1	distributed management task force, inc.
2	Document Number: DSP1030
3	Date: 2009-06-22
4	Version: 1.0.0

5 Battery Profile

6 **Document Type: Specification**

- 7 Document Status: DMTF Standard
- 8 Document Language: E

10 **Copyright Notice** 11 Copyright © 2007, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF specifications and 13 14 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 15 time, the particular version and release date should always be noted. 16 Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18 19 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 20 inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21 22 disclose, or identify any such third party patent rights, or for such party's reliance on the standard or 23 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 24 party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 25 owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26 27 implementing the standard from any and all claims of infringement by a patent owner for such 28 implementations. 29 For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or impact implementations of DMTF standards, visit

- 30
- http://www.dmtf.org/about/policies/disclosures.php. 31

Table of Contents

34	Fore	Foreword			
35	Introduction6				
36	1	Scope			
37	2	Norm	ative References	7	
38		2.1	Approved References		
39		2.2	Other References		
40	3	Terms	and Definitions	7	
41	4	Symb	ols and Abbreviated Terms	9	
42	5	Synop	osis	9	
43	6	Desci	iption	9	
44	7	Imple	nentation Requirements	. 10	
45		7.1	CIM Battery		
46		7.2	CIM_Battery.BatteryStatus Value Formulation	. 10	
47		7.3	CIM_Battery.Chemistry Value Formulation (Optional)		
48		7.4	CIM_AssociatedBattery (Optional)	. 11	
49		7.5	Modeling a Battery Temperature Sensor (Optional)	. 11	
50		7.6	Managing the Battery's State (Optional)		
51	8	Metho	ods		
52		8.1	Method: CIM_Battery.RequestStateChange()		
53		8.2	Profile Conventions for Operations		
54		8.3	CIM_AssociatedBattery		
55		8.4	CIM_ElementCapabilities		
56		8.5	CIM_EnabledLogicalElementCapabilities	. 15	
57		8.6	CIM_Battery	.16	
58	•	8.7	CIM_SystemDevice		
59	9				
60		9.1 9.2	Object Diagrams		
61 62		9.2 9.3	Recharge a Battery Recalibrate Battery Thresholds		
63		9.3 9.4	Determine Additional Information for the Health of a Battery Using a Sensor		
64	10	•••	Elements		
65	10	10.1	CIM_AssociatedBattery		
66		10.1	CIM_Battery		
67		10.2	CIM_ElementCapabilities		
68		10.4	CIM_EnabledLogicalElementCapabilities	.21	
69		10.5	CIM_NumericSensor	.21	
70		10.6	CIM_RegisteredProfile	.22	
71		10.7	CIM_Sensor		
72		10.8	CIM_SystemDevice	. 22	
73	ANN	IEX A	(informative) Change Log	.23	

List of Figures

76	Figure 1 – Class Diagram	
77	Figure 2 – Instance Diagram 1	
	Figure 3 – Instance Diagram 2	
	Figure 4 – Instance Diagram 3	
	Figure 5 – Instance Diagram 4	
81		

82

List of Tables

83	Table 1 – Related Profiles	9
84	Table 2 – BatteryStatus Value Description	
85	Table 3 – RequestedState Values	12
86	Table 4 – EnabledState Values	12
87	Table 5 – CIM_Battery.RequestStateChange() Method: Return Code Values	13
88	Table 6 – CIM_Battery.RequestStateChange() Method: Parameters	14
89	Table 7 – Operations: CIM_AssociatedBattery	15
90	Table 8 – Operations: CIM_ElementCapabilities	15
91	Table 9 – Operations: CIM_EnabledLogicalElementCapabilities	15
92	Table 10 – Operations: CIM_Battery	
93	Table 11 – Operations: CIM_SystemDevice	16
94	Table 12 – CIM Elements: Battery Profile	19
95	Table 13 – Class: CIM_AssociatedBattery	20
96	Table 14 – Class: CIM_Battery	20
97	Table 15 – Class: CIM_ElementCapabilities	21
98	Table 16 – Class: CIM_EnabledLogicalElementCapabilities	
99	Table 17 – Class: CIM_NumericSensor	21
100	Table 18 – Class: CIM_RegisteredProfile	
101	Table 19 – Class: CIM_Sensor	22
102	Table 20 – Class: CIM_SystemDevice	22

Foreword

- 104 The *Battery Profile* (DSP1030) was prepared by the Desktop and Mobile Working Group.
- 105 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 106 management and interoperability.

