1	distributed management task force, inc.
2	Document Number: DSP1015
3	Date: 2009-08-14
4	Version: 1.1.0

5 Power Supply Profile

6 Document Type: Specification

- 7 Document Status: DMTF Standard
- 8 Document Language: E

9

10 Copyright Notice

11 Copyright © 2007-2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
 management and interoperability. Members and non-members may reproduce DMTF specifications and

14 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 15 time, the particular version and release date should always be noted.

time, the particular version and release date should always be noted.

16 Implementation of certain elements of this standard or proposed standard may be subject to third party

17 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not. nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

28 implementations.

29 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

- 30 such patent may relate to or impact implementations of DMTF standards, visit
- 31 <u>http://www.dmtf.org/about/policies/disclosures.php</u>.

CONTENTS

33	Fore	Foreword		
34	Intro	roduction7		
35	1	Scope		8
36	2	Norm	ative References	8
37	_	2.1	Approved References	
38		2.2	Other References	
39	3	Terms	s and Definitions	
40	4		ols and Abbreviated Terms	
41	5	-	ois and reportation removing the second s	
42	6		iption	
43	0	6.1	General Modeling	
44		6.2	Power Supply Redundancy Modeling	
45		6.3	Power Measurements Modeling	
46	7		mentation Requirements	
47	'	7.1	CIM_PowerSupply	
48		7.2	CIM_EnabledLogicalElementCapabilities	
49		7.3	Power Supply State Management	
50		7.4	CIM_PowerSupply.RequestedState	
51		7.5	CIM_PowerSupply.EnabledState	13
52		7.6	CIM_SystemDevice and CIM_SuppliesPower	
53		7.7	Modeling Power Supply Redundancy	
54		7.8	CIM_PowerSupply.ElementName	
55		7.9	Modeling Power Measurement Sensor	
56		7.10	Power Metrics	
57	8		ods	
58		8.1	Method: CIM_PowerSupply.RequestStateChange()	20
59		8.2	Method: CIM_RedundancySet.Failover()	
60 61		8.3 8.4	Profile Conventions for Operations CIM_ElementCapabilities Operations	
62		0.4 8.5	CIM_EnabledLogicalElementCapabilities Operations	
63		8.6	CIM_HostedCollection Operations	
64		8.7	CIM_IsSpare Operations	
65		8.8	CIM_MemberOfCollection Operations	
66		8.9	CIM_OwningCollectionElement Operations	
67		8.10	CIM_PowerSupply Operations	
68		8.11	CIM_RedundancySet Operations	24
69			CIM_SuppliesPower Operations	
70		8.13	CIM_SystemDevice Operations	25
71	9	Use C	Cases	
72		9.1	Object Diagrams	25
73		9.2	Power Sensor Information	
74		9.3	Power Metrics	
75		9.4	Retrieve the Power Supply's Power Output Information	
76		9.5	Reset the Power Supply	
77 70		9.6	Retrieve the Power Supply Redundancy Status	
78 70		9.7 9.8	Find the Elements to Which the Power Supply Supplies Power Determine Whether the CIM_PowerSupply.ElementName Is Modifiable	
79 00	10		_ ,,,,	
80 81	10	10.1	Elements CIM BaseMetricDefinition	
82		10.1	CIM_BaseMetricValue	
83		10.2	CIM_ElementCapabilities	
84		10.4	CIM_EnabledLogicalElementCapabilities	33

85	10.5 CIM_HostedCollection	
86	10.6 CIM_IsSpare	
87	10.7 CIM MemberOfCollection	
88	10.8 CIM_NumericSensor — Input Power Measurement Sensor	
89	10.9 CIM_NumericSensor — Output Power Measurement Sensor	
90	10.10 CIM_PowerSupply	
91	10.11 CIM_RedundancySet	
92	10.12 CIM_RegisteredProfile	
93	10.13 CIM_Sensor — Input Power Measurement Sensor	
94	10.14 CIM_Sensor — Output Power Measurement Sensor	
95	10.15 CIM_SystemDevice	
96	10.16 CIM_OwningCollectionElement	
97	10.17 CIM_SuppliesPower	
98	ANNEX A (informative) Change Log	
99		

100 **Figures**

101	Figure 1 – Power Supply Profile: Class Diagram	
102	Figure 2 – Power Supply Profile: Object Diagram	
103	Figure 3 – Power Supply Profile: Redundancy Object Diagram	
104	Figure 4 – Power Supply Profile: Dedicated Power Supply	
105	Figure 5 – Power Supply Profile: Power Sensors	
106	Figure 6 – Power Supply Profile: Power Metrics	
107	Figure 7 – Power Supply Profile: Power Metrics with Breakdown Dimensions	
108		

