystem() or CreateSnapshot() methods. Other-954
wise, this value shall be 0 (Unknown). 955

If the method execution as an asynchronous task fails, the implementation shall set the value of the 956
JobState property to 9 (Killed) or 10 (Exception). 957

8.1.3 Asynchronous processing 958

An implementation may support asynchronous processing of some methods specified in the 959
CIM_VirtualSystemManagementService class. 960

8.1.3.1 General requirements 961

All of the following conditions shall be met: 962

 Elements that convey information about which methods of the 963
CIM_VirtualSystemManagementService class are implemented for asynchronous execution 964
within an implementation are modeled in 7.4.4. 965

System Virtualization Profile DSP1042

30 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 Elements that convey information about which methods of the 966
CIM_VirtualSystemSnapshotService class are implemented for asynchronous execution within 967
an implementation are modeled in 7.7.1.1. 968

 Elements that convey information about whether a method is executed asynchronously are 969
modeled in 8.1.2. 970

8.1.3.2 Job parameter 971

The implementation shall set the value of the Job parameter as a result of an asynchronous execution of 972
a method of the CIM_VirtualSystemManagementService as follows: 973

 If the method execution is performed synchronously, the implementation shall set the value to 974
NULL. 975

 If the method execution is performed asynchronously, the implementation shall set the value to 976
refer to the instance of the CIM_ConcreteJob class that represents the asynchronous task. 977

8.2 Methods of the CIM_VirtualSystemManagementService class 978

This subclause models virtual system management services in terms of methods of the 979
CIM_VirtualSystemManagementService class. 980

8.2.1 CIM_VirtualSystemManagementService.DefineSystem() method 981

The implementation of the DefineSystem() method is conditional. 982

Condition: The definition and destruction of virtual systems is implemented; see 7.4.6.1. 983

If the DefineSystem() method is implemented, the provisions in this subclause apply; in addition behavior 984
applicable to all extrinsic methods is specified in 8.1.2. 985

The execution of the DefineSystem() method shall effect the creation of a new virtual system definition as 986
specified through the values of the SystemSettings parameter, the values of elements in the 987
ResourceSettings[] array parameter and elements of the configuration referred to by the value of the 988
ReferencedConfiguration parameter, and through default values that are established within the 989
implementation. 990

Table 2 contains requirements for parameters of this method. 991

Table 2 – DefineSystem() method: Parameters 992

Qualifiers Name Type Description/Values

IN

SystemSettings string See 8.2.1.2.

IN

ResourceSettings[] string See 8.2.1.3.

IN ReferencedConfiguration CIM_VirtualSystemSettingData REF See 8.2.1.4.

OUT ResultingSystem CIM_ComputerSystem REF See 8.2.1.5.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 31

8.2.1.1 Value preference rules 993

The DefineSystem() method facilitates the definition of a new virtual system at the host system, based on 994
client requirements specified through one or more virtual system configurations: 995

 "Input" virtual system configuration 996

The "Input" virtual system configuration is prepared locally by the client and provided in the form 997
of embedded instances of the CIM_VirtualSystemSettingData class in the SystemSettings pa-998
rameter and embedded instances of the CIM_ResourceAllocationSettingData class as values 999
for elements of the ResourceSettings[] array parameter. 1000

 "Reference" virtual system configuration 1001

The "Reference" virtual system configuration is a "Defined" virtual system configuration that al-1002
ready exists within the implementation; it is referenced by the ReferencedConfiguration 1003
parameter. 1004

An implementation shall define the virtual system based on "Input" and "Reference" configuration. It may 1005
extend a virtual system definition beyond client requirements based on implementation-specific rules and 1006
requirements. 1007

If only the "Reference" virtual system configuration is provided by the client, the implementation shall cre-1008
ate a copy or cloned configuration of the "Reference" virtual system configuration. 1009

If both configurations are provided by the client, the implementation shall give the "Input" virtual system 1010
configuration preference over the "Reference" configuration. An implementation may support this behavior 1011
at two levels: 1012

 The basic level supports the addition of resource allocations that were not requested by ele-1013
ments of the ResourceSettings[] array parameter, but that are defined in the "Reference" virtual 1014
system configuration. 1015

 The advanced level, in addition, supports amending incomplete resource requests. 1016

In this case the correlation of instances of the CIM_ResourceAllocationSettingData class in the 1017
"Input" configuration and in the "Reference" configuration shall be established through the value 1018
of the InstanceID parameter. If the value of the InstanceID parameter is identical for an instance 1019
in the "Input" configuration and an instance in the "Reference" configuration, these instances to-1020
gether describe one virtual resource allocation request, such that non-NULL property values 1021
specified in the "Input" configuration override those specified in the "Reference" configuration. 1022

If no value is specified for a property in the "Input" configuration or in the "Reference" configuration, the 1023
implementation may exhibit an implementation-dependent default behavior. DSP1059 and resource-type-1024
specific resource allocation DMTF management profiles may specify resource-type-specific behavior. 1025

If the DefineSystem() method is called without input parameters, the implementation may exploit a de-1026
fault behavior or may fail the method execution. 1027

NOTE: A client may inspect the "Reference" virtual system configuration before invoking the DefineSystem() 1028
method (see respective use cases in DSP1057). 1029

8.2.1.2 SystemSettings parameter 1030

A client should set the value of the SystemSettings parameter with an embedded instance of the 1031
CIM_VirtualSystemSettingData class that describes requested virtual system settings. The client may set 1032
the value of the SystemSettings parameter to NULL, requesting the implementation to select input values 1033
based on the rules specified in 8.2.1.1. 1034

An implementation shall interpret the value of the SystemSettings parameter as the system part of an 1035
"Input" virtual system configuration, and apply the rules specified in 8.2.1.1. 1036

System Virtualization Profile DSP1042

32 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

The use of the CIM_VirtualSystemSettingData class as input for operations specified by this profile is 1037
specified in 10.22. 1038

8.2.1.3 ResourceSettings[] array parameter 1039

A client should set the ResourceSettings[] array parameter and apply the specifications given in 8.1.1. 1040
The client may set the value of the ResourceSettings[] array parameter to NULL or provide an empty ar-1041
ray, requesting the implementation to define a default set of virtual resources (see 8.2.1.1). 1042

An implementation shall interpret the value of the ResourceSettings[] array parameter as the resource 1043
part of an "Input" virtual system configuration, and apply the value preference rules specified in 8.2.1.1. 1044

8.2.1.4 ReferencedConfiguration parameter 1045

A client may set a value of the ReferencedConfiguration parameter to refer to an existing "Defined" virtual 1046
system configuration. A client may set the value of the ReferencedConfiguration parameter to NULL, indi-1047
cating that a "Reference" configuration shall not be used. 1048

An implementation shall use the "Reference" virtual system configuration according to the rules specified 1049
in 8.2.1.1. 1050

8.2.1.5 ResultingSystem parameter 1051

The implementation shall set the value of the ResultingSystem parameter as follows: 1052

 If the method execution is performed synchronously and is successful, the value is set to refer-1053
ence the instance of the CIM_ComputerSystem class that represents the newly defined virtual 1054
system. 1055

 If the method execution is performed synchronously and fails, or if the method execution is per-1056
formed asynchronously, the value is set to NULL. 1057

8.2.1.6 Return codes 1058

An implementation shall indicate the result of the method execution by using the return code values speci-1059
fied in Table 3. 1060

Table 3 – DefineSystem() method: Return code values 1061

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.2 CIM_VirtualSystemManagementService.DestroySystem() method 1062

The implementation of the DestroySystem() method is conditional. 1063

Condition: The definition and destruction of virtual systems is implemented; see 7.4.6.1. 1064

If the DestroySystem() method is implemented, the provisions in this subclause apply; in addition 1065
behavior applicable to all extrinsic methods is specified in 8.1.2. 1066

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 33

The execution of the DestroySystem() method shall effect the destruction of the referenced virtual system 1067
and all related virtual system configurations, including snapshots. 1068

Table 4 contains requirements for parameters of this method. 1069

Table 4 – DestroySystem() method: Parameters 1070

Qualifiers Name Type Description/Values

IN AffectedSystem CIM_ComputerSystem REF See 8.2.2.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.2.1 AffectedSystem parameter 1071

A client shall set a value of the AffectedSystem parameter to refer to the instance of the 1072
CIM_ComputerSystem class that represents the virtual system to be destroyed. 1073

An implementation shall interpret the value of the AffectedSystem parameter to identify the virtual system 1074
that is to be destroyed. 1075

8.2.2.2 Return codes 1076

An implementation shall indicate the result of the method execution by using the return code values speci-1077
fied in Table 5. 1078

Table 5 – DestroySystem() method: Return code values 1079

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because the system could not be found.

5 Method execution failed because the affected system is in a state in which the implementation
rejects destruction.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.3 CIM_VirtualSystemManagementService.AddResourceSettings() method 1080
(Conditional) 1081

The implementation of the AddResourceSettings() method is conditional. 1082

Condition: The addition and the removal of virtual resources to virtual systems is implemented; see 1083
7.4.6.2. 1084

If the AddResourceSettings() method is implemented, the provisions in this subclause apply; in addition 1085
behavior applicable to all extrinsic methods is specified in 8.1.2. 1086

The execution of the AddResourceSettings() method shall effect the entry of resource allocation requests 1087
or resource allocations provided through the ResourceSettings[] array parameter in the affected virtual 1088
system configuration. 1089

Table 6 contains requirements for parameters of this method. 1090

System Virtualization Profile DSP1042

34 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Table 6 – AddResourceSettings() method: Parameters 1091

Qualifiers Name Type Description/Values

IN AffectedConfiguration CIM_VirtualSystemSettingData REF See 8.2.3.1.

IN ResourceSettings[] string See 8.2.3.2.

OUT ResultingResourceSettings[] CIM_ResourceAllocationSettingData
REF

See 8.2.3.3.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.3.1 AffectedConfiguration parameter 1092

A client shall set a value of AffectedConfiguration parameter to refer to the instance of the 1093
CIM_VirtualSystemSettingData class that represents the virtual system configuration that receives new 1094
resource allocations. 1095

An implementation shall interpret the value of the AffectedConfiguration parameter to identify the virtual 1096
system configuration that receives new resource allocations. 1097

8.2.3.2 ResourceSettings[] array parameter 1098

A client shall set the ResourceSettings[] parameter containing one or more input instances of the 1099
CIM_ResourceAllocationSettingData class as specified in a profile based on DSP1041 and on DSP1043, 1100
such as for example DSP1044 or DSP1047. 1101

If the value of the InstanceID property in any of the input CIM_ResourceAllocationSettingData instances 1102
is other than NULL, that value shall be ignored; however, the remaining values of the input instance shall 1103
be respected as defined in the resource type specific resource allocation profile. 1104

An implementation shall apply the specifications given in 8.1.1. 1105

8.2.3.3 ResultingResourceSettings[] array parameter 1106

The implementation shall set the value of the ResultingResourceSettings[] array parameter as follows: 1107

 to an array of references to instances of the CIM_ResourceAllocationSettingData class that 1108
represent resource allocations that were obtained during the execution of the method 1109

 to NULL, if the method is executed synchronously and fails, or if the method is executed 1110
asynchronously 1111

8.2.3.4 Return codes 1112

An implementation shall indicate the result of the method execution by using the return code values speci-1113
fied in Table 7. 1114

Table 7 – AddResourceSettings() method: Return code values 1115

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 35

Value Description

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.4 CIM_VirtualSystemManagementService.ModifyResourceSettings() method 1116

The implementation of the ModifyResourceSettings() method is conditional. 1117

Condition: The modification of virtual systems and resources is implemented; see 7.4.6.3. 1118

If the ModifyResourceSettings() method is implemented, the provisions in this subclause apply; in 1119
addition behavior applicable to all extrinsic methods is specified in 8.1.2. 1120

If implemented, the execution of the ModifyResourceSettings() method shall effect the modification of re-1121
source allocation requests that exist, with the implementation using instances of the 1122
CIM_ResourceAllocationSettingData class that are passed in through values of elements of the 1123
ResourceSettings[] array parameter. 1124

The execution of the ModifyResourceSettings() method shall effect the modification of resource alloca-1125
tions or resource allocation requests, such that non-key and non-NULL values of instances of the 1126
CIM_ResourceAllocationSettingData class provided as values for elements of the ResourceSettings[] ar-1127
ray parameter override respective values in instances identified through the InstanceID property. 1128

Table 8 contains requirements for parameters of this method. 1129

Table 8 – ModifyResourceSettings() method: Parameters 1130

Qualifiers Name Type Description/Values

IN ResourceSettings[] string See 8.2.4.1.

OUT ResultingResourceSettings[] CIM_ResourceAllocationSettingData
REF

See 8.2.4.2.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.4.1 ResourceSettings[] parameter 1131

The specifications in 8.1.1 apply. 1132

A client shall set the ResourceSettings[] parameter. Any instance of the 1133
CIM_ResourceAllocationSettingData class that is passed in as a value for elements of the 1134
ResourceSettings[] array parameter shall conform to all of the following conditions: 1135

 It shall represent requests for the modification of virtual resource state extensions, virtual re-1136
source definitions scoped by one particular virtual system, or both. 1137

 It shall have a valid non-NULL value in the InstanceID property that identifies a respective in-1138
stance of the CIM_ResourceAllocationSettingData class that represents an existing resource 1139
allocation or resource allocation request within the implementation. This should be assured 1140
through the execution of previously executed retrieve operations, such as the execution of 1141
extrinsic methods or intrinsic CIM operations that yield respective instances of the 1142
CIM_ResourceAllocationSettingData class. For example, the client may use the intrinsic 1143
GetInstance() CIM operation. 1144

The client shall modify such instances locally to reflect the desired modifications and finally pass 1145
them back in as elements of the ResourceSettings[] array parameter. Modifications shall not be 1146
applied to the InstanceID property that is the key property of the 1147
CIM_ResourceAllocationSettingData class. Further restriction may apply, such as from re-1148
source-type-specific resource allocation DMTF management profiles. 1149

System Virtualization Profile DSP1042

36 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

An implementation shall apply the specifications given in 8.1.1. The implementation shall ignore any ele-1150
ment of the ResourceSettings[] array property that does not identify, through the value of the InstanceID 1151
key property, an existing instance of the CIM_ResourceAllocationSettingData class within the 1152
implementation. 1153

8.2.4.2 ResultingResourceSettings[] parameter 1154

The implementation shall set the value of the ResultingResourceSettings[] array parameter as follows: 1155

 If the method was executed asynchronously, the value shall be set to NULL. 1156

 If the method was executed synchronously and one or more resources were successfully modi-1157
fied, for each successfully modified resource one element in the returned array shall reference 1158
the instance of the CIM_ResourceAllocationSettingData class that represents the modified re-1159
source allocation or resource allocation request. 1160

 If the method was executed synchronously and failed completely, the value shall be set to 1161
NULL. 1162

8.2.4.3 Return codes 1163

An implementation shall indicate the result of the method execution by using the return code values speci-1164
fied in Table 9. 1165

Table 9 – ModifyResourceSettings() Method: Return code values 1166

Value Description

0 Method was successfully executed; all modification requests were successfully processed.

1 Method is not supported.

2 Method execution failed, but some modification requests may have been processed.

3 Method execution failed because a timeout condition occurred, but some modification requests
may have been processed.

4 Method execution failed because invalid parameters were specified by the client; no modification
requests were processed.

5 Method execution failed because the implementation does not support modifications on virtual
resource allocations for the present virtual system state of the virtual system scoping virtual
resources affected by this resource allocation modification request.

6 Method execution failed because incompatible parameters were specified by the client; no
modification requests were processed.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

NOTE: Even if the return code indicates a failure, some modification requests may have been successfully executed. In this
case, the set of successfully modified resources is conveyed through the value of the ResultingResourceSettings
parameter.