107 Acknowledgments

- 108 The authors wish to acknowledge the following people.
- 109 Editor:
- Jon Hass Dell

111 Contributors:

- Aaron Merkin IBM
- 113 Bob Blair AMD
- 114 David Hines Intel
- Hemal Shah Broadcom
- 116 Jon Hass Dell
- 117 Khachatur Papanyan Dell
- 118 RadhaKrishna Dasari Dell
- Scott Lenharth Dell

Introduction

This document defines the classes used to describe the batteries in a managed system. Also included are descriptions of association classes that describe the relationship of the battery to the battery's physical aspects, such as FRU data, to sensors monitoring the battery, and to DMTF profile version information. The information in this specification is intended to be sufficient for a provider or consumer of this data to identify unambiguously the classes, properties, methods, and values that are mandatory to be instantiated and manipulated to represent and manage batteries of managed systems and subsystems modeled using the DMTF CIM core and extended model definitions.

128 The target audience for this specification is implementers who are writing CIM-based providers or 129 consumers of management interfaces representing the component described in this document.

Battery Profile

Scope 1

130

131

The Battery Profile extends the management capabilities of referencing profiles by adding the capability 132 to represent batteries for manageability. The battery as a logical device is modeled as referencing the 133 battery physical package for physical asset information, the sensor for sensor-reading information, and 134

135 the profile registration for the schema implementation version information.

Normative References 136 2

137 The following referenced documents are indispensable for the application of this document. For dated 138 references, only the edition cited applies. For undated references, the latest edition of the referenced

document (including any amendments) applies. 139

140 2.1 Approved References

- 141 DMTF DSP0004, CIM Infrastructure Specification 2.3,
- http://www.dmtf.org/standards/published_documents/DSP0004_2.3.pdf 142
- 143 DMTF DSP0200, CIM Operations over HTTP 1.3, 144 http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
- DMTF DSP1001, Management Profile Specification Usage Guide 1.0, 145 http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf 146
- DMTF DSP1009, Sensors Profile1.0, 147 http://www.dmtf.org/standards/published_documents/DSP1009_1.0.pdf 148
- 149 DMTF DSP1011, Physical Asset Profile 1.0,
- http://www.dmtf.org/standards/published_documents/DSP1011_1.0.pdf 150
- 151 DMTF DSP1033, Profile Registration Profile 1.0,
- http://www.dmtf.org/standards/published documents/DSP1033 1.0.pdf 152

2.2 Other References 153

- 154 ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
- http://isotc.iso.org/livelink/livelink.exe?func=ll&objld=4230456&objAction=browse&sort=subtype 155

Terms and Definitions 3 156

- 157 For the purposes of this document, the following terms and definitions apply.
- 158 3.1
- 159 can
- 160 used for statements of possibility and capability, whether material, physical, or causal
- 161 3.2
- 162 cannot
- 163 used for statements of possibility and capability, whether material, physical, or causal

	164 165 166 167	3.3 conditional indicates requirements strictly to be followed in order to conform to the document when the specified conditions are met
	168 169 170 171	3.4 mandatory indicates requirements strictly to be followed in order to conform to the document and from which no deviation is permitted
	172 173 174	3.5 may indicates a course of action permissible within the limits of the document
	175 176 177	3.6 need not indicates a course of action permissible within the limits of the document
	178 179 180	3.7 optional indicates a course of action permissible within the limits of the document
	181 182 183 184	3.8 referencing profile a profile that owns the definition of this class and can include a reference to this profile in its "Approved References" section
	185 186 187 188	3.9 shall indicates requirements strictly to be followed in order to conform to the document and from which no deviation is permitted
	189 190 191 192	3.10 shall not indicates requirements strictly to be followed in order to conform to the document and from which no deviation is permitted
	193 194 195 196	3.11 should indicates that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required
	197 198 199	3.12 should not indicates that a certain possibility or course of action is deprecated but not prohibited
2	200 201 202	3.13 unspecified indicates that this profile does not define any constraints for the referenced CIM element