109 **Tables**

110	Table 1 – Related Profiles	10
111	Table 2 – EnabledState Value Description	
112	Table 3 – System Power Metrics	
113	Table 4 – Power Supply Metrics	
114	Table 5 – Power Supply Metric Breakdown Dimensions	
115 116	Table 6 – Examples of Values for the CIM_BaseMetricValue.BreakdownDimension and CIM_BaseMetricValue.BreakdownValue Properties	19
117	Table 7 – Power Supply Profile Metrics	19
118	Table 8 – CIM_PowerSupply.RequestStateChange() Method: Return Code Values	20
119	Table 9 – CIM_PowerSupply.RequestStateChange() Method: Parameters	20
120	Table 10 – CIM_RedundancySet.Failover() Method: Return Code Values	21
121	Table 11 – CIM_RedundancySet.Failover() Method: Parameters	22
122	Table 12 – CIM_ElementCapabilities Operations	22
123	Table 13 – CIM_HostedCollection Operations	23
124	Table 14 – CIM_IsSpare Operations	23
125	Table 15 – CIM_MemberOfCollection Operations	23
126	Table 16 – CIM_OwningCollectionElement Operations	24
127	Table 17 – CIM_PowerSupply Operations	24
128	Table 18 – CIM_SuppliesPower Operations	25
129	Table 19 – CIM_SystemDevice Operations	25
130	Table 20 – CIM Elements: Power Supply Profile	32
131	Table 21 – Class: CIM_BaseMetricDefinition	32

132	Table 22 – Class: CIM_BaseMetricDefinition – Histogram	. 32
133	Table 23 – Class: CIM_BaseMetricValue	. 33
134	Table 24 – CIM_ElementCapabilities	. 33
135	Table 25 – CIM_EnabledLogicalElementCapabilities	. 33
136	Table 26 – Class: CIM_HostedCollection	. 34
137	Table 27 – Class: CIM_IsSpare	. 34
138	Table 28 – Class: CIM_MemberOfCollection	. 34
139	Table 29 – Class: CIM_NumericSensor	
140	Table 30 – Class: CIM_NumericSensor	
141	Table 31 – Class: CIM_PowerSupply	. 35
142	Table 32 – Class: CIM_RedundancySet	. 36
143	Table 33 – Class: CIM_RegisteredProfile	. 36
144	Table 34 – Class: CIM_Sensor	
145	Table 35 – Class: CIM_Sensor	
146	Table 36 – Class: CIM_SystemDevice	
147	Table 37 – Class: CIM_OwningCollectionElement	. 37
148	Table 38 – Class: CIM_SuppliesPower	. 37

Foreword

- 151 The *Power Supply Profile* (DSP1015) was prepared by the Server Management Working Group and the 152 Physical Platform Profiles Working Group of the DMTF.
- 153 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
- 154 management and interoperability.

155 Acknowledgments

156 The authors wish to acknowledge the following people.

157 Editor:

158 • Khachatur Papanyan – Dell

159 Contributors:

- 160 Jon Hass Dell
- 161 Khachatur Papanyan Dell
- Aaron Merkin Dell
- 163 Michael Brundridge Dell
- 164 Jeff Hilland HP
- 165 David M. Judkovics IBM

Introduction

167 The information in this specification and referenced specifications should be sufficient for a provider or

168 consumer of this data to identify unambiguously the classes, properties, methods, and values that shall

be instantiated and manipulated to represent and manage power supplies and redundant power supplies

170 of managed systems and subsystems that are modeled using the DMTF CIM core and extended model 171 definitions.

172 The target audience for this specification is implementers who are writing CIM-based providers or

173 consumers of management interfaces that represent the component described in this document.

Power Supply Profile

175 **1 Scope**

The *Power Supply Profile* extends the management capabilities of referencing profiles by adding the capability to represent power supplies for manageability and describe power supplies in a redundant configuration. The power supply as a logical device is modeled as referencing the power supply physical package for physical asset information and profile versioning for the schema implementation version

180 information.