8.2.5 CIM_VirtualSystemManagementService.ModifySystemSettings() method 1167

The implementation of the ModifySystemSettings() method is conditional. 1168

Condition: The modification of virtual systems and resources is implemented; see 7.4.6.3. 1169

If the ModifySystemSettings() method is implemented, the provisions in this subclause apply; in addition 1170
behavior applicable to all extrinsic methods is specified in 8.1.2. 1171

The execution of the ModifySystemSettings() method shall effect the modification of system settings, 1172
such that non-key and non-NULL values of the instance of the CIM_VirtualSystemSettingData class that 1173

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 37

is provided through the SystemSettings parameter override respective values in the instance identified 1174
through the value of the InstanceID property. 1175

Table 10 contains requirements for parameters of this method. 1176

Table 10 – ModifySystemSettings() Method: Parameters 1177

Qualifiers Name Type Description/Values

IN SystemSettings string See 8.2.5.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.5.1 SystemSettings parameter 1178

A client shall set the SystemSettings parameter. Any instance of the CIM_VirtualSystemSettingData class 1179
that is passed in as a value of the SystemSettings parameter shall have a valid non-NULL value in the 1180
InstanceID property that identifies a respective instance of the CIM_VirtualSystemSettingData class 1181
existing within the implementation. A client shall obtain such an instance before invoking the 1182
ModifySystemSettings() method (for example, by using an extrinsic method or intrinsic CIM operation 1183
that yields a respective instance as a result). For example, the client may use the intrinsic GetInstance() 1184
CIM operation. The client shall then modify the instance locally so that it reflects the desired modifications 1185
and finally pass it back in as a value of the SystemSettings parameter. 1186

The implementation shall ignore any value of the SystemSettings parameter that does not identify, 1187
through the value of the InstanceID key property, an existing instance of the 1188
CIM_VirtualSystemSettingData class within the implementation. 1189

8.2.5.2 Return codes 1190

An implementation shall indicate the result of the method execution by using the return code values speci-1191
fied in Table 11. 1192

Table 11 – ModifySystemSettings() Method: Return code values 1193

Value Description

0 Method was successfully executed.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

5 Method execution failed because the implementation does not support modifications on virtual
system settings for the present virtual system state of the virtual system identified by the input
system settings.

6 Method execution failed because incompatible parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.6 CIM_VirtualSystemManagementService.RemoveResourceSettings() method 1194

The implementation of the RemoveResourceSettings() method is conditional. 1195

Condition: The addition and the removal of virtual resources to virtual systems is implemented; see 1196
7.4.6.2. 1197

System Virtualization Profile DSP1042

38 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

If the RemoveResourceSettings() method is implemented, the provisions in this subclause apply; in 1198
addition behavior applicable to all extrinsic methods is specified in 8.1.2. 1199

The execution of the RemoveResourceSettings() method shall effect the removal of resource allocation 1200
requests identified by the value of elements of the ResourceSettings[] parameter. 1201

Table 12 contains requirements for parameters of this method. 1202

Table 12 – RemoveResourceSettings() Method: Parameters 1203

Qualifiers Name Type Description/Values

IN ResourceSettings[] CIM_ResourceAllocationSettingData REF See 8.2.6.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.6.1 ResourceSettings[] array parameter 1204

A client shall set the ResourceSettings[] array parameter. The value of any element specified in the 1205
ResourceSettings[] array parameter shall represent requests for the removal of virtual resource state 1206
extensions, of virtual resource definitions, or both in the scope of one virtual system. 1207

8.2.6.2 Return codes 1208

An implementation shall indicate the result of the method execution by using the return code values speci-1209
fied in Table 13. 1210

Table 13 – RemoveResourceSettings() Method: Return code values 1211

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3 Methods of the CIM_VirtualSystemSnapshotService class 1212

This subclause models virtual system snapshot management in terms of methods of the 1213
CIM_VirtualSystemSnapshotService class. 1214

8.3.1 CIM_VirtualSystemSnapshotService.CreateSnapshot() method 1215

The implementation of the CreateSnapshot() method is conditional. 1216

Condition: The creation, destruction and application of virtual system snapshots is implemented; see 1217
7.7.1.1. 1218

If the CreateSnapshot() method is implemented, the provisions in this subclause apply; in addition 1219
behavior applicable to all extrinsic methods is specified in 8.1.2. 1220

The execution of the CreateSnapshot() method shall effect the creation of a snapshot of the affected vir-1221
tual system. The snapshot shall have the type that is designated by the value of the SnapshotType 1222
parameter (see 8.3.1.3). 1223

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 39

A full snapshot shall contain all information required to restore the complete virtual system and its re-1224
sources to exactly the situation that existed when the snapshot was created. Other types of snapshots 1225
may contain less information. 1226

If the virtual system is in the "Active" virtual system state, it may continue to perform tasks but may be 1227
temporarily paused as the creation of the snapshot requires the capturing of state information. 1228

Table 14 contains requirements for parameters of this method. 1229

Table 14 – CreateSnapshot() method: Parameters 1230

Qualifiers Name Type Description/Values

IN AffectedSystem CIM_ComputerSystem REF See 8.3.1.1.

IN SnapshotSettings string See 8.3.1.2.

IN SnapshotType uint16 See 8.3.1.3.

OUT ResultingSnapshot CIM_VirtualSystemSettingData REF See 8.3.1.4.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.3.1.1 AffectedSystem parameter 1231

A client shall set a value of the AffectedSystem parameter to refer to the instance of the 1232
CIM_ComputerSystem class that represents the virtual system that is the source for the snapshot. 1233

An implementation shall interpret the value of the AffectedSystem parameter to identify the virtual system 1234
that is the source for the snapshot. 1235

8.3.1.2 SnapshotSettings parameter 1236

A client may set a value of the SnapshotSettings parameter with an embedded instance of a 1237
CIM_SettingData class. It is assumed that an implementation-specific class derived from 1238
CIM_SettingData contains additional implementation-specific properties that enable some control over 1239
characteristics of the snapshot process. 1240

An implementation shall use the value of the SnapshotSettings parameter to control the characteristics of 1241
the snapshot process. 1242

8.3.1.3 SnapshotType parameter 1243

A client shall set the value of the SnapshotType parameter to designate the intended type of snapshot. 1244
The value shall be one of the values set in the SnapshotTypesSupported[] array property in the instance 1245
of the CIM_VirtualSystemSnapshotServiceCapabilities class that is related to the snapshot service. 1246

An implementation shall use the value of the SnapshotType parameter to determine the requested type of 1247
snapshot. If a value is not specified or is not one of the values set in the SnapshotTypesSupported[] array 1248
property in the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that is related to the 1249
snapshot service, an implementation shall fail the method execution and set a return code of 6 (Invalid 1250
Type). 1251

8.3.1.4 ResultingSnapshot parameter 1252

The implementation shall set the value of the ResultingSnapshot parameter as follows: 1253

 If the method execution is performed synchronously and is successful, the value shall be set to 1254
reference the instance of the CIM_VirtualSystemSettingData class that represents the newly 1255
created virtual system snapshot. 1256

System Virtualization Profile DSP1042

40 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 If the method execution is performed synchronously and fails, or if the method execution is per-1257
formed asynchronously, the value shall be set to NULL. 1258

 If the method execution is performed asynchronously and is successful, see 8.1.2 to locate the 1259
instance of the CIM_VirtualSystemSettingData class that represents the newly created virtual 1260
system snapshot. 1261

8.3.1.5 Return codes 1262

An implementation shall indicate the result of the method execution by using the return code values speci-1263
fied in Table 15. 1264

Table 15 – CreateSnapshot() method: Return code values 1265

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected system is in a state in which the implementation
rejects capturing a snapshot.

6 Method execution failed because no snapshot or an unsupported type of snapshot was re-
quested.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3.2 VirtualSystemSnapshotService.DestroySnapshot() method 1266

The implementation of the DestroySnapshot() method is conditional. 1267

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 1268

If the DestroySnapshot() method is implemented, the provisions in this subclause apply; in addition 1269
behavior applicable to all extrinsic methods is specified in 8.1.2. 1270

The execution of the DestroySnapshot() method shall effect the destruction of the affected virtual system 1271
snapshot. Dependency relationships from other snapshots to the affected snapshot shall be updated so 1272
that the affected snapshot is no longer referenced. If the snapshot was persistently established to be used 1273
during virtual system activation, the implementation may assign a different snapshot to be used for subse-1274
quent virtual system activations, or may fall back to the "Default" virtual system configuration to be used 1275
for future activations. If a virtual system was activated using the snapshot and is still in a state other than 1276
the "Defined" virtual system state, the active virtual system shall not be affected by the execution of the 1277
DestroySnapshot() method. 1278

Table 16 contains requirements for parameters of this method. 1279

Table 16 – DestroySnapshot() method: Parameters 1280

Qualifiers Name Type Description/Values

IN AffectedSnapshot CIM_VirtualSystemSettingData REF See 8.3.2.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 41

8.3.2.1 AffectedSnapshot parameter 1281

A client shall set a value of the AffectedSnapshot parameter to refer to the instance of the 1282
CIM_VirtualSystemSettingData class that represents a snapshot. 1283

An implementation shall interpret the value of the AffectedSnapshot parameter to identify the snapshot 1284
that is to be destroyed. 1285

8.3.2.2 Return codes 1286

An implementation shall indicate the result of the method execution using the return code values specified 1287
by Table 17. 1288

Table 17 – DestroySnapshot() method: Return code values 1289

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected snapshot is in a state in which the implementation
rejects destroying a snapshot.

6 Method execution failed because the affected snapshot is of a type that is not destroyable.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3.3 VirtualSystemSnapshotService.ApplySnapshot() method 1290

The implementation of the ApplySnapshot() method is conditional. 1291

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 1292

If the ApplySnapshot() method is implemented, the provisions in this subclause apply; in addition 1293
behavior applicable to all extrinsic methods is specified in 8.1.2. 1294

The execution of the ApplySnapshot() method shall indicate that the snapshot is used for the next 1295
activation of the associated virtual system (the virtual system that was the source for the snapshot). The 1296
method execution shall have one or both of the following effects: 1297

 The snapshot is persistently established to be used for subsequent activations. 1298

 The virtual system is immediately activated or recycled, using the snapshot. 1299

Table 18 contains requirements for parameters of this method. 1300

Table 18 – ApplySnapshot() method: Parameters 1301

Qualifiers Name Type Description/Values

IN Snapshot CIM_VirtualSystemSettingData REF See 8.3.3.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

System Virtualization Profile DSP1042

42 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

8.3.3.1 Snapshot parameter 1302

A client shall set a value of the Snapshot parameter to refer to the instance of the 1303
CIM_VirtualSystemSettingData class that represents a snapshot. 1304

An implementation shall interpret the value of the Snapshot parameter to identify the snapshot that is to 1305
be applied. 1306

8.3.3.2 Return codes 1307

An implementation shall indicate the result of the method execution by using the return code values speci-1308
fied in Table 19. 1309

Table 19 – ApplySnapshot() method: Return code values 1310

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected system is in a state where snapshots cannot be
applied.

6 Method execution failed because the type of the affected system does not support the
application of a snapshot.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.4 Profile conventions for operations 1311

The default list of operations for all classes is: 1312

GetInstance() 1313

EnumerateInstances() 1314

EnumerateInstanceNames() 1315

For classes that are referenced by an association, the default list also includes 1316

Associators() 1317

AssociatorNames() 1318

References() 1319

ReferenceNames() 1320

8.4.1 CIM_AffectedJobElement 1321

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1322

NOTE Related profiles may define additional requirements on operations for the profile class. 1323

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 43

8.4.2 CIM_ComputerSystem 1324

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1325

NOTE Related profiles may define additional requirements on operations for the profile class. 1326

8.4.3 CIM_ConcreteJob 1327

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1328

NOTE Related profiles may define additional requirements on operations for the profile class. 1329

8.4.4 CIM_Dependency 1330

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1331

NOTE Related profiles may define additional requirements on operations for the profile class. 1332

8.4.5 CIM_ElementCapabilities 1333

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1334

NOTE Related profiles may define additional requirements on operations for the profile class. 1335

8.4.6 CIM_ElementConformsToProfile 1336

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1337

NOTE Related profiles may define additional requirements on operations for the profile class. 1338

8.4.7 CIM_HostedDependency 1339

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1340

NOTE Related profiles may define additional requirements on operations for the profile class. 1341

8.4.8 CIM_HostedService 1342

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1343

NOTE Related profiles may define additional requirements on operations for the profile class. 1344

8.4.9 CIM_LastAppliedSnapshot 1345

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1346

NOTE Related profiles may define additional requirements on operations for the profile class. 1347

8.4.10 CIM_MostCurrentSnapshotInBranch 1348

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1349

NOTE Related profiles may define additional requirements on operations for the profile class. 1350

8.4.11 CIM_ReferencedProfile 1351

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1352

NOTE Related profiles may define additional requirements on operations for the profile class. 1353

System Virtualization Profile DSP1042

44 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

8.4.12 CIM_RegisteredProfile 1354

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1355

NOTE Related profiles may define additional requirements on operations for the profile class. 1356

8.4.13 CIM_ServiceAffectsElement 1357

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1358

NOTE Related profiles may define additional requirements on operations for the profile class. 1359

8.4.14 CIM_SnapshotOfVirtualSystem 1360

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1361

NOTE Related profiles may define additional requirements on operations for the profile class. 1362

8.4.15 CIM_System 1363

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1364

NOTE Related profiles may define additional requirements on operations for the profile class. 1365

8.4.16 CIM_VirtualSystemManagementCapabilities 1366

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1367

NOTE Related profiles may define additional requirements on operations for the profile class. 1368

8.4.17 CIM_VirtualSystemManagementService 1369

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1370

NOTE Related profiles may define additional requirements on operations for the profile class. 1371

8.4.18 CIM_VirtualSystemSnapshotService 1372

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1373

NOTE Related profiles may define additional requirements on operations for the profile class. 1374

8.4.19 CIM_VirtualSystemSnapshotCapabilities 1375

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1376

NOTE Related profiles may define additional requirements on operations for the profile class. 1377

8.4.20 CIM_VirtualSystemSnapshotServiceCapabilities 1378

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1379

NOTE Related profiles may define additional requirements on operations for the profile class. 1380

9 Use Cases 1381

This clause contains informative text only. 1382

The following use cases and object diagrams illustrate use of –this profile. They are for informational pur-1383
poses only and do not introduce behavioral requirements for implementations of the profile. 1384

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 45

9.1 General assumptions 1385

For all use cases, it is assumed that a client performs intrinsic CIM operations, extrinsic CIM operations, 1386
or both. 1387

For all use cases except the use case described in 9.2.1, the following conditions are implicitly assumed: 1388

 The client knows the URL of a WBEM service that exposes an implementation of this profile. 1389

 The client is able to communicate with the WBEM service through a specified CIM protocol. An 1390
example is the use of the http protocol as described in DSP0200. The client may use a facility 1391
like a CIM client API to perform the encoding and decoding of CIM messages. 1392

9.2 Discovery, localization, and inspection 1393

This set of use cases describes how a client obtains access to an implementation, detects the central and 1394
scoped instances, and analyzes information available through these instances. Figure 3 outlines a sample 1395
situation that is referenced by some of the use-case descriptions in subsequent subclauses. 1396

System Virtualization Profile DSP1042

46 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

RegisteredOrganization = 2 (DMTF)
RegisterdName = "System Virtualization"
RegisteredVersion = "1.0.0"

SVP_1 : RegisteredProfile

Name = "DE24672408670001"

HOST_1 : System

VSMS_1 : VirtualSystemManagementService

HostedService

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Processor Resource Allocation"
RegisteredVersion = "1.0.0"