203 4 Symbols and Abbreviated Terms

- 204 The following symbols and abbreviations are used in this document.
- 205 4.1
- 206 CIM
- 207 Common Information Model
- 208 4.2
- 209 FRU
- 210 Field Replaceable Unit

211 5 Synopsis

- 212 Profile Name: Battery
- 213 Version: 1.0.0
- 214 Organization: DMTF
- 215 CIM Schema Version: 2.22
- 216 Central Class: CIM_Battery
- 217 Scoping Class: CIM_ComputerSystem
- 218 The *Battery Profile* extends the management capability of the referencing profiles to describe and set the
- 219 logical properties of the battery. Such properties include the description of the battery's charge status and
- the time it takes for the battery charge to be depleted. The profile also describes operations such as
- 221 recharging the battery.

222

Table	1 –	Related	Profiles
-------	-----	---------	----------

Profile Name	Organization	Version	Relationship	Behavior
Physical Asset	DMTF	1.0	Optional	
Profile Registration	DMTF	1.0	Mandatory	
Sensor	DMTF	1.0	Optional	

223 6 Description

224 The Battery Profile describes the necessary set of logical values for managing battery devices. The 225 properties in the Battery class provide the status of the battery as well as the estimation for its charge duration. Additionally, Battery class properties describe the physical characteristics of the battery such as 226 227 its chemistry, voltages, and lifetime. The capabilities to disable, enable, recharge, and establish charge 228 thresholds for a battery are advertised through the CIM EnabledLogicalElementCapabilities instance. 229 When a battery has an associated sensor, a CIM_Battery instance is associated to a CIM_Sensor 230 instance through the CIM_AssociatedSensor class. The battery's physical description, such as FRU 231 information, is represented by an instance of the CIM PhysicalPackage class through the CIM Realizes 232 association. The managed system element that the battery is providing power for is represented by the 233 CIM_Battery instance associated to a CIM_ManagedSystemElement sub-class instance through the 234 CIM AssociatedBattery association. The version of the Battery Profile implemented is represented through the CIM RegisteredProfile class. 235

Figure 1 represents the class schema for the *Battery Profile*. For simplicity, the prefix CIM_ has been

removed from the names of the classes.

239

238

Figure 1 – Class Diagram

240 **7 Implementation Requirements**

This section details the requirements related to the arrangement of instances and properties of instances for implementations of this profile.

243 **7.1 CIM_Battery**

At least one instance of CIM_Battery shall be instantiated.

245 **7.2 CIM_Battery.BatteryStatus Value Formulation**

Table 2 describes the mapping between the values of the CIM_Battery.BatteryStatus property and the
 corresponding description of the status of the battery. The CIM_Battery.BatteryStatus property shall
 match one of the values that are specified in Table 2.

Table 2 – BatteryStatus	Value Description
-------------------------	-------------------

Value	Description	Extended Description
2	Unknown	The battery status is not known.
3	Fully Charged	The battery is fully charged.
4	Low	The battery charge is low.
5	Critical	The battery charge is nearly empty.
6	Charging	The battery is being charged.
10	Undefined	There is no information on the battery status.
12	Learning	The battery is undergoing a learning cycle to recalibrate low- and high-charge capacity thresholds.
13	Overcharged	The battery is more than fully charged.

7.3 CIM_Battery.Chemistry Value Formulation (Optional)

The CIM_Battery.Chemistry property shall have one of the following values: 1 (Other), 2 (Unknown), 3 (Lead Acid), 4 (Nickel Cadmium), 5 (Nickel Metal Hydride), 6 (Lithium-ion), 7 (Zinc air), or 8 (Lithium Polymer).

254 7.4 CIM_AssociatedBattery (Optional)

The CIM_AssociatedBattery class is used to associate the battery to the component that uses or requires the battery. If a component that uses or requires the battery is represented by the instance of a subclass of CIM_ManagedSystemElement, then the CIM_AssociatedBattery class shall be used.

258 When no instance of CIM_AssociatedBattery references the instance of CIM_Battery, the battery

259 represented by CIM_Battery supplies power to the whole managed system. In this case, the

260 CIM_ComputerSystem instance and the CIM_Battery instance shall be associated only through an

261 instance of CIM_SystemDevice.

262 **7.5 Modeling a Battery Temperature Sensor (Optional)**

This section describes constraints for representing a battery temperature sensor. These constraints are in addition to the constraints described in the <u>Sensors Profile</u>.