181 2 Normative References

182 The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

185 2.1 Approved References

- 186 DMTF DSP0004, CIM Infrastructure Specification 2.5,
- 187 <u>http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf</u>
- 188 DMTF DSP0200, CIM Operations over HTTP 1.3,
- 189 <u>http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf</u>
- 190 DMTF DSP0215, SM Managed Element Addressing Specification 1.0 (SM ME Addressing),
- 191 <u>http://www.dmtf.org/standards/published_documents/DSP0215_1.0.pdf</u>
- 192 DMTF DSP1001, *Management Profile Specification Usage Guide 1.0*,
- 193 <u>http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf</u>
- 194 DMTF DSP1009, Sensors Profile 1.0,
- 195 <u>http://www.dmtf.org/standards/published_documents/DSP1009_1.0.pdf</u>
- 196 DMTF DSP1011, Physical Asset Profile 1.0,
- 197 <u>http://www.dmtf.org/standards/published_documents/DSP1011_1.0.pdf</u>
- 198 DMTF DSP1033, Profile Registration Profile 1.0,
- 199 <u>http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf</u>
- 200 DMTF DSP1053, Base Metrics Profile 1.0,
 201 <u>http://www.dmtf.org/standards/published_documents/DSP1053_1.0.pdf</u>

202 2.2 Other References

ISO/IEC Directives, Part 2, *Rules for the structure and drafting of International Standards*,
 <u>http://isotc.iso.org/livelink/livelink.exe?func=ll&objld=4230456&objAction=browse&sort=subtype</u>

3 Terms and Definitions

206 For the purposes of this document, the following terms and definitions apply.

207 208 209	 3.1 can used for statements of possibility and capability, whether material, physical, or causal
210	3.2
211	cannot
212	used for statements of possibility and capability, whether material, physical, or causal
213 214 215 216	 3.3 conditional indicates requirements to be followed strictly in order to conform to the document when the specified conditions are met
217	3.4
218	mandatory
219	indicates requirements to be followed strictly in order to conform to the document and from which no
220	deviation is permitted
221	3.5
222	may
223	indicates a course of action permissible within the limits of the document
224	3.6
225	need not
226	indicates a course of action permissible within the limits of the document
227	3.7
228	optional
229	indicates a course of action permissible within the limits of the document
230	3.8
231	referencing profile
232	indicates a profile that owns the definition of this class and can include a reference to this profile in its
233	"Related Profiles" table
234	3.9
235	shall
236	indicates requirements to be followed strictly in order to conform to the document and from which no
237	deviation is permitted
238	3.10
239	shall not
240	indicates requirements to be followed strictly in order to conform to the document and from which no
241	deviation is permitted
242	3.11
243	should
244	indicates that among several possibilities, one is recommended as particularly suitable, without
245	mentioning or excluding others, or that a certain course of action is preferred but not necessarily required
246	3.12

- 247 should not
- 248 indicates that a certain possibility or course of action is deprecated but not prohibited

249 **3.13**

250 Spare Power Supply

indicates an instance of CIM_PowerSupply that represents a spare power supply in any condition. Spare
 power supply is part of redundancy set but is not actively driving the load.

253 **4 Symbols and Abbreviated Terms**

- 254 **4.1**
- 255 CIM
- 256 Common Information Model

257 **5 Synopsis**

- 258 **Profile Name:** Power Supply
- 259 Version: 1.1.0
- 260 **Organization:** DMTF
- 261 CIM Schema Version: 2.22
- 262 **Central Class:** CIM_PowerSupply
- 263 **Scoping Class:** CIM_ComputerSystem
- The *Power Supply Profile* extends the management capability of the referencing profiles by adding the capability to describe power supplies and redundant power supplies.
- 266 Table 1 identifies profiles that are related to this profile.
- 267

s

Profile Name	Organization	Version	Relationship
Physical Asset	DMTF	1.0	Optional
Sensors	DMTF	1.0	Optional
Base Metrics	DMTF	1.0	Optional
Profile Registration	DMTF	1.0	Mandatory

268 6 Description

The *Power Supply Profile* describes power supplies and power supply redundancies in a managed system. The profile also describes the relationship of the power supply class to the power supply's physical aspects, such as FRU data, and DMTF profile version information.

Figure 1 represents the class schema for the *Power Supply Profile*. For simplicity, the prefix CIM_ has been removed from the names of the classes.

274 6.1 General Modeling

275 The power supply in a managed system is represented by the instance of CIM_PowerSupply. The

- capability to disable and enable the power supply is advertised through the
- 277 CIM_EnabledLogicalElementCapabilities instance.
- The managed elements that receive power from the power supply are associated to the instance of

- 280 not referenced by the CIM_SuppliesPower association, the power supply represented by the
- 281 CIM_PowerSupply instance supplies power to the managed system that is scoped through the
- 282 CIM_SystemDevice association.
- 283 The power supply's physical aspects can be represented by one or more instances of
- 284 CIM_PhysicalPackage.
- 285 The profile information is represented with the instance of CIM_RegisteredProfile.