PROC_RAP : RegisteredProfile

ReferencedProfile

Interop
Namespace

VirtualSystemTypesSupported = {"Default"}
SynchronousMethodsSupported = {"1","3","5","6","7"}
AsynchronousMethodsSupported = {"2"}
IndicationsSupported = NULL

VSMC_1 : VirtualSystemManagementCapabilities

ElementCapabilities

InstanceID = "DE24672408680001"
PoolID = "PROC_POOL1"
Primordial = True
Capacity = 6
Reserved = 2
ResourceType = 3 (Processor)
ResourceSubType = "Dedicated Proc."
AllocationUnits = "Processor"

PROC_POOL1 : ResourcePool

HostedResourcePool

Implementation
Namespace

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Memory Resource Allocation"
RegisteredVersion = "1.0.0"

MEM_RAP : RegisteredProfile

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Generic Device Resource Allocation"
RegisteredVersion = "1.0.0"

GEN_RAP : RegisteredProfile

ResourceType = 3 (Processor)
SharingMode = 3 (Shared)

CAP_PROC2 : AllocationCapabilities

InstanceID = "DE24672408682"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

CAP_DEF : RASD

ValueRole = 0 (Default)
ValueRange = 0 (Point)
PropertyPolicy = 0 (Independent)

P2SDCD : SettingsDefineCapabilities

ElementCapabilities

PROC0 : Processor PROC1 : Processor PROC2 : Processor

PROC3 : Processor PROC4 : Processor PROC5 : Processor

PROC6 : Processor PROC7 : Processor PROC8 : Processor

HostedDevice

ElementConformsToProfile

ConcreteComponent

ValueRole = 3 (Supported)
ValueRange = 2 (Minimums)
PropertyPolicy = 0 (Independent)

P2SDCN : SettingsDefineCapabilities
InstanceID = "DE24672408683"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

CAP_MIN : RASD

ValueRole = 3 (Supported)
ValueRange = 3 (Maximums)
PropertyPolicy = 0 (Independent)

P2SDCX : SettingsDefineCapabilities InstanceID = "DE24672408684"
PoolID = "PROC_POOL2"
ResourceType = 2 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 4
Weight = 1000

CAP_MAX : RASD

InstanceID = "DE24672408680002"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Primordial = True

PROC_POOL2 : ResourcePool

InstanceID = "DE24672408690001"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Primordial = True

MEM_POOL : ResourcePool

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

VSSS_1 : VirtualSystemSnapshotService

VSSSC_1 : VirtualSystemSnapshotServiceCapabilities

 1397

Figure 3 – System Virtualization Profile instance diagram: Discovery, localization, and inspection 1398

9.2.1 SLP-Based discovery of CIM object managers hosting implementations of this 1399
Profile 1400

The service location protocol (SLP) is used to locate WBEM services. A WBEM service that implements 1401
SLP as a discovery mechanism is required to register with SLP all instances of the CIM_RegisteredProfile 1402
class that reside in the Interop namespace. An SLP service type is used to identify entities that are 1403
registered with SLP. An SLP service type is a structured string variable. 1404

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 47

Assumption: This profile is registered by at least one WBEM service that maintains a registration with an 1405
SLP Directory Agent. The registration includes information about registered DMTF management profiles. 1406
The client is able to make SLP calls. 1407

 The client invokes the SLPFindSrvs() SLP function as follows: 1408

– The value of the srvtype parameter is set to "service:wbem". 1409

– The value of the scopelist parameter is set to "default". 1410

– The value of the filter parameter is set to "(RegisteredProfilesSupported=DMTF:System 1411
Virtualization)". 1412

Result: Each URL in a list of URLs identifies a WBEM service where this profile is implemented. 1413

9.2.2 Locate conformant implementations using the EnumerateInstances() operation 1414

Assumption: The client knows the URL of a WBEM service hosting implementations of this profile (see 1415
9.2.1). 1416

1) Using the URL, the client invokes the intrinsic EnumerateInstances() CIM operation with the 1417
value of the ClassName input parameter set to "CIM_RegisteredProfile". 1418

The result is a list of instances of the CIM_RegisteredProfile class. 1419

1) The client iterates over the list of instances of the CIM_RegisteredProfile class and selects in-1420
stances where 1421

– the RegisteredOrganization property has a value of 2 (DMTF) 1422

– the RegisteredName property has a value of "System Virtualization" 1423

– the RegisteredVersion property has a value equal to or greater than "1.0.0" 1424

Result: The client knows a set of instances of the CIM_RegisteredProfile class, each representing an im-1425
plementation of this profile. 1426

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents an imple-1427
mentation of this profile; it is tagged SVP_1. 1428

9.2.3 Locate conformant implementations using the ExecuteQuery() operation 1429

Assumption: The client knows the URL of a WBEM service hosting implementations of this profile (see 1430
9.2.1). 1431

 Using the URL, the client invokes the intrinsic ExecuteQuery() CIM operation as follows: 1432

– The value of the QueryLanguage input parameter is set to "CIM:CQL". 1433

– The value of the Query input parameter is set to "SELECT * FROM CIM_RegisteredProfile 1434
WHERE RegisteredName = ‘System Virtualization’ AND RegisteredVersion >= ‘1.0.0’". 1435

Result: The client knows a set of instances of the CIM_RegisteredProfile class, each representing an im-1436
plementation of this profile. 1437

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents an imple-1438
mentation of this profile; it is tagged SVP_1. 1439

9.2.4 Locate host systems represented by central instances of this profile 1440

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that 1441
represents an implementation of this profile (see 9.2.2 or 9.2.3). 1442

 The client invokes the intrinsic AssociatorNames() CIM operation as follows: 1443

System Virtualization Profile DSP1042

48 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

– The value of the ObjectName parameter is set to refer to the instance of the 1444
CIM_RegisteredProfile class. 1445

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile". 1446

– The value of the ResultClass parameter is set to "CIM_System". 1447

Result: The client knows a set of references to instances of the CIM_System class that represent host 1448
systems that are central and scoping instances of this profile. 1449

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents a host sys-1450
tem that is a central and scoping instance of this profile; it is tagged HOST_1. 1451

9.2.5 Locate implementations of scoped resource allocation profiles 1452

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that 1453
represents an implementation of this profile (see 9.2.2 or 9.2.3). 1454

1) The client invokes the intrinsic Associators() CIM operation to obtain a the list of scoped DMTF 1455
management profiles, as follows: 1456

– The value of the ObjectName parameter is set to refer to the instance of the 1457
CIM_RegisteredProfile class. 1458

– The value of the AssocClass parameter is set to "CIM_ReferencedProfile". 1459

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile". 1460

The result is a set of instances of the CIM_RegisteredProfile class that each represent an imple-1461
mentation of a DMTF management profile that is scoped by this profile. 1462

2) For each instance of the CIM_RegisteredProfile class, the client determines whether the value 1463
of the RegisteredName property matches the registered name of one of the scoped resource 1464
allocation DMTF management profiles as specified by Table 1. 1465

If the value does not match any name of a resource allocation DMTF management profile 1466
scoped by this profile, the client ignores that instance of the CIM_RegisteredProfile class. 1467

Result: The client knows a set of instances of the CIM_RegisteredProfile class that each represent an im-1468
plementation of a resource allocation DMTF management profile that is scoped by this profile. 1469

In the example shown in Figure 3, three instances of the CIM_RegisteredProfile class are associated with 1470
the instance of the CIM_RegisteredProfile class that is tagged SVP_1 and represents a central instance 1471
of this profile. These instances represent implementations of scoped resource allocation DMTF 1472
management profiles: 1473

 The instance tagged PROC_RAP represents an implementation of DSP1044. 1474

 The instance tagged GEN_RAP represents an implementation of DSP1059. 1475

 The instance tagged MEM_RAP represents an implementation of DSP1045. 1476

9.2.6 Locate virtual system management service 1477

Assumption: The client knows a reference to an instance of the CIM_System class that represents a 1478
host system that is a central instance of this profile (see 9.2.4). 1479

 The client invokes the intrinsic AssociatorNames() CIM operation as follows: 1480

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 1481
class. 1482

– The value of the AssocClass parameter is set to "CIM_HostedService". 1483

– The value of the ResultClass parameter is set to "CIM_VirtualSystemManagementService". 1484

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 49

Result: The client knows a reference to the instance of the CIM_VirtualSystemManagementService class 1485
that represents the virtual system management service that serves the host system. If the operation is 1486
successful, the size of the result set is 1. 1487

In the example shown in Figure 3, one instance of the CIM_VirtualSystemManagementService class 1488
serves the host system; it is tagged VSMS_1. 1489

9.2.7 Determine the capabilities of an implementation 1490

Assumption: The client knows a reference to an instance of the CIM_System class that represents a 1491
host system that is a central instance of this profile (see 9.2.4). 1492

1) The client invokes the intrinsic Associators() CIM operation as follows: 1493

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 1494
class. 1495

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities". 1496

– The value of the ResultClass parameter is set to 1497
"CIM_VirtualSystemManagementCapabilities". 1498

The result is a list of instances of the CIM_VirtualSystemManagementCapabilities class. If the 1499
operation is successful, the size of the result set is 1. 1500

3) The client analyzes the instance of the CIM_VirtualSystemManagementCapabilities class. 1501

– The VirtualSystemTypesSupported[] array property lists identifiers of virtual system types 1502
that the implementation supports. 1503

– The SynchronousMethodsSupported[] array property lists identifiers of methods of the 1504
CIM_VirtualSystemManagementService class that are implemented with synchronous 1505
method execution only. 1506

– The AsynchronousMethodsSupported[] array property lists identifiers of methods of the 1507
CIM_VirtualSystemManagementService class that are implemented with synchronous and 1508
asynchronous method execution. 1509

– The IndicationsSupported[] array property lists identifiers of types of indications that the 1510
implementation supports. 1511

Result: The client knows the capabilities of the host system in terms of properties of the 1512
CIM_VirtualSystemManagementCapabilities class. 1513

In the example shown in Figure 3, one instance of the CIM_VirtualSystemManagementCapabilities class 1514
is associated with the host system; it is tagged VSMC_1. 1515

 The VirtualSystemTypesSupported[] array property lists one element with the value "Default", 1516
which indicates that the implementation supports one virtual system type named "Default". The 1517
semantics are implementation specific. 1518

 The SynchronousMethodsSupported[] array property lists enumerated values: 1519
{ 1 (AddResourceSettingsSupported), 3 (DestroySystemSupported), 1520
5 (ModifyResourceSettingsSupported), 6 (ModifySystemSettingsSupported), and 1521
7 (RemoveResourcesSupported) }, which indicates that the AddResources() method, the 1522
DestroySystem() method, the ModifyResourceSettings() method, and the 1523
RemoveResourceSettings() method are implemented by the implementation with synchronous 1524
execution. 1525

 The AsynchronousMethodsSupported[] array property lists the enumerated value 1526
{ 2 (DefineSystemSupported) }, which indicates that the DefineSystem() method is 1527
implemented by the implementation with synchronous or asynchronous execution. 1528

System Virtualization Profile DSP1042

50 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 The value of the IndicationsSupported[] array property is NULL, which indicates that indications 1529
are not implemented by the implementation. 1530

9.2.8 Locate hosted resource pools of a particular resource type 1531

Assumption: The client knows a reference to an instance of the CIM_System class that represents a 1532
host system that is a central instance of this profile (see 9.2.4). 1533

1) The client invokes the intrinsic Associators() CIM operation as follows: 1534

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 1535
class. 1536

– The value of the AssocClass parameter is set to "CIM_HostedResourcePool". 1537

– The value of the ResultClass parameter is set to "CIM_ResourcePool". 1538

The result is a list of instances of the CIM_ResourcePool class. 1539

4) For each instance of CIM_ResourcePool, the client determines whether the value of the 1540
ResourceType property matches the requested resource type. 1541

If the value does not match the requested resource type, the client drops that instance of the 1542
CIM_ResourcePool class from the list. 1543

Result: The client knows a set of instances of the CIM_ResourcePool class, each representing a hosted 1544
resource pool of the requested resource type. 1545

9.2.9 Obtain a set of central instances of scoped resource allocation profiles 1546

Resource allocation DMTF management profiles are based on DSP1041 that defines the 1547
CIM_ResourcePool class as the central class. The procedure for the determination of central instances of 1548
scoped DMTF management profiles depends on the profile advertisement methodology applied by the 1549
respective implementations. 1550

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that 1551
represents an implementation of a scoped DMTF management profile (see 9.2.5). 1552

 The client invokes the intrinsic Associators() CIM operation to obtain the list of instances of the 1553
CIM_ResourcePool class that are central instances of the scoped DMTF management profiles, 1554
as follows: 1555

– The value of the ObjectName parameter is set to refer to the instance of the 1556
CIM_RegisteredProfile class 1557

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile". 1558

– The value of the ResultClass parameter is set to "CIM_ResourcePool". 1559

The result is a list of instances of the CIM_ResourcePool class; the list may be empty. 1560

– If the list is not empty, the central class profile implementation advertisement methodology 1561
is applied by the implementation for the scoped resource allocation DMTF management 1562
profile. In this case, the list is the result for this use case. 1563

– If the list is empty, the scoping class profile implementation advertisement methodology is 1564
applied by the implementation for the scoped resource allocation DMTF management pro-1565
file. In this case, the client 1566

– needs to know the resource type associated with the scoped resource allocation 1567
DMTF management profile 1568

– applies use case 9.2.8 to obtain a list of instances of the CIM_ResourcePool class 1569
that each represent a resource pool of that particular resource type. 1570

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 51

The resulting list is the result for this use case. 1571

Result: The client knows a list of instances of the CIM_ResourcePool class, each representing a central 1572
instance of a scoped resource allocation DMTF management profile. 1573

9.2.10 Determine implemented resource types 1574

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that 1575
represents an implementation of this profile (see 9.2.2 or 9.2.3). 1576

1) The client locates implementations of DMTF management profiles that are scoped by this profile 1577
(see 9.2.5). 1578

The result is a list of references to instances of the CIM_RegisteredProfile class that represent 1579
implementations of DMTF management profiles that are scoped by this profile. 1580

5) For each instance of CIM_RegisteredProfile, the client obtains the set of instances of the 1581
CIM_ResourcePool class that are central instances of the respective scoped resource allocation 1582
DMTF management profiles and represent a conformant resource pool (see 9.2.9). 1583

The result is a list of instances of the CIM_ResourcePool class that are central instances of 1584
scoped resource allocation DMTF management profiles. 1585

6) The client creates an initially empty list of integer values. For each instance that is a result from 1586
step 5), the client determines whether the value of property ResourceType is already repre-1587
sented in the list: 1588

– If that value is already contained in the list, the client ignores the element. 1589

– If that value is not yet contained in the list, the client adds a new element to the list with 1590
that value. 1591

Result: The client knows a list of integer values, each designating a resource type that is supported by 1592
the implementation. 1593

In the example shown in Figure 3, three instances of the CIM_RegisteredProfile class are associated with 1594
the instance of the CIM_RegisteredProfile class that represents the implementation of this profile. These 1595
instances are central instances of scoped resource allocation DMTF management profiles: 1596

 The instance tagged PROC_RAP represents an implementation of DSP1044. 1597

 The instance tagged GEN_RAP represents an implementation of DSP1059. 1598

 The instance tagged MEM_RAP represents an implementation of DSP1045. 1599

These instances are all associated with respective instances of the CIM_ResourcePool class, indicating 1600
that in this example in all cases the central class profile advertisement methodology is in use: 1601

 The instance tagged PROC_RAP is associated with two instances that represent resource 1602
pools for the allocation of processors. They show a value of 3 (Processor) for the ResourceType 1603
property and are tagged PROC_POOL1 and PROC_POOL2. 1604

 The instance tagged GEN_RAP is associated with one instance that represents a resource pool 1605
for the allocation of virtual disks. It shows a value of 19 (Storage Extent) for the ResourceType 1606
property and is tagged DISK_POOL. 1607