A battery discrete temperature sensor shall be represented by the CIM_Sensor class associated to the CIM_Battery instance using the CIM_AssociatedSensor class. The CIM_Sensor.Type property shall match 2 (Temperature).

A battery analog temperature sensor shall be represented by the CIM_NumericSensor class associated to the CIM_Battery instance using the CIM_AssociatedSensor class. The CIM_NumericSensor instance shall comply with the following requirements:

- CIM_NumericSensor.Type matches 2 (Temperature).
- CIM_NumericSensor.BaseUnits matches 2 (Degrees C), 3 (Degrees F), or 4 (Degrees K)
- CIM_NumericSensor.RateUnits matches 0 (None)

An implementation may instantiate other CIM_Sensor or CIM_NumericSensor instances that are associated to the CIM_Battery instance, which represents other types of sensors. For example, a battery analog power production sensor may be associated to the CIM_Battery instance for the purposes of representing the power output of the battery.

278 **7.6 Managing the Battery's State (Optional)**

- 279 This section describes the management of the battery's state. Battery state management consists of the
- 280 CIM_Battery.RequestStateChange() method being supported (see section 8.1) and the
- 281 CIM_Battery.RequestedState property having a value other than 12 (Not Applicable).

282 **7.6.1 Battery State Management Support**

283 When no instance of CIM_EnabledLogicalElementCapabilities is associated with the CIM_Battery 284 instance, battery state management shall not be supported.

When a CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_Battery instance but the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is an empty array, battery state management shall not be supported.

288 When a CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_ Battery instance 289 and the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is not 290 an empty array, battery state management shall be supported.

291 7.6.2 CIM_Battery.RequestedState

When state management is supported, the RequestedState property shall be supported. When state management is unspecified, the RequestedState property may be supported.

The CIM_Battery.RequestedState property shall be set to the value of the RequestedState parameter of the CIM_Battery.RequestStateChange() method, if the method is executed and is supported. The CIM_Battery.RequestedState property shall match one of the values that are specified in Table 3. After the RequestStateChange() method has successfully executed, RequestedState and EnabledState shall have equal values, with the exception of the transitional requested states 7 (Test) and 11 (Reset). The value of the RequestedState property may also change as a result of a request for change to the battery's enabled state by a non-CIM implementation.

301

Table 3 –	RequestedState	Values
-----------	----------------	--------

Value	Description	Extended Description
0	Unknown	The battery state is indeterminate.
2	Enabled	The battery shall be made ready to provide power.
3	Disabled	The battery shall be made not ready to provide power.
7	Test	The battery shall begin undergoing the learning cycle process; low and high voltage thresholds will be calculated.
11	Reset	The battery shall begin recharging.
12	Not Applicable	State management is not supported.

302 7.6.3 CIM_Battery.EnabledState

Table 4 describes the mapping between the values of the CIM_Battery.EnabledState property and the corresponding description of the state of the battery. The CIM_Battery.EnabledState property shall match one of the values that are specified in Table 4. When the RequestStateChange() method executes but does not complete successfully, and the battery is in an indeterminate state, the

307 CIM_Battery.EnabledState property shall have value of 5 (Not Applicable). The value of the EnabledState 308 property may also change as a result of a change to the battery's enabled state by a non-CIM

309 implementation.

310

Table 4 – EnabledState Values

Value	Description	Extended Description
0	Unknown	The battery state is indeterminate.
2	Enabled	The battery shall be available to provide power.
3	Disabled	The battery shall not be available to provide power.
5	Not Applicable	State management is not supported.

311 7.6.4 CIM_EnabledLogicalElementCapabilities

The CIM_EnabledLogicalElementCapabilities class is used for advertising the capabilities of the CIM_Battery instance.

314 **7.6.4.1 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported**

315 The CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is an array that

316 contains the supported requested states for the instance of CIM_Battery. The value of the

317 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property shall be an empty array or

contain any combination of the following values: 2 (Enabled), 3 (Disabled), 7 (Test), 11 (Reset), and 12

319 (Not Applicable).

320 7.6.4.2 CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported

321 The CIM_EnabledLogicalElementCapabilities.ElementName property may be modifiable by a client, or it 322 may have a fixed value.