Figure 1 – Power Supply Profile: Class Diagram

288 6.2 Power Supply Redundancy Modeling

- 289 The redundancy of power supplies in a managed system is represented through an instance of
- 290 CIM_RedundancySet. Each of the instances of CIM_PowerSupply that corresponds to a redundant power 291 supply is associated to the instance of CIM_RedundancySet through an instance of
- 292 CIM_MemberOfCollection. The Spare Power Supplies within the redundancy are also associated with the
- 293 CIM_RedundancySet instance through an instance of CIM_IsSpare.

6.3 Power Measurements Modeling

- 295 The instrumentation can expose various power measurements within a managed system. Real-time input
- 296 power by managed elements and real-time output power by power supplies are represented through
- instances of CIM_Sensor from the Sensors Profile (<u>DSP1009</u>). Note that real-time, in this context, refers
- to the most recent power measurement collected and does not have to be instantaneous. Various metrics

- instances of CIM_BaseMetricDefinition and CIM_BaseMetricValue from the Base Metrics Profile.
 (DSP1053)
- 302 7 Implementation Requirements
- Requirements and guidelines for propagating and formulating certain properties of the classes are discussed in this section. Methods are listed in section 8 and properties are listed in section 10.

305 **7.1 CIM_PowerSupply**

306 Zero or more instances of CIM_PowerSupply shall be instantiated.

307 7.2 CIM_EnabledLogicalElementCapabilities

- 308 If the CIM_EnabledLogicalElementCapabilities class is instantiated, the instance of
- 309 CIM_EnabledLogicalElementCapabilities shall be associated with the CIM_PowerSupply instance
- 310 through an instance of CIM_ElementCapabilities and used for advertising the capabilities of the
- 311 CIM_PowerSupply instance.
- There shall be at most one instance of CIM_EnabledLogicalElementCapabilities associated with a given instance of CIM PowerSupply.
- 313 Instance of CIM_PowerSupply.

314 7.2.1 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported

- 315 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported is an array that contains the
- 316 supported requested states for the instance of CIM_PowerSupply. This property shall be the complete set
- of the allowable values to be used as the RequestedState parameter in the RequestStateChange()
- 318 method (see section 8.1). The value of the
- 319 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property shall be an empty array or
- contain any combination of the following values: 2 (Enabled), 3 (Disabled), 6 (Offline), or 11 (Reset).

321 7.2.2 CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported

This property shall have a value of TRUE if the implementation supports client modification of the CIM_PowerSupply.ElementName property.

324 **7.2.3** CIM_EnabledLogicalElementCapabilities.MaxElementNameLen

The MaxElementNameLen property shall be implemented if the ElementNameEditSupported property has a value of TRUE.

327 **7.2.4** CIM_EnabledLogicalElementCapabilities.ElementNameMask

The ElementNameMask property shall be implemented if the ElementNameEditSupported property has a value of TRUE.

7.3 Power Supply State Management

331 The power supply state management defines the requirements for changing the enabled state of power

332 supplies utilizing CIM_PowerSupply.RequestStateChange() method (see section 8.1). This section

describes the detailed requirements for advertising and supporting power state management. If the power state management is supported, the requirements specified in this clause shall be met.

335 **7.3.1 Power Supply State Management Support**

If no CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_PowerSupply
 instance, the power supply state management shall not be supported.

- 338 If a CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_PowerSupply instance
- 339 but the value of the CIM EnabledLogicalElementCapabilities.RequestedStatesSupported property is an empty array, the power supply state management shall not be supported.
- 340
- 341 If a CIM EnabledLogicalElementCapabilities instance is associated with the CIM PowerSupply instance
- 342 and the value of the CIM EnabledLogicalElementCapabilities.RequestedStatesSupported property is not
- 343 an empty array, the power supply state management shall be supported.

344 7.4 CIM_PowerSupply.RequestedState

- 345 The CIM_PowerSupply.RequestedState property shall have a value of 12 (Not Applicable), 5 (No
- 346 Change), or a value contained in the
- 347 CIM EnabledLogicalElementCapabilities.RequestedStatesSupported property array of the associated
- 348 CIM_EnabledLogicalElementCapabilities instance (see section 7.2.1).
- 349 If the power supply state management is supported and the RequestStateChange() method is
- 350 successfully executed, the RequestedState property shall be set to the value of the parameter
- 351 RequestedState of RequestStateChange() method. After the RequestStateChange() method has
- 352 successfully executed, RequestedState and EnabledState shall have equal values with the exception of
- 353 the transitional requested state 11 (Reset). The value of the RequestedState property may also change
- 354 as a result of a request for change to the power supply's enabled state by non-CIM implementation.