 The instance tagged MEM_RAP is associated with one instance that represents a resource pool 1608
for the allocation of memory. It shows a value of 4 (Memory) for the ResourceType property and 1609
is tagged MEM_POOL. 1610

The resulting list of integer values is {"3","4","19"} and designates the implemented resource types 1611
3 (Processor), 4 (Memory), and 19 (Storage Extent). 1612

System Virtualization Profile DSP1042

52 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

9.2.11 Determine the default resource pool for a resource type 1613

Assumption: The client knows a reference to an instance of the CIM_System class that represents a 1614
host system that is a central instance of this profile (see 9.2.4). 1615

1) The client invokes the intrinsic Associators() CIM operation for a list of allocation capabilities 1616
associated with resource pools hosted by the host system, as follows: 1617

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 1618
class. 1619

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities". 1620

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities". 1621

The result is a list of instances of the CIM_AllocationCapabilities class. 1622

7) The client drops instances from the result list of step 1) that have a value for the ResourceType 1623
property that does not match the requested resource type. 1624

The purpose of the following two steps is to further limit the result set from step 7) to those in-1625
stances of the CIM_AllocationCapabilities class that describe default settings. Default settings 1626
are flagged in the connecting instance of the CIM_ElementCapabilities association that has a 1627
value of 2 (Default) for the Characteristics property. 1628

8) For each instance of the list resulting from step 7), the client invokes the intrinsic References() 1629
CIM operation for a list of association instances that refer to the resource pool: 1630

– The value of the ObjectName parameter refers the instance of the CIM_ResourcePool 1631
class. 1632

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities". 1633

The result is a list of instances of the CIM_ElementCapabilities association that associate an in-1634
stance of the CIM_ResourcePool class that is taken from the result of step 7). 1635

9) From the list obtained in step 8), the client drops all elements that meet either of the following 1636
conditions: 1637

– have a value other than 2 (Default) for the Characteristics property 1638

– do not refer to the instance of the CIM_System class that represents the host system 1639
through the ManagedElement property 1640

The list should now contain one instance of the CIM_AllocationCapabilities class that represents 1641
default allocation capabilities for the resource type in question. 1642

10) The client invokes the intrinsic Associators() CIM operation to resolve association for the re-1643
source pool, as follows: 1644

– The value of the ObjectName parameter refers to the instance of the 1645
CIM_AllocationCapabilities class selected in step 9). 1646

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities". 1647

– The value of the ResultClass parameter is set to "CIM_ResourcePool". 1648

The result is a list of instances of the CIM_ResourcePool class. The size of the list is 1. 1649

Result: The client knows the instance of the CIM_ResourcePool class that represents the default re-1650
source pool for the requested resource type. 1651

In the example shown in Figure 3, allocation capabilities are depicted only for the virtual processor pool. 1652
In the subsequent description, it is assumed that the client looks for the default resource pool for proces-1653
sors: 1654

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 53

 With step 1) of this use case, the client resolves the CIM_ElementCapabilities association from 1655
the instance of the CIM_System class that represents the host system (tagged HOST_1) to in-1656
stances of the CIM_AllocationCapabilities class. A conformant implementation of DSP1043 1657
shows only one associated element for each resource type. 1658

 With step 7), the client reduces the result set to the one element that describes allocation 1659
capabilities processors. This instance is tagged CAP_PROC1. 1660

 With steps 8) and 9), the client further reduces the result set to the one instance of the 1661
CIM_AllocationCapabilities class that represents the system’s default capabilities for resource 1662
type 3 (Processor). 1663

 With step 10), the client resolves the CIM_ElementCapabilities association in order to obtain the 1664
instance of the CIM_ResourcePool class that represents the default resource pool for 1665
processors. This instance is tagged PROC_POOL2. 1666

9.2.12 Determine the resource pool for a resource allocation request or an allocated 1667
resource 1668

Assumption: The client knows a reference to an instance of the CIM_ResourceAllocationSettingData 1669
class that represents a resource allocation request or allocated resource. 1670

 The client invokes the intrinsic Associators() CIM operation for a list of allocation capabilities 1671
associated with resource pools hosted by the host system, as follows: 1672

– The value of the ObjectName parameter is set to refer to the instance of the 1673
CIM_ResourceAllocationSettingData class. 1674

– The value of the AssocClass parameter is set to "CIM_ResourceAllocationFromPool". 1675

– The value of the ResultClass parameter is set to "CIM_ResourcePool". 1676

The result is a list of instances of the CIM_ResourcePool class containing one element. 1677

Result: The client knows the instance of the CIM_ResourcePool class that represents the resource pool 1678
for the resource allocation request or allocated resource. 1679

9.2.13 Determine valid settings for a resource type 1680

This use case describes the determination of valid settings for a resource type in the context of either the 1681
system as a whole or one resource pool. 1682

Assumption: The client knows a reference to either of the following instances: 1683

 an instance of the CIM_ResourcePool class that represents a resource pool that is a central in-1684
stance of a resource allocation DMTF management profile 1685

 an instance of the CIM_System class that represents a host system 1686

The sequence of activities is as follows: 1687

1) The client invokes the intrinsic Associators() CIM operation as follows: 1688

– The value of the ObjectName parameter is set to refer to the instance of the 1689
CIM_ResourcePool class or the CIM_System class. 1690

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities". 1691

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities". 1692

The result is a list of instances of the CIM_AllocationCapabilities class that describe the 1693
capabilities of the input instance. 1694

System Virtualization Profile DSP1042

54 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

11) The client drops from the result of step 1) those instances in which the ResourceType property 1695
designates a resource type other than the requested resource type. This step is required only if 1696
the starting point of the use case was an instance of the CIM_System class. 1697

At this point the client has a list of instances of the CIM_AllocationCapabilities class that de-1698
scribe allocation capabilities. The value of the SharingMode property allows a distinction 1699
between shared and dedicated resources. 1700

12) The client invokes the intrinsic References() CIM operation for a set of instances of the 1701
CIM_SettingsDefineCapabilities association that each associate one instance of the 1702
CIM_ResourceAllocationSettingData class that describes a limiting aspect (min/max/increment), 1703
as follows: 1704

– The value of the ObjectName parameter is set to refer to the instance of the 1705
CIM_AllocationCapabilities class. 1706

– The value of the ResultClass parameter is set to "CIM_SettingsDefineCapabilities". 1707

The result is a list of instances of the CIM_SettingsDefineCapabilities association. 1708

13) For each instance that is a result from step 12), the client analyzes the values of the 1709
PropertyPolicy property and the ValueRange property. The value of the ValueRole property is 1710
irrelevant in this case. 1711

The property values have the following impact: 1712

– The value of the PropertyPolicy property is 0 (Independent) for a conformant 1713
implementation of DSP1043 in association instances that connect a min/max/increment 1714
limiting setting. 1715

– The value of the ValueRange property allows determining the designation of the associated 1716
setting: 1717

– A value of 1 (Minimums) indicates that the referenced instance of the 1718
CIM_ResourceAllocationSettingData class represents a lower limit for the allocation of 1719
resources of the respective resource type. 1720

– A value of 2 (Maximums) indicates that the referenced instance of the 1721
CIM_ResourceAllocationSettingData class represents an upper limit for the allocation 1722
of resources of the respective resource type. 1723

– A value of 3 (Increments) indicates that the referenced instance of the 1724
CIM_ResourceAllocationSettingData class represents an increment for the allocation 1725
of resources of the respective resource type. 1726

14) For each association instance obtained in step 13), the client invokes the intrinsic GetInstance() 1727
CIM operation for the instance of the CIM_ResourceAllocationSettingData class that describes 1728
the respective limitation. The value of InstanceName parameter is set to the value of the 1729
PartComponent property in the association instance obtained in step 13). 1730

In each case, the result is an instance of the CIM_ResourceAllocationSettingData class that 1731
represents a limiting setting. 1732

Result: The client knows the valid resource settings for the requested resource type. 1733

9.2.14 Determine implementation class specifics 1734

This profile specifies the use of classes derived from the CIM_SettingData class, namely the 1735
CIM_VirtualSystemSettingData class and the CIM_ResourceAllocationSettingData class. Instances of 1736
these classes are used to describe requirements on virtual systems and virtual resources as these are 1737
created or modified. An implementation may provide platform-specific implementation classes that extend 1738
these classes (or, for the CIM_ResourceAllocationSettingData class, that extend resource-type-specific 1739
extensions specified in a resource-type-specific resource allocation DMTF management profile). 1740

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 55

A client should be prepared to deal with these extensions. A client should obtain class information for all 1741
derived classes it deals with, in particular focusing on all class qualifiers and all property qualifiers, 1742
namely 1743

 the Description qualifier that provides a description of the subclass or property 1744

 the DisplayName qualifier that provides a name for each subclass or property that is potentially 1745
known to end-users 1746

Assumption: The client knows a reference to an instance of the class for which the client wants to obtain 1747
class-specific information. 1748

1) The client extracts the class name from the reference. 1749

15) The client invokes the intrinsic GetClass() CIM operation to obtain a formal class description, 1750
as follows: 1751

– The value of the ClassName parameter is set to the name of the class. 1752

– The value of the LocalOnly parameter is set to "false". 1753

– The value of the IncludeQualifiers parameter is set to "true". 1754

– The value of the IncludeClassOrigin parameter is set to "true". 1755

The result is a description of a CIM class. 1756

Result: The client has a description of the class. The format depends on the CIM client used to issue the 1757
request and is based on the XML class data structure that describes a CIM class as defined in DSP0201. 1758
The description contains the class’s qualifiers, its properties with property qualifiers, and its methods with 1759
method qualifiers. Inspection of the class description enables the client to create local instances of the 1760
respective implementation class. 1761

9.2.15 Determine the implementation class for a resource type 1762

Assumption: The client knows a list of references to instances of the CIM_ResourcePool class that 1763
represent resource pools available at a host system. 1764

1) The client applies use case 9.2.13 to obtain a reference to an instance of the 1765
CIM_ResourceAllocationSettingData class that is associated with an instance of the 1766
CIM_ResourcePool class of the requested type through an instance of the 1767
CIM_SettingsDefineCapabilities association with the ValueRole property set to "DEFAULT". 1768

16) The client applies use case 9.2.14 to obtain class information about that instance. 1769

Result: The client has an implementation class descriptor, which allows the client to analyze the 1770
implementation class for its qualifiers, its properties and their qualifiers, and its methods and their 1771
qualifiers. Further, the client can create local instances of the returned class that may be used as input on 1772
methods of the CIM_VirtualSystemManagementService class. 1773

9.2.16 Locate virtual systems hosted by a host system 1774

Assumption: The client knows a reference to an instance of the CIM_System class that is the central in-1775
stance of this profile and represents a host system (see 9.2.4). 1776

 The client invokes the intrinsic AssociatorNames() CIM operation for the list of virtual systems, 1777
as follows: 1778

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 1779
class. 1780

– The value of the AssocClass parameter is set to "CIM_HostedSystem". 1781

– The value of the ResultClass parameter is set to "CIM_ComputerSystem". 1782

System Virtualization Profile DSP1042

56 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

The result is a list of references to instances of the CIM_ComputerSystem class. 1783

Result: The client knows a set of references to instances of the CIM_ComputerSystem class that 1784
represent virtual systems that are hosted by the host system. 1785

9.3 Virtual system definition, modification, and destruction 1786

General assumption: The client knows a reference to an instance of the 1787
CIM_VirtualSystemManagementService class that represents the virtual system management services of 1788
a host system (see 9.2.6). 1789

9.3.1 Virtual system definition 1790

Virtual system definition is performed using a client-provided configuration, a configuration of an existing 1791
virtual system, a configuration that is stored within the implementation, or combinations of these. 1792

9.3.1.1 Define virtual system based on input and reference virtual system configuration 1793

Assumption: No assumption is made beyond the general assumption specified in 9.3. 1794

1) The client invokes the DefineSystem() method (see 8.2.1) on the virtual system management 1795
service, as follows. 1796

– The value of the SystemSettings parameter is set to an embedded instance of the 1797
CIM_VirtualSystemSettingData class. 1798

– The value of the ResourceSettings[] array parameter is set to an array of embedded in-1799
stances of the CIM_ResourceAllocationSettingData class. 1800

– The value of the ReferenceConfiguration parameter is set to refer to a "Reference" virtual 1801
system configuration. 1802

1) The implementation executes the DefineSystem() method. The configuration of the new virtual 1803
system is created according to the client’s requirements. The new virtual system is in the 1804
"Defined" virtual system state. 1805

The value returned in the ResultingSystem parameter refers to an instance of the 1806
CIM_ComputerSystem class. 1807

Result: The client knows a reference to an instance of the CIM_ComputerSystem class that represents 1808
the new virtual system. 1809

Figure 4 shows the representation of a virtual system that was defined using an "Input" virtual system and 1810
a "Reference" virtual system configuration. 1811

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 57

InstanceID = "DE24672409A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_DEF_VSSD : VirtualSystemSettingData

InstanceID = "DE24672408A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

VS2_PROC_DEF_RASD : RASD

VS2 : ComputerSystem

InstanceID = "DE24672408A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_DEF_RASD : RASD

C
o

n
cr

e
te

C
om

p
on

en
t

S
ys

te
m

D
ev

ic
e

VS2DISK1 : LogicalDisk

InstanceID = "DE24672419A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_STA_VSSD : VirtualSystemSettingData

InstanceID = "DE24672418A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_STA_RASD : RASD

C
on

cr
e

te
C

om
po

ne
nt

Name = "DE24672408670001"

HOST1 : System

SettingsDefineState

HostedDependency

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

H
os

te
dR

e
so

u
rc

e
P

oo
l

ResourceAllocationFromPool

ElementAllocatedFromPool SettingsDefineState

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

$: ElementSettingData

InstanceID = "DE24672408A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_DEF_RASD : RASDVS2DISK2 : LogicalDisk

InstanceID = "DE24672418A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_STA_RASD : RASD

ResourceAllocationFromPool

Implementation
Space

Client
Space

InstanceID = "DE24672408A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 4096
Weight = 100

VS2_MEM_DEF_RASD : RASD

InstanceID = NULL
VirtualSystemIdentifier = "VS.*"
VirtualSystemType = NULL

INPUT_VSSD : VirtualSystemSettingData

InstanceID = NULL
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

INPUT_DISK2_RASD : RASD

InstanceID = NULL
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 4096
Weight = 100

INPUT_MEM_RASD : RASD

 1812

Figure 4 – Virtual system configuration based on input virtual system configurations and 1813
implementation defaults 1814

The new virtual system is represented by an instance of the CIM_ComputerSystem class that is tagged 1815
VS2. The right side of Figure 4 shows the "Defined" virtual system configuration for the new virtual sys-1816
tem. It is based on the "Input" virtual system configuration shown at the top of Figure 4. In this example, it 1817
is assumed that the ReferenceConfiguration parameter refers to a virtual system configuration that con-1818
tains requests for the following resources: 1819

 a virtual processor 1820

 virtual memory of 1024 MB 1821

 a virtual disk of 1024 MB 1822

System Virtualization Profile DSP1042

58 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

The "Input" virtual system configuration does not request the allocation of a processor, but because the 1823
"Reference" virtual configuration does, the resulting virtual system definition contains a request for a 1824
processor as well. 1825

The input virtual system configuration requests 4096 MB of memory. That value is given preference over 1826
the value of 1024 that is specified in the "Reference" configuration. 1827

The input virtual system configuration requests a virtual disk in addition to the one requested by the 1828
"Reference" configuration, resulting in two virtual disks allocated for the new virtual system. 1829

9.3.1.2 Define virtual system with implementation-specific properties 1830

Assumption: No assumption is made beyond the general assumption specified in 9.3. 1831