- 323 The CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property shall have a value of
- 324 TRUE when the implementation supports client modification of the associated instance of the
- 325 CIM_Battery.ElementName property.

326 7.6.4.3 CIM_EnabledLogicalElementCapabilities.ElementNameMask

- 327 The CIM_EnabledLogicalElementCapabilities.ElementNameMask property provides the regular
- 328 expression that expresses the limits of the CIM EnabledLogicalElementCapabilities.ElementName
- property. The CIM_EnabledLogicalElementCapabilities.ElementNameMask property shall have a value as described in <u>DSP1001</u>.

331 7.6.4.4 CIM_EnabledLogicalElementCapabilities.MaxElementNameLen

- 332 The CIM_EnabledLogicalElementCapabilities.MaxElementNameLen property shall be implemented when
- 333 the CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property has a value of TRUE.
- The CIM_EnabledLogicalElementCapabilities.MaxElementNameLen property shall indicate the maximum length of a string that the implementation will accept as a value for the
- 336 CIM EnabledLogicalElementCapabilities.ElementName property of the associated CIM Battery instance.

337 8 Methods

This section details the requirements for supporting intrinsic operations and extrinsic methods for the CIM elements defined by this profile.

340 8.1 Method: CIM_Battery.RequestStateChange()

341 Invocation of the CIM_Battery.RequestStateChange() method will change the battery status and/or state 342 to the value specified in the RequestedState parameter. The CIM Battery.RequestedState property and 343 CIM Battery.EnabledState property shall be affected by the invocation of the RequestStateChange() 344 method as specified in sections 7.6.3 and 7.6.2. The "Enabled"/"Disabled" values of the RequestedState 345 parameter correspond to turning on/off the battery represented by the instance of CIM Battery. The 346 "Reset" value of the RequestedState parameter corresponds to requesting the battery to perform a recharge operation. The "Test" value of the RequestedState parameter corresponds to requesting the 347 battery to perform a recalculation of charge thresholds. 348

- The RequestStateChange() method's detailed requirements are specified in Table 5 and Table 6. The return code values specified in Table 5 shall be returned by the RequestStateChange() method when the
- 351 execution behavior of the method matches the description in Table 5. Table 6 specifies

352 RequestStateChange() method parameters. The RequestedState parameter shall be required by the

353 RequestStateChange() method.

354

Table 5 – CIM_Battery.RequestStateChange() Method: Return Code Values

Value	Description	
0	Initiation of the state change request was successful.	
1	Method is not supported in the implementation.	
2	Error Occurred	
4096	Job started: REF returned to started CIM_ConcreteJob	

Table 6 – CIM_Battery.RequestStateChange() Method: Parameters

Qualifiers	Name	Туре	Description/Values
IN, REQ	RequestedState	uint16	Valid state values:
			2 (Enabled)
			3 (Disabled)
			7 (Test)
			11 (Reset)
OUT	Job	CIM_ConcreteJob REF Return if job started	
IN, REQ	TimeoutPeriod	Datetime	Client-specified maximum amount of time the transition to a new state is supposed to take:
			0 or NULL – No time requirements
			<interval> – Maximum time allowed</interval>

356 8.1.1 CIM_Battery.RequestStateChange() Conditional Support

357 When the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property contains at least 358 one value, the CIM_Battery.RequestStateChange() method shall be implemented and supported. The

359 CIM_Battery.RequestStateChange() method shall not return a value of 1 (Unsupported).

360 **8.2 Profile Conventions for Operations**

For each profile class (including associations), the implementation requirements for operations, including those in the following default list, are specified in class-specific subclauses of this clause.

- 363 The default list of operations is as follows:
- GetInstance
- 365 Associators
- AssociatorNames
- 367 References
- 368 ReferenceNames
- EnumerateInstances
- EnumerateInstanceNames

371 8.3 CIM_AssociatedBattery

- Table 7 lists implementation requirements for operations. If implemented, these operations shall be
- implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 7, all operations in
 the default list in 8.2 shall be implemented as defined in DSP0200.
- 375 NOTE: Related profiles may define additional requirements on operations for the profile class.