RequestedState — 12 (Not Applicable) Value 355 7.4.1

- 356 If the power supply state management is not supported, the value of the
- CIM PowerSupply.RequestedState property shall be 12 (Not Applicable). 357

358 7.4.2 RequestedState — 5 (No Change) Value

- The value 5 (No Change) for the RequestedState property shall only be used if the power supply state 359 360 management instrumentation has not been invoked and thus the previous requested state cannot be
- 361 determined.
- If the power supply state management is supported, the initial value of the 362
- 363 CIM PowerSupply.RequestedState property shall be 5 (No Change) or shall match the previous 364 requested state.

7.5 CIM_PowerSupply.EnabledState 365

Table 2 describes the mapping between the values of the CIM PowerSupply. EnabledState property and 366 367 the corresponding description of the state of the power supply. The CIM_PowerSupply.EnabledState property shall match the values that are specified in Table 2. If the RequestStateChange() method 368 369 executes but does not complete successfully, and the power supply is in an indeterminate state, the 370 CIM PowerSupply.EnabledState property shall have value of 5 (Unknown). The value of this property 371 may also change as a result of a change to the power supply's enabled state by non-CIM implementation.

372

Table 2 – EnabledState	Value Descriptio	n
------------------------	------------------	---

Value	Description	Extended Description
2	Enabled	Power supply shall be enabled.
3	Disabled	Power supply shall be disabled.
5	Not Applicable	Power supply state is indeterminate, or the power supply state management is not supported.
6	Enabled but Offline	Power supply shall be enabled but shall not actively supply power (used in redundant configuration; see section 7.7).

373 **7.6 CIM_SystemDevice and CIM_SuppliesPower**

374 If no instance of CIM_SuppliesPower references the instance of CIM_PowerSupply, the power supply

375 represented by CIM_PowerSupply supplies power to the whole managed system. In this case, the
 376 CIM_ComputerSystem instance and the CIM_PowerSupply instance shall only be associated through an

- 377 instance of CIM_SystemDevice.
- 378 If at least one instance of CIM_SuppliesPower references the instance of CIM_PowerSupply, all of the
- 379 power-receiving elements shall be associated with the CIM_PowerSupply instance through an instance of
- 380 CIM_SuppliesPower.

381 **7.7 Modeling Power Supply Redundancy**

This clause details the requirements related to managing and representing power supply redundancy. Even when a managed system supports and implements the redundancy, the redundant power supplies may co-exist with non-redundant power supplies. If power supply redundancy is supported, the requirements specified in this clause shall be met only for the CIM_PowerSupply instances that represent redundant power supplies.

- Bower supply redundancy is modeled using CIM_RedundancySet, which is associated with the
- 388 CIM_PowerSupply instances through instances of CIM_MemberOfCollection and CIM_IsSpare.

389 If power supply redundancy is implemented, at least one instance of CIM_RedundancySet shall exist.

390 The CIM_MemberOfCollection association shall be used to associate the CIM_RedundancySet instance

391 with the CIM_PowerSupply instance. In addition to the CIM_MemberOfCollection association, the

392 CIM_IsSpare association may be used to associate the CIM_RedundancySet instance with the

393 CIM_PowerSupply instance, depending on the type of redundancy implemented (see section 7.7.1).

394 **7.7.1 CIM_RedundancySet.TypeOfSet**

If the CIM_RedundancySet.TypeOfSet property only contains either a value of 3 (Load Balanced), or 2
 (N+1), or both, and does not contain any other values, the CIM_PowerSupply instances that are
 associated with the CIM_RedundancySet instance shall comply with the following requirements:

- The CIM_PowerSupply instances shall be associated with the CIM_RedundancySet instance
 through an instance of CIM_MemberOfCollection.
- The CIM_PowerSupply instances shall not be associated with the CIM_RedundancySet instance through an instance of CIM_IsSpare.
- The CIM_PowerSupply.EnabledState property shall not have value of 6 (Enabled but Offline).