 The client performs use case 9.3.1.1 using an input configuration only. While preparing the input 1832
virtual system configuration, the client applies use case 9.2.14 to determine the implementation 1833
class of the CIM_VirtualSystemSettingData class and use case 9.2.15 to determine the various 1834
implementation classes for the CIM_ResourceAllocationSettingData class for the required 1835
resource types. 1836

The implementation classes may specify additional properties beyond the set that is defined in 1837
the respective base classes. The client may use the description information about each of these 1838
properties that is obtained with the respective class descriptions to request appropriate values 1839
from end users in order to create valid instances of the implementation class (thereby defining 1840
implementation-specific resource requirements). 1841

Result: The value of the DefinedSystem output parameter refers to an instance of the 1842
CIM_ComputerSystem class that represents the newly created virtual system. The new system is in the 1843
"Defined" state. 1844

9.3.2 Virtual system modification 1845

This clauses describes a set of usecases that modify virtual systems or virtual system configurations. 1846

9.3.2.1 Modify virtual system state or definition 1847

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that 1848
represents a virtual system. 1849

1) The client obtains the instance of the CIM_VirtualSystemSettingData class that represents the 1850
state or definition of virtual aspects of the affected virtual system (respective use cases are de-1851
scribed in DSP1057). 1852

17) The client makes conformant changes to the instance of the CIM_VirtualSystemSettingData 1853
class. In particular, the client must not modify key properties. 1854

18) The client invokes the ModifySystemSettings() method (see 8.2.5) on the virtual system 1855
management service. The value of the SystemSettings parameter is the modified instance from 1856
step 17). 1857

19) The implementation executes the ModifySystemSettings() method, and the configuration of the 1858
virtual system is modified according to the clients requirements. 1859

Result: The requested modification is applied to the state or definition of the virtual system. 1860

9.3.2.2 Add virtual resources 1861

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class 1862
that represents a virtual system configuration. 1863

1) The client locally prepares one or more instances of the CIM_ResourceAllocationSettingData 1864
class to represent the resource allocation requests for the new virtual resources. 1865

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 59

20) The client invokes the AddResourceSettings() method (see 8.2.3) on the virtual system 1866
management service, as follows: 1867

– The value of the AffectedConfiguration parameter is set to refer to the instance of the 1868
CIM_VirtualSystemSettingData class that represents the virtual system configuration that 1869
receives new resources allocations. 1870

– The value of the ResourceSettings[] array parameter is set with each element as one 1871
embedded instance of the CIM_ResourceAllocationSettingData class prepared in step 1). 1872

2) The implementation executes the AddResourceSettings() method, adding the requested re-1873
source allocations and resource allocation requests to the virtual system configuration. 1874

Result: The requested resource allocations or resource allocation requests are configured into the refer-1875
enced virtual system configuration. 1876

9.3.2.3 Modify virtual resource state extension or virtual resource definition 1877

Assumption: The client knows references to one or more instances of the CIM_LogicalDevice class that 1878
represent one or more virtual resources. 1879

Alternatively the client knows the reference to an instance of the CIM_ResourceAllocationSettingData 1880
class that represents the virtual resource state extensions or virtual resource definitions. In this case, the 1881
client would obtain the referenced instance by using the intrinsic GetInstance() CIM operation and pro-1882
ceed with step 23). 1883

1) The client invokes the intrinsic Associators() CIM operation for the virtual resource state exten-1884
sion as follows: 1885

– The value of the ObjectName parameter is set to refer to the instance of the 1886
CIM_LogicalDevice class. 1887

– The value of the AssocClass parameter is set to "CIM_SettingsDefineState". 1888

– The value of the ResultClass parameter is set to "CIM_ResourceAllocationSettingData". 1889

The result is a list of instances of the CIM_ResourceAllocationSettingData class. The size of the 1890
list is expected to be 1, and that element represents the virtual resource state extension. If the 1891
client intends to modify the virtual resource state extension, the client skips steps 21) and 22), 1892
and proceeds with step 23). If the client intends to modify the virtual resource definition, the 1893
client continues with step 21). 1894

21) The client invokes the intrinsic References() CIM operation for the association instances that 1895
connect the virtual resource definition, as follows: 1896

– The value of the ObjectName parameter is set to refer to the instance of the 1897
CIM_ResourceAllocationSettingData class that was obtained in step 1). 1898

– The value of the ResultClass parameter is set to "CIM_ElementSettingData". 1899

The result is a list of instances of the CIM_ElementSettingData association that connect various 1900
settings to the virtual resource state extension. 1901

22) The client selects from the result set of step 21) the instance in which the IsDefault property has 1902
a value of 1 (Is Default). In that instance, the value of the SettingData property refers to the in-1903
stance of the CIM_ResourceAllocationSettingData class that represents the virtual resource 1904
definition. 1905

23) The client invokes the intrinsic GetInstance() CIM operation for the setting that represents the 1906
resource allocation definition. The value of the InstanceName parameter is set to the value of 1907
the SettingData property from the instance of the CIM_ElementSettingData association selected 1908
in step 22). 1909

The result is the instance of the CIM_ResourceAllocationSettingData class that represents the 1910
virtual resource definition. 1911

System Virtualization Profile DSP1042

60 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

24) The client makes conformant changes to the instance of the 1912
CIM_ResourceAllocationSettingData class. In particular, the client must not modify key proper-1913
ties. 1914

Eventually the client executes steps 1) to 24) repetitively, preparing a set of resource allocation 1915
change requests that subsequently are applied as one atomic operation. 1916

25) The client invokes the ModifyResourceSettings() method (see 8.2.4) on the virtual system man-1917
agement service. The values of elements of the ResourceSettings parameter are the modified 1918
instances of the CIM_ResourceAllocationSettingData class that were prepared through repeti-1919
tive execution of steps in steps 1) to 24). 1920

26) The implementation executes the ModifyResourceSettings() method, causing the requested re-1921
source allocation changes being applied to resource allocation state extensions or resource 1922
allocation definitions. 1923

Result: The requested resource modifications are applied to virtual resource state extensions or virtual 1924
resource definitions. 1925

Figure 5 shows the representation of a virtual system. Initially the virtual system was instantiated accord-1926
ing to the "Defined" virtual system configuration that is show on the right side. During the activation of the 1927
virtual system, required resources were allocated. Virtual resources are represented by instances of sub-1928
classes of the CIM_LogicalDevice class (CIM_Processor, CIM_Memory, or CIM_LogicalDisk in this case), 1929
with their "State" extensions in the "State" virtual system configuration. Related elements in the virtual 1930
system representation and the "State" virtual system configuration are associated through instances of 1931
the CIM_SettingsDefineState association. 1932

Entities that are shown in blue color in Figure 5 are involved in the example of a processor resource 1933
modification that is described following the figure. 1934

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 61

InstanceID = "DE24672409A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_DEF_VSSD : VirtualSystemSettingData

VS2 : ComputerSystem

InstanceID = "DE24672408A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_DEF_RASD : RASD

C
o

nc
re

te
C

o
m

p
on

e
nt

S
ys

te
m

D
e

vi
ce

VS2DISK1 : LogicalDisk

InstanceID = "DE24672419A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_STA_VSSD : VirtualSystemSettingData

InstanceID = "DE24672418A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_STA_RASD : RASD

C
o

n
cr

e
te

C
o

m
p

on
en

t

Name = "DE24672408670001"

HOST1 : System

SettingsDefineState

HostedDependency

H
o

st
e

dR
e

so
u

rc
e

P
o

o
l

ResourceAllocationFromPool

InstanceID = "DE24672408A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_DEF_RASD : RASDVS2DISK2 : LogicalDisk

InstanceID = "DE24672418A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_STA_RASD : RASD

ResourceAllocationFromPool

Implementation
Space

Client
Space

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

InstanceID = "DE24672408680002"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Primordial = True

PROC_POOL2 : ResourcePool

InstanceID = "DE24672408690001"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Primordial = True

MEM_POOL : ResourcePool VS2MEM : Memory

VS2PROC2 : Processor

VS2PROC1 : Processor

InstanceID = "DE24672418A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2_MEM_STA_RASD : RASD

InstanceID = "DE24672408A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2_MEM_DEF_RASD : RASD

InstanceID = "DE24672408A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc"
Reservation = 1
Weight = 100

VS2_PROC_DEF_RASD : RASD

InstanceID = "DE24672418A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 2
Weight = 200

VS2_PROC_STA_RASD : RASD

InstanceID = "DE24672418A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 2
Weight = 200

VS2_PROC_STA_RASD : RASD

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

Object1 : ElementSettingData

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

Object2 : ElementSettingData

 1935

Figure 5 – Virtual system resource modification 1936

Next, the client applied a resource modification on the allocated processor resource within the virtual sys-1937
tem’s "State" configuration. The "State" configuration is shown to the left of the "Defined" virtual system 1938
configuration. The client obtained a local copy of the instance of the CIM_ResourceAllocationSettingData 1939
class that is tagged VS2_PROC_STA_RASD. In that local copy, the client modified the value of the 1940
Reservation property to 2 and the value of the Weight property to 200. Then the client called the 1941
ModifyResourceSettings() method with the modified instance as the only element value for the 1942
ResourceSettings[] array parameter. The execution of that method resulted in another virtual processor 1943
being allocated to the virtual system. 1944

System Virtualization Profile DSP1042

62 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

NOTE: Because a change applied to the "State" virtual system configuration is temporary in nature, a recycling of 1945
the virtual system will nullify the change and result in a new "State" virtual system configuration based on the 1946
"Defined" virtual system configuration. 1947

9.3.2.4 Delete virtual resources or virtual resource definitions 1948

Assumption: The client has references to one or more instances of the 1949
CIM_ResourceAllocationSettingData class that refer to elements of the "State" or "Defined" virtual system 1950
configuration of one virtual system. See DSP1057, clause 9, for respective use cases. 1951

1) The client invokes the RemoveResourceSettings() method (see 8.2.6) on the virtual system 1952
management service. The value of the ResourceSettings[] array parameter is set with each 1953
element referring to one instance of the CIM_ResourceAllocationSettingData class. 1954

2) The implementation executes the RemoveResourceSettings() method. Either all requested re-1955
source allocations or resource allocation requests are removed, or none at all. 1956

Result: The referenced virtual resources are removed from their respective virtual system configurations. 1957

9.3.3 Destroy virtual system 1958

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that repre-1959
sents a virtual system (see 9.2.16). 1960

1) The client invokes the DestroySystem() method on the virtual system management service. 1961
The value of the AffectedSystem parameter is set to refer to the instance of the 1962
CIM_ComputerSystem class that represents the virtual system. 1963

2) The implementation executes the DestroySystem() method. 1964

Result: The affected virtual system and its virtual resources (together with their definition) are removed 1965
from the implementation. If the virtual system was in the "Active" state, the "Paused" state, or in the 1966
"Suspended" state, the running instance of the virtual system and its virtual resources are removed before 1967
the definition of the virtual system is removed. 1968

NOTE: Dependencies may exist that may prevent the destruction of a virtual system. For example, if definitions or 1969
instances of other virtual systems refer to elements of the virtual system to be destroyed, the destruction may fail. 1970

9.4 Snapshot-related activities 1971

This set of use cases describes activities such as the following: 1972

 discovering a virtual system snapshot service 1973

 inspecting the capabilities of a virtual system snapshot service 1974

 creating a snapshot from a virtual system 1975

 applying a snapshot to a virtual system 1976

 analyzing a virtual snapshot 1977

 analyzing dependencies among snapshots 1978

 locating the most recently captured snapshot 1979

 destroying a snapshot 1980

Figure 6 depicts the CIM representation of a virtual system VS1 and of configurations that are associated 1981
with the virtual system at time T3. In the example, it is assumed that the implementation applies the 1982
"Single-Configuration Implementation Approach" as described in DSP1057. 1983

The sequence of events that yield the situation shown in Figure 6 is as follows: 1984

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 63

1) At time T0, the virtual system VS1 is defined. The initial virtual system definition contains virtual 1985
resource allocation requests for one memory extent, one virtual processor, and one virtual disk. 1986

27) At a time after T0 but before T1, the virtual system is activated. 1987

28) At time T1, a full snapshot S1 is captured of the virtual system. Virtual system definition and 1988
state are copied into the snapshot. A full snapshot includes the "content" of virtual memory and 1989
of virtual disks; a disk snapshot would contain the "content" of virtual disks only. 1990

29) The virtual system remains active after the snapshot is captured. The virtual system configura-1991
tion and the "content" of memory and of virtual disks may change in that interval. 1992

30) At a time after T1 but before T2, snapshot S1 is applied to the virtual system, causing definition 1993
and state to be restored to the situation at time T1. 1994

31) Still at a time before T2, a second virtual disk is dynamically added to the virtual system. Be-1995
cause in this example the implementation applies the "Single-Configuration Implementation 1996
Approach," this change in effect applies to both virtual system definition and virtual system in-1997
stance and is visible through the "Single" VS configuration. 1998

32) At time T2, snapshot S2 is captured of the virtual system. Because at time T2 the virtual system 1999
snapshot S1 is the last applied snapshot, snapshot S2 depends on snapshot S1. 2000

33) The virtual system remains active after the snapshot is captured. The virtual system configura-2001
tion and the "content" of memory and of virtual disks may change in that interval. 2002

34) At a time after T2 but before T3, snapshot S2 is applied to the virtual system, causing definition 2003
and state to be restored to the situation at time T2, thereby nullifying changes that were applied 2004
to the virtual system after T2. 2005

35) At time T3, the situation is as shown in Figure 6. 2006

General assumption: The client knows the reference to an instance of the 2007
CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot of a host system 2008
(see 9.2.6). 2009

System Virtualization Profile DSP1042

64 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

VS1 : ComputerSystem VS1_S : VirtualSystemSettingData

VS1_Memory_S : ResourceAllocationSettingDataVS1_Memory : Memory

VS1_Processor : Processor VS1_Processor_S : ResourceAllocationSettingData

“Dual” VS configuration
(representing virtualization specific state
and definition)

VS representation
(representing VS instance) IsDefault = 1 (Is Default)

IsNext = 2 (Is Not Next)

VS1_ESD_D : ESD

Snapshot S1 of “Single” VS config
(Configuration plus state information)T1

T2

VS1_Disk1 : LogicalDisk VS1_Disk1_S : ResourceAllocationSettingData

Snapshot S1

Snapshot S2

Current Time: T3 > T2 > T1 > T0

VS1_Disk2 : LogicalDisk VS1_Disk2_S : ResourceAllocationSettingData

VS1_S1 : VirtualSystemSettingData

VS1_Memory_S1 : ResourceAllocationSettingData

VS1_Processor_S1 : ResourceAllocationSettingData

VS1_Disk1_S1 : ResourceAllocationSettingData

VS1_S2 : VirtualSystemSettingData

VS1_Memory_S2 : ResourceAllocationSettingData

VS1_Processor_S2 : ResourceAllocationSettingData

VS1_Disk1_S2 : ResourceAllocationSettingData

VS1_Disk2_S2 : ResourceAllocationSettingData

Time

Time

Snapshot S2 of “Single” VS Config
(Configuration plus state information)

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VS1_ESD_D1 : ESD

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VS1_ESD_D2 : ESD

S
n

ap
sh

o
tO

fV
ir

tu
al

S
ys

te
m

L
a

st
A

p
p

lie
d

S
n

ap
sh

o
t

M
os

tC
u

rr
en

tS
na

ps
ho

tI
nB

ra
nc

h

D
e

p
en

d
e

n
cy

 2010

Figure 6 – System Virtualization Profile: Snapshot example 2011

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 65

9.4.1 Locate virtual system snapshot service 2012

Assumption: The client knows a reference to an instance of the CIM_System class that represents a 2013
host system that is a central instance of this profile; (see 9.2.4). 2014