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

Table 7 – Operations: CIM_AssociatedBattery

377 8.4 CIM_ElementCapabilities

Table 8 lists implementation requirements for operations. If implemented, these operations shall be

379 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 8, all operations in 380 the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

381 NOTE: Related profiles may define additional requirements on operations for the profile class.

382

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

383 8.5 CIM_EnabledLogicalElementCapabilities

Table 9 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 9, all operations in the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

387 NOTE: Related profiles may define additional requirements on operations for the profile class.

388

Table 9 – Operations: CIM_EnabledLogicalElementCapabilities

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

389 8.6 CIM_Battery

390 Table 10 lists implementation requirements for operations. If implemented, these operations shall be

implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 10, all operations
 in the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

393 NOTE: Related profiles may define additional requirements on operations for the profile class.

394

Table 10 – Operations: CIM_Battery

Operation	Requirement	Messages	
ModifyInstance	Optional. See section 8.6.1.	None	

395 **8.6.1 CIM_Battery — ModifyInstance**

396 This section details the requirements for the ModifyInstance operation applied to an instance of

397 CIM_Battery. The ModifyInstance operation may be supported. See section 8.6.1.1.

398 8.6.1.1 CIM_Battery.ElementName

When the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance that is associated with the CIM_Battery instance has a value of TRUE, the implementation shall allow the ModifyInstance operation to change the value of the ElementName property of the CIM_Battery instance. The ModifyInstance operation shall enforce the length restriction specified in the MaxElementNameLen

403 property of the CIM_EnabledLogicalElementCapabilities instance.

404 When the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance 405 has a value of FALSE, the implementation shall not allow the ModifyInstance operation to change the 406 value of the ElementName property of the CIM Battery instance.

407 8.7 CIM_SystemDevice

Table 11 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 11, all operations

410 in the default list in 8.2 shall be implemented as defined in DSP0200.

411 NOTE: Related profiles may define additional requirements on operations for the profile class.

412

Table 11 – Operations: CIM_SystemDevice

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

413 9 Use Cases

414 This section contains object diagrams and use cases for the *Battery Profile*.

415 9.1 Object Diagrams

Figure 2 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance, battery1, is associated with a computer system, system1. The battery is operating but is only partially

418 charged, battery1's physical package information is represented as well.

Because battery1 does not have the CIM_AssociatedBattery association reference, battery1 is available to supply power to system1, which is denoted by the CIM_SystemDevice association. system1 is also the scoping instance for battery1. Thus, following the CIM_ElementConformsToProfile association to profile1 and then the referenced CIM_ReferencedProfile association to a CIM_RegisteredProfile instance with the RegisteredName property set to "Battery", the client can retrieve profile2. profile2 shows the version of the current *Battery Profile* implementation.

426

427

Figure	2 – Instance	Diagram 1
--------	--------------	-----------

- 428 Figure 3 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance,
- battery1, is associated with a sensor, sensor1. The battery is fully charged but is degraded. Following the

431 temperature sensor is in a bad state.

⁴³⁰ CIM_AssociatedSensor association to sensor1, the CurrentState property value indicates that the

<u>battery1 : Battery</u>		<u>sensor1 : Sensor</u>
BatteryStatus : 3 (Fully Charged) EstimatedRunTime : 200 Chemistry : 4 (Nickel Cadmium) OperationalStatus : 4 (Stressed) HealthState : 10 (Degraded/Warning)	AssociatedSensor	SensorType : Temperature PossibleStates : "Good", "Bad", "Unknown" CurrentState : "Bad"

433

Figure 3 – Instance Diagram 2

434 Figure 4 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance,

battery1, is associated with a sensor, sensor1. The battery is fully charged and is operating. Following the CIM_AssociatedSensor association to sensor1, the CurrentState property value indicates that the voltage

437 sensor is in a good state.

battery1 : Battery		sensor1 : Sensor
BatteryStatus : 3 (Fully Charged) EstimatedRunTime : 200 Chemistry : 4 (Nickel Cadmium) OperationalStatus : 2 (OK) HealthState : 5 (OK)	AssociatedSensor———	SensorType : Voltage PossibleStates : "Good", "Bad", "Unknown" CurrentState : "Good"

438

439

Figure 4 – Instance Diagram 3

Figure 5 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance,

battery1, is associated with capabilities, capabilities1. battery1 is charging. Its RequestedState property

has a value of 11 (Reset), which indicates that a recharge was initiated. The BatteryStatus property has a

value of 6 (Charging), which indicates that the recharge is still active. The battery can be recharged, using
 the RequestStateChange() method, because the value of the RequestedStatesSupported property of