If the CIM_RedundancySet.TypeOfSet property contains either a value of 4 (Sparing), or 5 (Limited
 Sparing), Spare Power Supplies may exist. The Spare Power Supply shall be associated with the
 CIM_RedundancySet instance and shall comply with the following requirements:

- The Spare Power Supply shall be associated with the CIM_RedundancySet through instances of both CIM_IsSpare and CIM_MemberOfCollection.
- The Spare Power Supply shall comply to one of the following requirements:
- 409 If the CIM_PowerSupply.EnabledState property has a value of 6 (Enabled but Offline), the
 410 SpareStatus property of the referencing CIM_IsSpare instance shall have a value of 2 (Hot
 411 Standby).
- 412 If the CIM_PowerSupply.EnabledState property has a value of 3 (Disabled), the
 413 SpareStatus property of the referencing CIM_IsSpare instance shall have a value of 3 (Cold Standby).

415 - If the CIM_PowerSupply.EnabledState property has a value other than 3 (Disabled) or 6
416 (Enabled but Offline), the SpareStatus property of the referencing CIM_IsSpare instance
417 shall have a value of 0 (Unknown).

418 **7.8 CIM_PowerSupply.ElementName**

- The CIM_PowerSupply.ElementName property shall be formatted as a free-form string of variable length (pattern ".*").
- 421 Client modification of the CIM_PowerSupply.ElementName property may be supported. This is
- 422 conditional behavior based on the CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported
- 423 property of the instance of CIM_EnabledLogicalElementCapabilities associated with the
- 424 CIM_PowerSupply instance.

425 **7.8.1** Support for the ElementName Property Modification

- 426 If client modification of the CIM_PowerSupply.ElementName property is supported, the following427 requirements shall be met:
- There shall be an instance of CIM_EnabledLogicalElementCapabilities associated with the
 CIM_PowerSupply instance.
- 430 CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property shall have the value TRUE.
- 432 The CIM_EnabledLogicalElementCapabilities.MaxElementNameLen property shall be non 433 NULL.
- The CIM_EnabledLogicalElementCapabilities.ElementNameMask property shall contain a regular expression defined using the syntax specified in Annex C of <u>DSP1001</u>.

436 **7.8.2** No Support for the ElementName Property Modification

- 437 If client modification of the CIM_PowerSupply.ElementName is not supported, the implementation shall438 comply to either or both of the following requirements:
- There shall be no instance of CIM_EnabledLogicalElementCapabilities associated with the CIM_PowerSupply instance.
- 441 CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property shall have the value FALSE on the instance of CIM_EnabledLogicalElementCapabilities associated with the CIM_PowerSupply instance.

444 **7.9 Modeling Power Measurement Sensor**

- This clause details the requirements related to modeling power measurement sensors. If power
- 446 measurement sensors are supported, the requirements specified in this clause shall be met. These
- 447 requirements are in addition to the constraints described in the Sensors Profile. There are two types of
- the real-time power measurement sensors: input power measurement sensor and output power
- 449 measurement sensor. The following sections describe the requirement for representing such sensors.

450 **7.9.1 Input Power Measurement Sensor**

The input power measurement sensor shall be represented if and only if the underlying device consuming power is represented by instance of CIM_ManagedSystemElement subclass. If representing the input

453 power measurement sensor, the requirements in this section shall apply.

- 454 The discrete input power measurement sensor shall be represented by the CIM_Sensor with the property
- 455 values as defined in section 10.13. The analog input power measurement sensor shall be represented by 456 the CIM NumericSensor with the property values as defined in section 10.13.

457 The instance of CIM_Sensor or CIM_NumericSensor representing the input power sensor shall be 458 associated to instance of CIM ManagedSystemElement subclass representing the managed device consuming the power through the CIM AssociatedSensor association. 459

460 If the input power sensor represents the external consumption by all the devices scoped to a managed 461 system, the instance of CIM Sensor or CIM NumericSensor representing the sensor shall be associated 462 to the instance of CIM ComputerSystem representing the managed system through the

CIM AssociatedSensor association. 463

464 If the input power sensor represents the external consumption by the power supply, the instance of 465 CIM_Sensor or CIM_NumericSensor representing the sensor shall be associated to the Central Instance representing the power supply through the CIM_AssociatedSensor association. 466