 The client invokes the intrinsic AssociatorNames() CIM operation as follows: 2015

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System 2016
class. 2017

– The value of the AssocClass parameter is set to "CIM_HostedService". 2018

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSnapshotService". 2019

Result: The client knows a reference to the instance of the CIM_VirtualSystemSnapshotService class 2020
that represents the virtual system snapshot service serving the host system. If the operation is successful, 2021
the size of the result set is 1. 2022

In the example shown in Figure 3, one instance of the CIM_VirtualSystemSnapshotService class serves 2023
the host system; it is tagged VSSS_1. 2024

9.4.2 Determine capabilities of a virtual system snapshot service 2025

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSnapshotService 2026
class that represents the virtual system snapshot service serving a host system (see 9.4.1). 2027

1) The client invokes the intrinsic Associators() CIM operation as follows: 2028

– The value of the ObjectName parameter is set to refer to the instance of the 2029
CIM_VirtualSystemSnapshotService class. 2030

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities". 2031

– The value of the ResultClass parameter is set to 2032
"CIM_VirtualSystemSnapshotServiceCapabilities". 2033

The result is a list of instances of the CIM_VirtualSystemSnapshotServiceCapabilities class. If 2034
the operation is successful, the size of the result set is 1. 2035

36) The client analyzes the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class. 2036

– The SynchronousMethodsSupported[] array property lists identifiers of methods of the 2037
CIM_VirtualSystemSnapshotServiceCapabilities class that are implemented with 2038
synchronous method execution only. 2039

– The AsynchronousMethodsSupported[] array property lists identifiers of methods of the 2040
CIM_VirtualSystemSnapshotServiceCapabilities class that are implemented with 2041
synchronous and asynchronous method execution. 2042

– The SnapshotTypesSupported[] array property lists identifiers designating snapshot types 2043
that are supported by the implementation. 2044

Result: The client knows the virtual-system-snapshot-related capabilities of the host system in terms of 2045
properties of the CIM_VirtualSystemSnapshotServiceCapabilities class. 2046

In the example shown in Figure 3, one instance of the CIM_VirtualSystemSnapshotServiceCapabilities 2047
class is associated with the host system; it is tagged VSSSC_1. 2048

System Virtualization Profile DSP1042

66 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

9.4.3 Create snapshot 2049

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that repre-2050
sents a virtual system hosted by a host system (see 9.2.16). The virtual system is active. 2051

1) The client invokes the CreateSnapshot() method on the virtual system snapshot service, as fol-2052
lows: 2053

– The value of the AffectedSystem parameter is set to refer to the instance of the 2054
CIM_ComputerSystem class that represents the virtual system. 2055

– The value of the SnapshotType parameter is set to 2 (Full Snapshot). 2056

37) The implementation executes the CreateSnapshot() method. 2057

The value returned in the ResultingSnapshot parameter refers to an instance of the 2058
CIM_VirtualSystemSettingData class that represents the new snapshot. 2059

Result: The client knows a reference to the instance of the CIM_VirtualSystemSettingData class that 2060
represents the created virtual system snapshot. 2061

In the example shown in Figure 6, two instances of the CIM_VirtualSystemSettingData class represent 2062
virtual system snapshots S1 and S2 taken at times T1 and T2. Although the situation captured in Figure 6 2063
shows the situation at T3, a snapshot taken at T3 would look identical to S2 (because the current system 2064
at time T3 is unchanged with respect to S2). 2065

9.4.4 Locate snapshots of a virtual system 2066

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that 2067
represents a virtual system (see 9.2.16). 2068

 The client invokes the intrinsic Associators() CIM operation for the list of snapshots, as follows: 2069

– The value of the ObjectName parameter is set to refer to the instance of the 2070
CIM_ComputerSystem class. 2071

– The value of the AssocClass parameter is set to "CIM_SnapshotOfVirtualSystem". 2072

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData". 2073

The result is a list of instances of the CIM_VirtualSystemSettingData class. 2074

Result: The client knows a set of instances of the CIM_VirtualSystemSettingData class, each represent-2075
ing a virtual system snapshot taken from the virtual system. 2076

In the example shown in Figure 6, the instances tagged VS_S1 and VS1_S2 of the 2077
CIM_VirtualSystemSettingData class represent snapshots S1 and S2. 2078

9.4.5 Locate the source virtual system of a snapshot 2079

Assumption: The client knows the reference to an instance of the CIM_VirtualSystemSettingData class 2080
that represents a virtual system snapshot. 2081

 The client invokes the intrinsic AssociatorNames() CIM operation for the source virtual system 2082
as follows: 2083

– The value of the ObjectName parameter is set to refer to the instance of the 2084
CIM_VirtualSystemSettingData class. 2085

– The value of the AssocClass parameter is set to "CIM_ElementSettingData". 2086

– The value of the ResultClass parameter is set to "CIM_ComputerSystem". 2087

The result is a list of references to instances of the CIM_ComputerSystem class. The size of the 2088
list is 1. 2089

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 67

Result: The client knows a reference to an instance of the CIM_ComputerSystem class that represents 2090
the virtual system that was the source for the snapshot. 2091

NOTE: At this time the present configuration of the virtual system may be completely different from the configuration 2092
that was captured in the snapshot. 2093

In the example shown in Figure 6, the instance of class CIM_ComputerSystem tagged VS1 is the source 2094
of snapshots S1 and S2, represented by instances of the CIM_VirtualSystemSettingData class tagged 2095
VS_S1 and VS_S2. 2096

9.4.6 Locate the most current snapshot in a branch of snapshots 2097

Assumption: The client knows an instance of the CIM_ComputerSystem class that represents a virtual 2098
system (see 9.2.16). 2099

 The client invokes the intrinsic Associators() CIM operation for the most current snapshot in the 2100
current branch of virtual snapshots, as follows: 2101

– The value of the ObjectName parameter is set to refer to the instance of the 2102
CIM_ComputerSystem class. 2103

– The value of the AssocClass parameter is set to "CIM_MostCurrentSnapshotInBranch". 2104

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData". 2105

The result is a list of instances of the CIM_VirtualSystemSettingData class. The size of the list is 2106
1. 2107

Result: The client knows an instance of the CIM_VirtualSystemSettingData class that represents the vir-2108
tual system snapshot that is the most current snapshot in the current branch of snapshots. 2109

In the example shown in Figure 6, the instance of the CIM_VirtualSystemSettingData class that is tagged 2110
VS1_2 represents the most current snapshot in the current branch of snapshots. This is the case because 2111
that snapshot was applied most recently to the virtual system and no other snapshot was applied to or 2112
created from the virtual system since then. 2113

9.4.7 Locate dependent snapshots 2114

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class 2115
that represents a virtual system snapshot (see 9.4.4). 2116

 The client invokes the intrinsic AssociatorNames() CIM operation for the list of dependent snap-2117
shots as follows: 2118

– The value of the ObjectName parameter is set to refer to the instance of the 2119
CIM_VirtualSystemSettingData class. 2120

– The value of the AssocClass parameter is set to "CIM_Dependency". 2121

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData". 2122

– The value of the Role parameter is set to "Antecedent". 2123

– The value of the ResultRole parameter is set to "Dependent". 2124

The result is a list of references to instances of the CIM_VirtualSystemSettingData class. 2125

Result: The client knows a set of instances of the CIM_VirtualSystemSettingData class that represent vir-2126
tual system snapshots that depend on the input virtual system snapshot. The set may be empty, indicating 2127
that no dependent snapshots exist. 2128

In the example shown in Figure 6, the instance tagged VS_S2 represents snapshot S2, which is depend-2129
ent on snapshot S1, which is represented by the instance tagged VS_S1. 2130

System Virtualization Profile DSP1042

68 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

9.4.8 Locate parent snapshot 2131

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class 2132
that represents a virtual system snapshot (see 9.4.4). 2133

 The client invokes the intrinsic AssociatorNames() CIM operation for the parent snapshot as fol-2134
lows: 2135

– The value of the ObjectName parameter is set to refer to the instance of the 2136
CIM_VirtualSystemSettingData class that represents the virtual system snapshot. 2137

– The value of the AssocClass parameter is set to "CIM_Dependency". 2138

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData". 2139

– The value of the Role parameter is set to "Dependent". 2140

– The value of the ResultRole parameter is set to "Antecedent". 2141

The result is a list of references to instances of the CIM_VirtualSystemSettingData class that 2142
represent virtual system snapshots. The list has a size of 1 or 0. 2143

Result: The client knows the instance of the CIM_VirtualSystemSettingData class that represents the par-2144
ent virtual system snapshot of the input virtual system snapshot. The set may be empty, indicating that no 2145
parent snapshots exist. 2146

In the example shown in Figure 6, the instance tagged VS_S1 represents snapshot S1, which is the par-2147
ent of snapshot S2, which is represented by the instance tagged VS_S2. 2148

9.4.9 Apply snapshot 2149

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class 2150
that represents a virtual system snapshot (see 9.4.3 or 9.4.4). The client knows a reference to the in-2151
stance of the CIM_ComputerSystem class that represents the virtual system that was the source for the 2152
snapshot (see 9.4.5). The virtual system is active. 2153

1) The client invokes the ApplySnapshot() method on the virtual system snapshot service. The 2154
value of the Snapshot parameter is set to refer to the instance of the 2155
CIM_VirtualSystemSettingData class that represents the snapshot. 2156

2) The snapshot is applied into the active virtual system as follows: 2157

a) The virtual system is deactivated. This implies a disruptive termination of the software that 2158
may be active in the instance of the virtual system. 2159

b) The virtual system is reconfigured according to the virtual system snapshot. For a disk 2160
snapshot, this applies to the disk resources only. 2161

c) If the applied snapshot is a full snapshot, all stateful resources like memory and disk are 2162
restored to the situation that was captured in the snapshot. If the applied snapshot is a disk 2163
snapshot, only disk resources are restored. 2164

d) The virtual system is activated. If the applied snapshot is a full snapshot, the virtual system 2165
starts from the situation that was captured by the full snapshot. If the applied snapshot was 2166
a disk snapshot, a normal virtual system activation occurs. 2167

Result: The virtual system is restored to the situation that was in place when the snapshot was taken. 2168

In the example shown in Figure 6, the situation is depicted at time T3, immediately after the activation of 2169
snapshot S2 within virtual system VS1. 2170

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 69

9.4.10 Destroy snapshot 2171

Assumption: The client knows the reference to an instance of the CIM_VirtualSystemSettingData class 2172
that represents a virtual system snapshot (see 9.2.16). 2173

1) The client invokes the DestroySnapshot() method on the virtual system management service. 2174
The value of the Snapshot parameter is set to refer to the instance of the 2175
CIM_VirtualSystemSettingData class that represents the snapshot. 2176

2) The snapshot is removed from the implementation. 2177

Result: The snapshot no longer exists within the implementation. 2178

10 CIM elements 2179

Table 20 lists CIM elements that are defined or specialized for this profile. Each CIM element shall be 2180
implemented as described in Table 20. The CIM Schema descriptions for any referenced element and its 2181
sub-elements apply. 2182

Clauses 7 ("Implementation") and 8 ("Methods") may impose additional requirements on these elements. 2183

Table 20 – CIM Elements: System Virtualization Profile 2184

Element Name Requirement Description

CIM_AffectedJobElement Conditional See 10.1.

CIM_ConcreteJob Conditional See 10.2.

CIM_Dependency Conditional See 10.3.

CIM_ElementCapabilities (Host system) Mandatory See 10.4.

CIM_ElementCapabilities (Virtual system management service) Mandatory See 10.5.

CIM_ElementCapabilities (Virtual system snapshot service) Conditional See 10.6.

CIM_ElementCapabilities (Snapshots of virtual systems) Conditional See 10.7.

CIM_ElementConformsToProfile Mandatory See 10.8.

CIM_HostedDependency Mandatory See 10.9.

CIM_HostedService (Virtual system management service) Conditional See 10.10.

CIM_HostedService (Virtual system snapshot service) Conditional See 10.11.

CIM_LastAppliedSnapshot Conditional See 10.12.

CIM_MostCurrentSnapshotInBranch Conditional See 10.13.

CIM_ReferencedProfile Conditional See 10.14.

CIM_RegisteredProfile Mandatory See 10.15.

CIM_ServiceAffectsElement (Virtual system management service) Conditional See 10.16.

CIM_ServiceAffectsElement (Virtual system snapshot service) Conditional See 10.17.

CIM_SnapshotOfVirtualSystem Conditional See 10.18.

CIM_System Mandatory See 10.19.

CIM_VirtualSystemManagementCapabilities Mandatory See 10.20.

CIM_VirtualSystemManagementService Conditional See 10.21.

CIM_VirtualSystemSettingData (Input) Conditional See 10.22.

System Virtualization Profile DSP1042

70 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Element Name Requirement Description

CIM_VirtualSystemSettingData (Snapshot) Conditional See 10.23.

CIM_VirtualSystemSnapshotCapabilities Conditional See 10.24.

CIM_VirtualSystemSnapshotService Optional See 10.25.

CIM_VirtualSystemSnapshotServiceCapabilities Conditional See 10.26.

10.1 CIM_AffectedJobElement 2185

The implementation of the CIM_AffectedJobElement association is conditional. 2186

Condition: A non-NULL value for at least one element of the AsynchronousMethodsSupported[] array 2187
property of the CIM_VirtualSystemManagementCapabilities class is implemented. 2188

If the CIM_AffectedJobElement association is implemented, the provisions in this subclause apply. 2189

An implementation shall use the CIM_AffectedJobElement association to associate an instance of the 2190
CIM_ConcreteJob class that represents an asynchronous task and an instance of the 2191
CIM_ComputerSystem class that represents a virtual system that is affected by its execution. 2192

Table 21 contains the requirements for elements of this association. 2193

Table 21 – Association: CIM_AffectedJobElement 2194

Elements Requirement Notes

AffectedElement Mandatory Key: See 8.1.2.

Cardinality: *

AffectingElement Mandatory Key: See 8.1.2.

Cardinality: 1

ElementEffects[] Mandatory See 8.1.2.

10.2 CIM_ConcreteJob 2195

The implementation of the CIM_ConcreteJob class is conditional. 2196

Condition: A non-NULL value for at least one element of the AsynchronousMethodsSupported[] array 2197
property of the CIM_VirtualSystemManagementCapabilities class is implemented. 2198

If the CIM_ConcreteJob class is implemented, the provisions in this subclause apply. 2199

An implementation shall use an instance of the CIM_ConcreteJob class to represent an asynchronous 2200
task. 2201

Table 22 contains requirements for elements of this class. 2202

Table 22 – Class: CIM_ConcreteJob 2203

Elements Requirement Notes

InstanceID Mandatory Key

JobState Mandatory See 8.1.2.

TimeOfLastStateChange Mandatory See 8.1.2.