444 the RequeststateChange() h 445 capabilities1 is 11 (Reset).

 battery1 : Battery

 BatteryStatus : 6 (Charging)

 EstimatedRunTime : 200

 Chemistry : 4 (Nickel Cadmium)

 OperationalStatus : 2 (OK)

 HealthState : 5 (OK)

 RequestedState : 2 (Enabled)

 RequestedState : 11 (Reset)

 446

447

Figure 5 – Instance Diagram 4

448 **9.2 Recharge a Battery**

- 449 A client can recharge a battery as follows:
- 450 1) Find the instance of CIM_EnabledLogicalElementCapabilities that is associated with the instance
 451 of CIM_Battery through an instance of CIM_ElementCapabilities. If the instance is not found, the
 452 battery cannot be recharged.
- Retrieve the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported
 property. If the property is a non-empty array that contains the value 11 (Reset), execute the
 RequestStateChange() method with the value of the RequestedState parameter set to 11
 (Reset), which will begin a recharge of the battery represented by this instance.

457 9.3 Recalibrate Battery Thresholds

- 458 A client can recalibrate battery thresholds as follows:
- 459 1) Find the instance of CIM_EnabledLogicalElementCapabilities that is associated with the instance
 460 of CIM_Battery through an instance of CIM_ElementCapabilities. If the instance is not found, the
 461 battery thresholds cannot be recalibrated.
- 462 2) Retrieve the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported
 463 property. If the property is a non-empty array that contains the value 7 (Test), execute the
 464 RequestStateChange() method with the value of the RequestedState parameter set to 7 (Test),
 465 which will begin a recalibration of the battery represented by this instance.

466 **9.4 Determine Additional Information for the Health of a Battery Using a Sensor**

- 467 A client can determine the health of a battery using a sensor as follows:
- Find the instance of CIM_Sensor or CIM_NumericSensor that is associated with the instance of CIM_Battery through an instance of CIM_AssociatedSensor. If the instance is not found, the battery properties CIM_Battery.BatteryStatus, CIM_Battery.HealthState, and
 CIM_Battery.OperationalStatus provide the only health information for the battery.
- 472 2) Retrieve the value of the CIM_Sensor.CurrentState property or the
- 473 CIM_NumericSensor.CurrentState property.

474 **10 CIM Elements**

Table 12 shows the instances of CIM Elements for this profile. Instances of these CIM Elements shall be implemented as described in Table 12.

Table 12 –	CIM E	Elements:	Battery	Profile
------------	-------	-----------	---------	---------

Element Name	Requirement	Description	
Classes			
CIM_AssociatedBattery	Optional	See sections 7.4 and 10.1.	
CIM_Battery	Mandatory	See sections 7.1 and 10.2.	
CIM_ElementCapabilities	Optional	See section 10.3.	
CIM_EnabledLogicalElementCapabilities	Optional	See sections 7.6.4 and 10.4.	
CIM_NumericSensor	Optional	See sections 7.5 and 10.5.	
CIM_RegisteredProfile	Mandatory	See section 10.6.	
CIM_Sensor	Optional	See sections 7.5 and 10.7.	
CIM_SystemDevice	Mandatory	See section 10.8.	

478 10.1 CIM_AssociatedBattery

479 The CIM_AssociatedBattery class is used to associate an instance of CIM_Battery with a device

480 represented by an instance of the CIM_ManagedSystemElement subclass that uses or requires the battery. Table 13 contains the requirements for elements of this class.