467 7.9.2 Output Power Measurement Sensor

- 468 If representing the output power measurement sensor, the requirements in this section shall apply.
- The discrete output power measurement sensor shall be represented by the CIM Sensor with the 469
- 470 property values as defined in section 10.14. The analog output power measurement sensor shall be
- 471 represented by the CIM NumericSensor with the property values as defined in section 10.14.
- If the output power sensor represents the power produced by all the power supplies in a managed 472 473 system, the instance of CIM_Sensor or CIM_NumericSensor representing the sensor shall be associated 474 to the Scoping Instance through the CIM_AssociatedSensor association.
- 475
- If the output power sensor represents the power produced by the power supply, the instance of 476 CIM_Sensor or CIM_NumericSensor representing the sensor shall be associated to the Central Instance
- representing the power supply through the CIM_AssociatedSensor association. 477

7.10 Power Metrics 478

- 479 This clause details the requirements related to the representation and management of power metrics. If
- 480 power metrics are supported, the requirements specified in this clause shall be met. The requirements in this clause are in addition to the ones defined in the Base Metrics Profile (DSP1053). 481

7.10.1 System Power Metrics 482

483 System power metrics are metrics that measure power for the whole system. System power metric shall 484 be represented by a CIM_BaseMetricDefinition and the associated instance(s) of CIM_BaseMetricValue per DSP1053. The CIM BaseMetricDefinition instance and the associated CIM BaseMetricValue 485

instances shall be associated to the CIM ComputerSystem instance that represents the system for which 486

- 487 the power metrics are represented through the CIM_MetricDefForME and CIM_MetricForME associations respectively. The CIM BaseMetricDefinition.Name property identifies the particular type of metric as 488
- described in the below section. The CIM BaseMetricDefinition.BreakdownDimensions, 489
- CIM_BaseMetricValue.BreakdownDimension and CIM_BaseMetricValue.BreakdownValue specifies how 490
- the power metric values can be collected on a more granular level, but in the case of system power 491
- 492 metrics no such granular levels are specified.

493 7.10.1.1 Metric Name

- The CIM BaseMetricDefinition.Name property shall have the value specified in the "Name" column, and 494
- 495 shall conform to the requirements for one of the metrics types mentioned in the corresponding "Supported
- 496 Metrics" column per DSP1053 if the metric matches the description in the "Description" column of Table 3.

Table 3 – System Power Metrics

Name	Supported Metrics Type	Description
DMTF:System Input Power	Simple, Aggregation	Power metric describing instantaneous input power of a system including the historic trending data, and high and low watermarks.
DMTF:System Output Power	Simple, Aggregation	Power metric describing the power produced by a system by all of its output power components, such as power supplies, including the historic trending data, and high and low watermarks.
DMTF:System Aggregate Input Energy	Summation	Power metric describing input energy supplied to a system, including its components (KW*hr).
DMTF:System Aggregate Output Energy	Summation	Power metric describing output energy supplied to a system including its components (KW*hr).
DMTF:System Input Power Histogram	Interval Summation, Startup Summation	Power metric describing the cumulative amount of time within a known time interval that the system power consumption has been within a series of power consumption ranges.

498 7.10.1.2 Breakdown Dimension Definitions

499 If the CIM_BaseMetricDefinition.Name property is set to "DMTF:System Input Power Histogram", the

requirements in this section shall apply, otherwise CIM BaseMetricDefinition.BreakdownDimensions, 500

CIM BaseMetricValue.BreakdownDimension, and CIM BaseMetricValue.BreakdownValue shall be set to 501 502 NULL.

The CIM_BaseMetricDefinition.BreakDownDimensions and CIM_BaseMetricValue.BreakdownDimension 503 properties shall have the value "DMTF: Power Range Milliwatts". 504

505 The CIM_BaseMetricValue.BreakdownValue property shall be formatted as an integer, followed by a 506 whitespace, a hyphen, a whitespace, and then an integer:

- [0123456789]+" "[0123456789]+ 507
- 508 The first integer shall identify the lower bound of the power range, inclusive, in units of milliwatts. The second integer shall identify the upper bound of the power range, inclusive, in units of milliwatts. 509

510 7.10.2 Power Supply Power Metrics

511 Power supply power metrics are metrics that measure power per power supply of the managed system.

512 Power supply metric shall be represented by a CIM BaseMetricDefinition and the associated instance(s)

513 CIM BaseMetricValue per DSP1053. The CIM BaseMetricDefinition instance and the associated

514 CIM BaseMetricValue instances shall be associated to the CIM PowerSupply instance that represents

- 515 the power supply for which the power metrics are represented through the CIM_MetricDefForME and
- CIM_MetricForME associations respectively. The CIM_BaseMetricDefinition.Name property identifies the 516 particular type of metric as described in the below section. The
- 517

518 CIM_BaseMetricDefinition.BreakdownDimensions, CIM_BaseMetricValue.BreakdownDimension, and 519 CIM_BaseMetricValue.BreakdownValue properties specify how the power metric values can be collected 520 on a more granular level, as described in 7.10.2.2.