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 71

10.3 CIM_Dependency 2204

The implementation of the CIM_Dependency association is conditional. 2205

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2206

If the CIM_Dependency association class is implemented, the provisions in this subclause apply. 2207

An implementation shall use an instance of the CIM_Dependency association to associate an instance of 2208
the CIM_VirtualSystemSettingData class that represents a parent snapshot and an instance of the 2209
CIM_VirtualSystemSettingData class that represents a dependent snapshot. 2210

Table 23 contains requirements for elements of this class. 2211

Table 23 – Class: CIM_Dependency Class 2212

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a parent snapshot

Cardinality: 0..1

Dependent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a dependent
snapshot

Cardinality: 0..1

10.4 CIM_ElementCapabilities (Host system) 2213

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-2214
stance of the CIM_System class that represents a host system with an instance of the 2215
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-2216
ties of the host system. 2217

Table 24 contains requirements for elements of this association. 2218

Table 24 – Association: CIM_ElementCapabilities (Host System) 2219

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to instance of the CIM_System class
that represents a host system

Cardinality: 1

Capabilities Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementCapabilities class that describes the
capabilities of a host system

Cardinality: 1

10.5 CIM_ElementCapabilities (Virtual system management service) 2220

The implementation of the CIM_ElementCapabilities association for the virtual system management 2221
service is conditional. 2222

Condition: Any of the following is implemented: 2223

 Virtual system definition and destruction (see 7.4.6.1) 2224

System Virtualization Profile DSP1042

72 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

 Virtual resource addition and removal (see 7.4.6.2) 2225

 Virtual system and resource modification (see 7.4.6.3) 2226

If the CIM_ElementCapabilities association is implemented for the virtual system management service, 2227
the provisions in this subclause apply. 2228

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-2229
stance of the CIM_VirtualSystemManagementService class that represents a virtual system management 2230
service with an instance of the CIM_VirtualSystemManagementCapabilities that describes the capabilities 2231
of the virtual system management service. 2232

Table 25 contains requirements for elements of this association. 2233

Table 25 – Association: CIM_ElementCapabilities (Virtual system management) 2234

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to instance of the
CIM_VirtualSystemManagementService class

Cardinality: 0..1

Capabilities Mandatory Key: Reference to an instance of the
CIM_VirtualSystemManagementCapabilities class

Cardinality: 1

10.6 CIM_ElementCapabilities (Virtual system snapshot service) 2235

The implementation of the CIM_ElementCapabilities association for the virtual system snapshot service is 2236
conditional. 2237

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2238

If the CIM_ElementCapabilities association is implemented for the virtual system snapshot service, the 2239
provisions in this subclause apply. 2240

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-2241
stance of the CIM_VirtualSystemSnapshotService class that represents a virtual system snapshot service 2242
with an instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that describes the capabili-2243
ties of the virtual system snapshot service. 2244

Table 26 contains requirements for elements of this association. 2245

Table 26 – Association: CIM_ElementCapabilities (Snapshot service) 2246

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSnapshotService class that repre-
sents a virtual system snapshot service

Cardinality: 1

Capabilities Mandatory Key: Reference to the instance of the
CIM_VirtualSystemSnapshotServiceCapabilities class
that represents the capabilities of the virtual system
snapshot service

Cardinality: 1

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 73

10.7 CIM_ElementCapabilities (Snapshots of virtual systems) 2247

The implementation of the CIM_ElementCapabilities association for the virtual systems snapshots is 2248
conditional. 2249

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2250

If the CIM_ElementCapabilities association is implemented for virtual systems snapshots, the provisions 2251
in this subclause apply. 2252

The implementation shall use an instance of the CIM_ElementCapabilities association to associate in-2253
stances of the CIM_VirtualSystemSnapshotCapabilities class with those instances of the 2254
CIM_ComputerSystem class that represent a virtual system to which the capabilities apply. 2255

Table 27 contains requirements for elements of this association. 2256

Table 27 – Association: CIM_ElementCapabilities (Snapshots of virtual systems) 2257

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of the
CIM_ComputerSystem class that represents a virtual
system

Cardinality: *

Capabilities Mandatory Key: Reference to the instance of the
CIM_VirtualSystemSnapshotCapabilities class that de-
scribes the current applicability of snapshot related
services to the virtual system

Cardinality: 1

10.8 CIM_ElementConformsToProfile 2258

An implementation shall use an instance of the CIM_ElementConformsToProfile association to associate 2259
an instance of the CIM_RegisteredProfile class that represents an implementation of this profile with 2260
instances of the CIM_System class that represent a host system that is a central and scoping instance of 2261
this profile. 2262

Table 28 contains requirements for elements of this association. 2263

Table 28 – Association: CIM_ElementConformsToProfile 2264

Elements Requirement Notes

ConformantStandard Mandatory Key: Reference to an instance of the CIM_Registered-
Profile class that represents an implementation of this
profile

Cardinality: 1

ManagedElement Mandatory Key: Reference to an instance of the CIM_ System
class that represents a host system

Cardinality: *

System Virtualization Profile DSP1042

74 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

10.9 CIM_HostedDependency 2265

An implementation shall use an instance of the CIM_HostedDependency association to associate an 2266
instance of the CIM_System class that represents a host system with each instance of the CIM_Comput-2267
erSystem class that represents a virtual system hosted by the host system. 2268

Table 29 contains requirements for elements of this association. 2269

Table 29 – Association: CIM_HostedDependency 2270

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_ComputerSystem class that represents a virtual
system

Cardinality: *

10.10 CIM_HostedService (Virtual system management service) 2271

The implementation of the CIM_HostedService association for the virtual system management service is 2272
conditional: 2273

Condition: Any of the following is implemented: 2274

 Virtual system definition and destruction (see 7.4.6.1) 2275

 Vvirtual resource addition and removal (see 7.4.6.2) 2276

 Virtual system and resource modification (see 7.4.6.3) 2277

If the CIM_HostedService association is implemented for the virtual system management service, the 2278
provisions in this subclause apply. 2279

The implementation shall use an instance of the CIM_HostedService association to associate an instance 2280
of the CIM_System class that represents a host system and the instance of the CIM_VirtualSystem-2281
ManagementService class that represents the virtual system management service that is hosted by a 2282
host system. 2283

Table 30 contains requirements for elements of this association. 2284

Table 30 – Association: CIM_HostedService (Virtual system management service) 2285

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemManagementService class that
represents a virtual system management service

Cardinality: 0..1

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 75

10.11 CIM_HostedService (Virtual system snapshot service) 2286

The implementation of the CIM_HostedService association is conditional. 2287

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2288

If the CIM_HostedService association is implemented for the virtual system snapshot service, the 2289
provisions in this subclause apply. 2290

The implementation shall use an instance of the CIM_HostedService association to associate an instance 2291
of the CIM_ComputerSystem class that represents a host system and the instance of the 2292
CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot service. 2293

Table 31 contains requirements for elements of this association. 2294

Table 31 – Association: CIM_HostedService (Virtual system snapshot service) 2295

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSnapshotService class that repre-
sents a virtual system snapshot service

Cardinality: 0..1

10.12 CIM_LastAppliedSnapshot 2296

The implementation of the CIM_LastAppliedSnapshot association is conditional. 2297

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2298

If the CIM_LastAppliedSnapshot association is implemented, the provisions in this subclause apply. 2299

An implementation shall use an instance of the CIM_LastAppliedSnapshot association to associate an in-2300
stance of the CIM_ComputerSystem class that represents a virtual system and the instance of the 2301
CIM_VirtualSystemSettingData class that represents the virtual system snapshot that was last applied to 2302
the virtual system. 2303

Table 32 contains requirements for elements of this association. 2304

Table 32 – Association: CIM_LastAppliedSnapshot 2305

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSettingData class that represents a
virtual system snapshot

Cardinality: 0..1

Dependent Mandatory Key: Reference to the instance of the
CIM_ComputerSystem class that represents the virtual
system

Cardinality: 0..1

System Virtualization Profile DSP1042

76 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

10.13 CIM_MostCurrentSnapshotInBranch 2306

The implementation of the CIM_MostCurrentSnapshotInBranch association is conditional. 2307

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2308

If the CIM_MostCurrentSnapshotInBranch association is implemented, the provisions in this subclause 2309
apply. 2310

An implementation shall use an instance of the CIM_MostCurrentSnapshotInBranch association to 2311
associate an instance of the CIM_ComputerSystem class that represents a virtual system and the 2312
instance of the CIM_VirtualSystemSettingData class that represents the most current snapshot in a 2313
branch of virtual system snapshots. The most current snapshot in a branch of snapshots related to an in-2314
stance of a virtual system is the younger of the following snapshots: 2315

 the snapshot that was most recently captured from the virtual system instance 2316

 the snapshot that was last applied to the instance 2317

Table 33 contains requirements for elements of this association. 2318

Table 33 – Association: CIM_MostCurrentSnapshotInBranch 2319

Elements Requirement Notes

Antecedent Mandatory Key: Reference to the instance of the
CIM_ComputerSystem class that represents the virtual
system

Cardinality: 0..1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSettingData class that represents a
virtual system snapshot

Cardinality: 0..1

10.14 CIM_ReferencedProfile 2320

The implementation of the CIM_ReferencedProfile association is conditional. 2321

Condition: Resource virtualization profiles such as DSP1059 are implemented as scoped profiles. 2322

If the CIM_ReferencedProfile association is implemented, the provisions in this subclause apply. 2323

An implementation shall use an instance of the CIM_ReferencedProfile association to associate an in-2324
stance of the CIM_RegisteredProfile class that represents an implementation of this profile and any 2325
instance of the CIM_RegisteredProfile class that represents an implementation of a resource allocation 2326
DMTF management profile that describes virtual resource allocation that is implemented by the 2327
implementation. 2328

Table 34 contains requirements for elements of this association. 2329

Table 34 – Association: CIM_ReferencedProfile 2330

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the
CIM_RegisteredProfile that represents an implementa-
tion of this profile

Cardinality: 1

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 77

Dependent Mandatory Key: Reference to an instance of the
CIM_RegisteredProfile class that represents an imple-
mentation of a resource allocation profile

Cardinality: *

10.15 CIM_RegisteredProfile 2331

An implementation shall use an instance of the CIM_RegisteredProfile class to represent an 2332
implementation of this profile. 2333

Table 35 contains requirements for elements of this class. 2334

Table 35 – Class: CIM_RegisteredProfile 2335

Elements Requirement Notes

InstanceID Mandatory Key

RegisteredOrganization Mandatory Shall be set to "DMTF".

RegisteredName Mandatory Shall be set to "System Virtualization".

RegisteredVersion Mandatory Shall be set to the version of this profile ("1.0.0").

10.16 CIM_ServiceAffectsElement (Virtual system management service) 2336

The implementation of the CIM_ServiceAffectsElement association for the virtual system management 2337
service is conditional. 2338

Condition: Any of the following is implemented: 2339

 Virtual system definition and destruction (see 7.4.6.1) 2340

 Virtual resource addition and removal (see 7.4.6.2) 2341

 Virtual system and resource modification (see 7.4.6.3) 2342

If the CIM_ServiceAffectsElement association is implemented for the virtual system management service, 2343
the provisions in this subclause apply. 2344

The implementation shall use an instance of the CIM_ServiceAffectsElement association to associate an 2345
instance of the CIM_VirtualSystemManagementService class that represents a virtual system manage-2346
ment service and any instance of the CIM_ComputerSystem class that represents a virtual system that is 2347
managed by that virtual system management service. 2348

Table 36 contains requirements for elements of this association. 2349

Table 36 – Association: CIM_ServiceAffectsElement (Virtual system management service) 2350

Elements Requirement Notes

AffectedElement Mandatory Key: Reference to instance of the CIM_ComputerSys-
tem class that represents a managed virtual system

Cardinality: *

AffectingElement Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementService class that represents a virtual
system management service

Cardinality: 0..1

System Virtualization Profile DSP1042

78 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

10.17 CIM_ServiceAffectsElement (Virtual system snapshot service) 2351

The implementation of the CIM_ServiceAffectsElement association is conditional. 2352

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2353

If the CIM_ServiceAffectsElement association is implemented for the virtual system snapshot service, the 2354
provisions in this subclause apply. 2355

The implementation shall use an instance of the CIM_ServiceAffectsElement association to associate an 2356
instance of the CIM_VirtualSystemSnapshotService class that represents a virtual system management 2357
service with the following instances: 2358

 any instance of the CIM_ComputerSystem class that represents a virtual system that is man-2359
aged by that virtual system management service 2360

 any instance of the CIM_VirtualSystemSettingData class that represents a virtual system snap-2361
shot 2362

Table 37 contains requirements for elements of this association. 2363

Table 37 – Association: CIM_ServiceAffectsElement 2364

Elements Requirement Notes

AffectedElement Mandatory Key: Reference to instance of the CIM_ComputerSys-
tem class that represents a virtual system or the
CIM_VirtualSystemSettingData class that represents a
managed snapshot

Cardinality: *

AffectingElement Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementService class that represents a virtual
system snapshot service

Cardinality: 0..1

10.18 CIM_SnapshotOfVirtualSystem 2365

The implementation of the CIM_SnapshotOfVirtualSystem association is conditional. 2366

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2367

If the CIM_SnapshotOfVirtualSystem association is implemented, the provisions in this subclause apply. 2368

An implementation shall use an instance of the CIM_SnapshotOfVirtualSystem association to associate 2369
an the instance of the CIM_ComputerSystem class that represents the virtual system that was the source 2370
for the virtual system snapshot and the instance of the CIM_VirtualSystemSettingData class that repre-2371
sents a snapshot of the virtual system 2372

Table 38 contains requirements for elements of this association. 2373

Table 38 – Association: CIM_SnapshotOfVirtualSystem 2374

Elements Requirement Notes

Antecedent Mandatory Key: Reference to the instance of the CIM_Computer-
System class that represents the source virtual system

Cardinality: 0..1

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 79

Dependent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a virtual system
snapshot

Cardinality: *

10.19 CIM_System 2375

An implementation shall use an instance of a concrete subclass of the CIM_System class to represent a 2376
host system. 2377

Table 40 contains requirements for elements of this class. 2378

Table 39 – Class: CIM_VirtualSystemManagementCapabilities 2379

Elements Requirement Notes

CreationClassName Mandatory Key.

Name Mandatory Key

10.20 CIM_VirtualSystemManagementCapabilities 2380

An implementation shall use an instance of the CIM_VirtualSystemManagementCapabilities class to 2381
represent the virtual system management capabilities of a host system. 2382

Table 40 contains requirements for elements of this class. 2383

Table 40 – Class: CIM_VirtualSystemManagementCapabilities 2384

Elements Requirement Notes

InstanceID Mandatory Key

VirtualSystemTypesSupported[] Optional See 7.4.2.

SynchronousMethodsSupported[] Optional See 7.4.3.

AsynchronousMethodsSupported[] Optional See 7.4.4.

IndicationsSupported[] Optional See.7.4.5.

10.21 CIM_VirtualSystemManagementService 2385

The implementation of the CIM_VirtualSystemManagementService class is conditional. 2386

Condition: Any of the following is implemented: 2387

 Virtual system definition and destruction (see 7.4.6.1) 2388

 Virtual resource addition and removal (see 7.4.6.2) 2389

 Virtual system and resource modification (see 7.4.6.3) 2390

If the CIM_VirtualSystemManagementService class is implemented, the provisions in this subclause 2391
apply. 2392

An implementation shall use an instance of the CIM_VirtualSystemManagementService class to 2393
represent the virtual system management service provided by one host system. 2394

Table 41 contains requirements for elements of this class. 2395

System Virtualization Profile DSP1042

80 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Table 41 – Class: CIM_VirtualSystemManagementService 2396

Elements Requirement Notes

CreationClassName Mandatory Key

Name Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

AddResourceSettings() Conditional See 8.2.3.

DefineSystem() Conditional See 8.2.1.

DestroySystem() Conditional See 8.2.2.

ModifyResourceSettings() Conditional See 8.2.4.

ModifySystemSettings() Conditional See 8.2.5.

RemoveResourceSettings() Conditional See 8.2.6.

10.22 CIM_VirtualSystemSettingData (Input) 2397

The implementation of the CIM_VirtualSystemSettingData class for input is conditional. 2398

Condition: Any of the following is implemented: 2399

 Virtual system definition and destruction (see 7.4.6.1) 2400

 Virtual resource addition and removal (see 7.4.6.2) 2401

 Virtual system and resource modification (see 7.4.6.3) 2402

If the CIM_VirtualSystemSettingData class is implemented for input, the provisions in this subclause 2403
apply. 2404

An instance of the CIM_VirtualSystemSettingData class shall be used to represent input data for a virtual 2405
system’s definitions and modifications. 2406

Table 42 contains requirements for elements of this class. 2407

Table 42 – Class: CIM_VirtualSystemSettingData (Input) 2408

Elements Requirement Notes

InstanceID Mandatory Key (Input): See 7.5.1.