481

482

Properties	Requirement	Description
Antecedent	Mandatory	Key This property shall be a reference to an instance of CIM_Battery.
		Cardinality 1*
Dependent	Mandatory	Key This property shall reference the instance of a subclass of CIM_ManagedSystemElement that represents the element that uses or requires the battery. Cardinality *

Table 13 – Class: CIM_AssociatedBattery

483 10.2 CIM_Battery

484 The CIM_Battery class is used to represent the battery. Table 14 contains the requirements for elements of this class. 485

486

Table 14 – Class: CIM_Battery

Properties	Requirement	Description
SystemCreationClassName	Mandatory	Кеу
SystemName	Mandatory	Кеу
CreationClassName	Mandatory	Кеу
DeviceID	Mandatory	Кеу
BatteryStatus	Mandatory	See section 7.2.
OperationalStatus	Mandatory	None
HealthState	Mandatory	None
EnabledState	Mandatory	See section 7.6.3.
RequestedState	Mandatory	See section 7.6.2.
ElementName	Mandatory	Pattern ".*"
Chemistry	Optional	See section 7.3.
MaxRechargeCount	Optional	None
RechargeCount	Optional	None
ExpectedLife	Optional	None
EstimatedRunTime	Optional	None
TimeToFullCharge	Optional	None
MaxRechargeTime	Optional	None

487 **10.3 CIM_ElementCapabilities**

- 488 The CIM_ElementCapabilities class is used to associate an instance of
- 489 CIM_EnabledLogicalElementCapabilities with an instance of CIM_Battery. Table 15 contains the
- 490 requirements for elements of this class.

491

Table 15 – Class: CIM	_ElementCapabilities
-----------------------	----------------------

Properties	Requirement	Notes
ManagedElement	Mandatory	Key This property shall be a reference to an instance of CIM_Battery.
		Cardinality 1*
Capabilities	Mandatory	Key This property shall be a reference to the CIM_EnabledLogicalElementCapabilities instance. Cardinality 1

492 **10.4 CIM_EnabledLogicalElementCapabilities**

The CIM_EnabledLogicalElementCapabilities class represents the capabilities of the battery. Table 16 contains the requirements for elements of this class.

495

Table 16 – Class: CIM_EnabledLogicalElementCapabilities

Properties	Requirement	Notes
InstanceID	Mandatory	Кеу
RequestedStatesSupported	Mandatory	See section 7.6.4.1.
ElementNameEditSupported	Mandatory	See section 7.6.4.2.
ElementNameMask	Mandatory	See section 7.6.4.3.
MaxElementNameLen	Conditional	See section 7.6.4.4.

496 **10.5 CIM_NumericSensor**

The CIM_NumericSensor class is defined by the <u>Sensors Profile</u>. The requirements denoted in Table 17
 are in addition to those mandated by the <u>Sensors Profile</u>. See section 2.1.

499

Table 17 – Class: CIM_NumericSensor

Properties	Requirement	Description
SensorType	Mandatory	Matches 2 (Temperature)
BaseUnits	Mandatory	Matches 2 (Degrees C), 3 (Degrees F), or 4 (Degrees K)
RateUnits	Mandatory	Matches 0 (None)

500 **10.6 CIM_RegisteredProfile**

501 The CIM_RegisteredProfile class is defined by the *Profile Registration Profile*. The requirements denoted 502 in Table 18 are in addition to those mandated by the *Profile Registration Profile*. See section 2.1.

503

Table 18 – Class: CIM_RegisteredProfile

Properties	Requirement	Description
RegisteredName	Mandatory	Matches "Battery"
RegisteredVersion	Mandatory	Matches "1.0.0"
RegisteredOrganization	Mandatory	Matches 2 (DMTF)

504 **10.7 CIM_Sensor**

505 The CIM_Sensor class is defined by the <u>Sensors Profile</u>. The requirements denoted in Table 19 are in addition to those mandated by the <u>Sensors Profile</u>. See section 2.1.

507

Table 19 – Class: CIM_Sensor

Properties	Requirement	Description
SensorType	Mandatory	Matches 2 (Temperature)

508 **10.8 CIM_SystemDevice**

- 509 The CIM_SystemDevice class is used to associate an instance of CIM_Battery with the
- 510 CIM_ComputerSystem instance of which the CIM_Battery instance is a member. Table 20 contains the 511 requirements for elements of this class.

512

Table 20 – Class: CIM_SystemDevice

Properties	Requirement	Description
GroupComponent	Mandatory	Key This property shall be a reference to the CIM_ComputerSystem instance of which a CIM_Battery instance is a member. Cardinality 1
PartComponent	Mandatory	Key This property shall be a reference to an instance of CIM_Battery. Cardinality 1*

513	ANNEX A
514	(informative)
515	Change Log

Version	Date	Description
1.0.0e	5/1/2007	Preliminary Standard
1.0.0	5/13/2009	DMTF Standard Release