ElementName Optional See 7.5.2 .

VirtualSystemIdentity Optional See 7.5.3.

VirtualSystemType Optional See 7.5.4.

10.23 CIM_VirtualSystemSettingData (Snapshot) 2409

The implementation of the CIM_VirtualSystemSettingData class for the representation of snapshots of vir-2410
tual systems is conditional. 2411

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2412

If the CIM_VirtualSystemSettingData class is implemented for the representation of snapshots, the 2413
provisions in this subclause apply. 2414

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 81

An instance of the CIM_VirtualSystemSettingData class shall be used to represent snapshots of virtual 2415
systems. 2416

Table 43 contains requirements for elements of this class. 2417

Table 43 – Class: CIM_VirtualSystemSettingData (Snapshot) 2418

Elements Requirement Notes

InstanceID Mandatory Key

Caption Optional See CIM Schema.

Description Optional See CIM Schema.

ElementName Optional See CIM Schema.

VirtualSystemIdentifier Optional See CIM Schema.

VirtualSystemType Optional See CIM Schema.

Notes Optional See CIM Schema.

CreationTime Mandatory The value shall reflect the creation time of the snapshot.

ConfigurationID Optional See CIM Schema.

ConfigurationDataRoot Optional See CIM Schema.

ConfigurationFile Mandatory This element shall have a value of NULL.

SnapshotDataRoot Mandatory This element shall have a value of NULL.

SuspendDataRoot Optional See CIM Schema.

SwapFileDataRoot Mandatory This element shall have a value of NULL.

LogDataRoot Optional See CIM Schema.

AutomaticStartupAction Mandatory This element shall have a value of NULL.

AutomaticStartupActionDelay Mandatory This element shall have a value of NULL.

AutomaticStartupActionSequen
ceNumber

Mandatory This element shall have a value of NULL.

AutomaticShutdownAction Mandatory This element shall have a value of NULL.

AutomaticRecoveryAction Mandatory This element shall have a value of NULL.

RecoveryFile Mandatory This element shall have a value of NULL.

NOTE: Elements marked as mandatory but with a required value of NULL shall in effect not be implemented. Respective
information applies to the virtual system as a whole, not just to a particular snapshot, and is covered by the instance of
the CIM_VirtualSystemSettingData class in the "State" and the "Defined" virtual system configuration.

10.24 CIM_VirtualSystemSnapshotCapabilities 2419

The implementation of the CIM_VirtualSystemSnapshotCapabilities class is optional. 2420

If the CIM_VirtualSystemSnapshotCapabilities class is implemented, the provisions in this subclause 2421
apply. 2422

The implementation of the optional CIM_VirtualSystemSnapshotCapabilities class is specified only if vir-2423
tual system snapshots are implemented; (see 7.7.1.1). 2424

An instance of the CIM_VirtualSystemSnapshotCapabilities class may be used to represent the current 2425
applicability of snapshot-related services to one virtual system. 2426

System Virtualization Profile DSP1042

82 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

Table 44 contains requirements for elements of this class. 2427

Table 44 – Class: CIM_VirtualSystemSnapshotCapabilities 2428

Elements Requirement Notes

InstanceID Mandatory Key

SnapshotTypesEnabled[] Mandatory See 7.7.5.1.

GuestOSNotificationEnabled[] Optional See 7.7.5.2.

10.25 CIM_VirtualSystemSnapshotService 2429

The implementation of the CIM_VirtualSystemSnapshotService class is optional. 2430

If the CIM_VirtualSystemSnapshotService class is implemented, the provisions in this subclause apply. 2431

If the CIM_VirtualSystemSnapshotService class is implemented, this indicates the presence of the sup-2432
port of virtual system snapshots (see 7.7.1.1). 2433

An instance of the CIM_VirtualSystemSnapshotService class shall be used to represent the virtual system 2434
snapshot service available at a host system. 2435

Table 45 contains requirements for elements of this class. 2436

Table 45 – Class: CIM_VirtualSystemSnapshotService 2437

Elements Requirement Notes

CreationClassName Mandatory Key

Name Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

CreateSnapshot() Conditional See 8.3.1.

DestroySnapshot() Conditional See 8.3.2.

ApplySnapshot() Conditional See 8.3.3.

10.26 CIM_VirtualSystemSnapshotServiceCapabilities 2438

The implementation of the CIM_VirtualSystemSnapshotServiceCapabilities class is conditional. 2439

Condition: Virtual system snapshots are implemented; see 7.7.1.1. 2440

If the CIM_VirtualSystemSnapshotServiceCapabilities class is implemented, the provisions in this 2441
subclause apply. 2442

An instance of the CIM_VirtualSystemSnapshotServiceCapabilities class shall be used to represent the 2443
capabilities of a virtual system snapshot service. 2444

Table 46 contains requirements for elements of this class. 2445

Table 46 – Class: CIM_VirtualSystemSnapshotServiceCapabilities 2446

Elements Requirement Notes

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 83

Elements Requirement Notes

InstanceID Mandatory Key

SynchronousMethodsSupported[] Conditional See 7.7.1.2

AsynchronousMethodsSupported[] Conditional See 7.7.1.2

SnapshotTypesSupported[] Mandatory See 7.7.1.2

 2447

System Virtualization Profile DSP1042

84 DMTF Work in Progress - Expires 2010-03-31 Version 1.0.0e

ANNEX A 2448

(Informative) 2449

 2450

Change Log 2451

Version Date Description

1.0.0a 2007/08/03 Released as preliminary standard

1.0.0 2009/07/10 Final standard

DSP1042 System Virtualization Profile

Version 1.0.0e DMTF Work in Progress - Expires 2010-03-31 85

ANNEX B 2452

(Informative) 2453

 2454

Acknowledgements 2455

The authors wish to acknowledge the following people. 2456

Editor: 2457

 Michael Johanssen – IBM 2458

Contributors: 2459

 Gareth Bestor – IBM 2460

 Chris Brown – HP 2461

 Mike Dutch – Symantec 2462

 Jim Fehlig – Novell 2463

 Kevin Fox – Sun Microsystems, Inc. 2464

 Sue Gnat - cPubs 2465

 Ron Goering – IBM 2466

 Daniel Hiltgen – EMC/VMware 2467

 Kelly Holcomb - cPubs 2468

 Michael Johanssen – IBM 2469

 Larry Lamers – EMC/VMware 2470

 Andreas Maier – IBM 2471

 Aaron Merkin – IBM 2472

 John Parchem – Microsoft 2473

 Joanne Saathof - cPubs 2474

 Nihar Shah – Microsoft 2475

 David Simpson – IBM 2476

 Carl Waldspurger – EMC/VMware 2477

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Synopsis
	6 Description
	6.1 Profile relationships
	6.2 System virtualization class schema
	6.3 Virtual system configurations
	6.4 Resource allocation
	6.5 Snapshots

	7 Implementation
	7.1 Host system
	7.2 Profile registration
	7.2.1 This profile
	7.2.2 Scoped resource allocation profiles

	7.3 Representation of hosted virtual systems
	7.3.1 Profile conformance for hosted virtual systems
	7.3.2 CIM_VirtualSystemSettingData.VirtualSystemType property

	7.4 Virtual system management capabilities
	7.4.1 CIM_VirtualSystemManagementCapabilities class
	7.4.2 CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[] array property
	7.4.3 CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[] array property
	7.4.4 CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[] array property
	7.4.5 CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array property
	7.4.6 Grouping Rules for implementations of methods of the CIM_VirtualSystemManagementService class
	7.4.6.1 Virtual system definition and destruction
	7.4.6.2 Virtual resource addition and removal
	7.4.6.3 Virtual system and resource modification

	7.5 Virtual system definition and modification
	7.5.1 CIM_VirtualSystemSettingData.InstanceID property
	7.5.2 CIM_VirtualSystemSettingData.ElementName property
	7.5.3 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property
	7.5.4 CIM_VirtualSystemSettingData.VirtualSystemType property

	7.6 Virtual resource definition and modification
	7.7 Virtual system snapshots
	7.7.1 Virtual system snapshot service and capabilities
	7.7.1.1 Virtual system snapshots
	7.7.1.2 CIM_VirtualSystemSnapshotServiceCapabilities class

	7.7.2 Virtual system snapshot representation
	7.7.3 Designation of the last applied snapshot
	7.7.4 Designation of the most current snapshot in branch
	7.7.5 Virtual system snapshot capabilities
	7.7.5.1 CIM_VirtualSystemSnapshotCapabilities.SnapshotTypesEnabled[] array property
	7.7.5.2 CIM_VirtualSystemSnapshotCapabilities.GuestOSNotificationEnabled property

	8 Methods
	8.1 General behavior of extrinsic methods
	8.1.1 Resource allocation requests
	8.1.2 Method results
	8.1.3 Asynchronous processing
	8.1.3.1 General requirements
	8.1.3.2 Job parameter

	8.2 Methods of the CIM_VirtualSystemManagementService class
	8.2.1 CIM_VirtualSystemManagementService.DefineSystem() method
	8.2.1.1 Value preference rules
	8.2.1.2 SystemSettings parameter
	8.2.1.3 ResourceSettings[] array parameter
	8.2.1.4 ReferencedConfiguration parameter
	8.2.1.5 ResultingSystem parameter
	8.2.1.6 Return codes

	8.2.2 CIM_VirtualSystemManagementService.DestroySystem() method
	8.2.2.1 AffectedSystem parameter
	8.2.2.2 Return codes

	8.2.3 CIM_VirtualSystemManagementService.AddResourceSettings() method (Conditional)
	8.2.3.1 AffectedConfiguration parameter
	8.2.3.2 ResourceSettings[] array parameter
	8.2.3.3 ResultingResourceSettings[] array parameter
	8.2.3.4 Return codes

	8.2.4 CIM_VirtualSystemManagementService.ModifyResourceSettings() method
	8.2.4.1 ResourceSettings[] parameter
	8.2.4.2 ResultingResourceSettings[] parameter
	8.2.4.3 Return codes

	8.2.5 CIM_VirtualSystemManagementService.ModifySystemSettings() method
	8.2.5.1 SystemSettings parameter
	8.2.5.2 Return codes

	8.2.6 CIM_VirtualSystemManagementService.RemoveResourceSettings() method
	8.2.6.1 ResourceSettings[] array parameter
	8.2.6.2 Return codes

	8.3 Methods of the CIM_VirtualSystemSnapshotService class
	8.3.1 CIM_VirtualSystemSnapshotService.CreateSnapshot() method
	8.3.1.1 AffectedSystem parameter
	8.3.1.2 SnapshotSettings parameter
	8.3.1.3 SnapshotType parameter
	8.3.1.4 ResultingSnapshot parameter
	8.3.1.5 Return codes

	8.3.2 VirtualSystemSnapshotService.DestroySnapshot() method
	8.3.2.1 AffectedSnapshot parameter
	8.3.2.2 Return codes

	8.3.3 VirtualSystemSnapshotService.ApplySnapshot() method
	8.3.3.1 Snapshot parameter
	8.3.3.2 Return codes

	8.4 Profile conventions for operations
	8.4.1 CIM_AffectedJobElement
	8.4.2 CIM_ComputerSystem
	8.4.3 CIM_ConcreteJob
	8.4.4 CIM_Dependency
	8.4.5 CIM_ElementCapabilities
	8.4.6 CIM_ElementConformsToProfile
	8.4.7 CIM_HostedDependency
	8.4.8 CIM_HostedService
	8.4.9 CIM_LastAppliedSnapshot
	8.4.10 CIM_MostCurrentSnapshotInBranch
	8.4.11 CIM_ReferencedProfile
	8.4.12 CIM_RegisteredProfile
	8.4.13 CIM_ServiceAffectsElement
	8.4.14 CIM_SnapshotOfVirtualSystem
	8.4.15 CIM_System
	8.4.16 CIM_VirtualSystemManagementCapabilities
	8.4.17 CIM_VirtualSystemManagementService
	8.4.18 CIM_VirtualSystemSnapshotService
	8.4.19 CIM_VirtualSystemSnapshotCapabilities
	8.4.20 CIM_VirtualSystemSnapshotServiceCapabilities

	9 Use Cases
	9.1 General assumptions
	9.2 Discovery, localization, and inspection
	9.2.1 SLP-Based discovery of CIM object managers hosting implementations of this Profile
	9.2.2 Locate conformant implementations using the EnumerateInstances() operation
	9.2.3 Locate conformant implementations using the ExecuteQuery() operation
	9.2.4 Locate host systems represented by central instances of this profile
	9.2.5 Locate implementations of scoped resource allocation profiles
	9.2.6 Locate virtual system management service
	9.2.7 Determine the capabilities of an implementation
	9.2.8 Locate hosted resource pools of a particular resource type
	9.2.9 Obtain a set of central instances of scoped resource allocation profiles
	9.2.10 Determine implemented resource types
	9.2.11 Determine the default resource pool for a resource type
	9.2.12 Determine the resource pool for a resource allocation request or an allocated resource
	9.2.13 Determine valid settings for a resource type
	9.2.14 Determine implementation class specifics
	9.2.15 Determine the implementation class for a resource type
	9.2.16 Locate virtual systems hosted by a host system

	9.3 Virtual system definition, modification, and destruction
	9.3.1 Virtual system definition
	9.3.1.1 Define virtual system based on input and reference virtual system configuration
	9.3.1.2 Define virtual system with implementation-specific properties

	9.3.2 Virtual system modification
	9.3.2.1 Modify virtual system state or definition
	9.3.2.2 Add virtual resources
	9.3.2.3 Modify virtual resource state extension or virtual resource definition
	9.3.2.4 Delete virtual resources or virtual resource definitions

	9.3.3 Destroy virtual system

	9.4 Snapshot-related activities
	9.4.1 Locate virtual system snapshot service
	9.4.2 Determine capabilities of a virtual system snapshot service
	9.4.3 Create snapshot
	9.4.4 Locate snapshots of a virtual system
	9.4.5 Locate the source virtual system of a snapshot
	9.4.6 Locate the most current snapshot in a branch of snapshots
	9.4.7 Locate dependent snapshots
	9.4.8 Locate parent snapshot
	9.4.9 Apply snapshot
	9.4.10 Destroy snapshot

	10 CIM elements
	10.1 CIM_AffectedJobElement
	10.2 CIM_ConcreteJob
	10.3 CIM_Dependency
	10.4 CIM_ElementCapabilities (Host system)
	10.5 CIM_ElementCapabilities (Virtual system management service)
	10.6 CIM_ElementCapabilities (Virtual system snapshot service)
	10.7 CIM_ElementCapabilities (Snapshots of virtual systems)
	10.8 CIM_ElementConformsToProfile
	10.9 CIM_HostedDependency
	10.10 CIM_HostedService (Virtual system management service)
	10.11 CIM_HostedService (Virtual system snapshot service)
	10.12 CIM_LastAppliedSnapshot
	10.13 CIM_MostCurrentSnapshotInBranch
	10.14 CIM_ReferencedProfile
	10.15 CIM_RegisteredProfile
	10.16 CIM_ServiceAffectsElement (Virtual system management service)
	10.17 CIM_ServiceAffectsElement (Virtual system snapshot service)
	10.18 CIM_SnapshotOfVirtualSystem
	10.19 CIM_System
	10.20 CIM_VirtualSystemManagementCapabilities
	10.21 CIM_VirtualSystemManagementService
	10.22 CIM_VirtualSystemSettingData (Input)
	10.23 CIM_VirtualSystemSettingData (Snapshot)
	10.24 CIM_VirtualSystemSnapshotCapabilities
	10.25 CIM_VirtualSystemSnapshotService
	10.26 CIM_VirtualSystemSnapshotServiceCapabilities