521 7.10.2.1 CIM_BaseMetricDefinition.Name

- 522 The CIM BaseMetricDefinition.Name property shall have the value specified in the "Name" column, and
- 523 shall conform to the requirements for one of the metrics types mentioned in the corresponding "Supported
- 524 Metrics" column per DSP1053 if the metric matches the description in the "Description" column of Table 4.
- 525

Name	Supported Metrics Type	Description
DMTF:Power Supply Input Power	Simple, Aggregation	Power metric describing external consumption of power supply.
DMTF:Power Supply Output Power	Simple, Aggregation	Power metric describing power produced by a power supply.

526 **7.10.2.2** CIM_BaseMetricDefinition.BreakdownDimensions for Input Power Metrics

527 If the CIM BaseMetricDefinition.Name property is set to "DMTF:Power Supply Input Power", the

requirements in this section shall apply, otherwise CIM_BaseMetricDefinition.BreakdownDimensions,

529 CIM_BaseMetricValue.BreakdownDimension and CIM_BaseMetricValue.BreakdownValue shall be set to 530 NULL.

531 CIM_BaseMetricDefinition.BreakdownDimensions shall be set to NULL or shall contain the values

532 specified in the "Breakdown Dimension" column in Table 5 if the description in the "Description" column 533 matches the breakdown dimension of the power supply metric.

534

Table 5 – Power Supply Metric Breakdown Dimensions

Breakdown Dimension	Breakdown Value	Description
DMTF:Cord	Cord <identifier></identifier>	Power supply power metric that is collected on a granularity of cords that supply power to the power supply where the cord shall be identified by the <identifier>.</identifier>
DMTF:Phase	PhaseA PhaseB PhaseC	Power supply power metric that is collected on a granularity of phases that supply power to the power supply where each of the phases shall be identified.

535 CIM_BaseMetricValue.BreakdownDimension shall be set to NULL or shall contain the values in the

- 536 specified in the "Breakdown Dimension" column in Table 5 or shall contain the concatenation of the
- values specified in the "Breakdown Dimension" column in Table 5 and shall use the character "|" as adelimiter.

539 If CIM_BaseMetricValue.BreakdownDimension is set to NULL, then the

540 CIM_BaseMetricValue.BreakdownValue property shall be set to NULL. If the

541 CIM_BaseMetricValue.BreakDownDimension contains a value specified in Table 5, then the

542 CIM_BaseMetricValue.BreakDownValue shall contain one of the values specified in the corresponding

543 "Breakdown Value" column. If the CIM_BaseMetricValue.BreakDownDimension contains concatenated

values specified in Table 5 in a specific order, then the CIM_BaseMetricValue.BreakDownValue shall

545 contain the concatenation of values specified in the corresponding "Breakdown Value" column in the

546 same order and shall use the character "|" as a delimiter.

- 547 Examples of allowable values of CIM_BaseMetricValue.BreakdownDimension and
- 548 CIM_BaseMetricValue.BreakdownValue are detailed in Table 6.
- 549 550

Table 6 – Examples of Values for the CIM_BaseMetricValue.BreakdownDimension and CIM_BaseMetricValue.BreakdownValue Properties

CIM_BaseMetricValue.BreakdownDimension	CIM_BaseMetricValue.BreakdownValue
DMTF:Cord	Cord1
DMTF:Phase	PhaseB
DMTF:Phase DMTF:Cord	Cord2 PhaseA
DMTF:Cord DMTF:Phase	PhaseC Cord1

551 **7.10.3 Component and Generic Power Metrics**

552 Component power metrics are metrics that measure power for a particular component. Component power

- 553 metric shall be represented by a CIM_BaseMetricDefinition and the associated instance(s)
- 554 CIM_BaseMetricValue per <u>DSP1053</u>. The CIM_BaseMetricDefinition instance and the associated
- 555 CIM_BaseMetricValue instances shall be associated to the CIM_ManagedElement derived concrete
- instance that represents the component for which the power metrics are represented through the
- 557 CIM_MetricDefForME and CIM_MetricForME associations respectively. The
- 558 CIM_BaseMetricDefinition.Name property identifies the particular type of metric as described in the below 559 section. The CIM_BaseMetricDefinition.BreakdownDimensions,
- 560 CIM BaseMetricValue.BreakdownDimension and CIM BaseMetricValue.BreakdownValue specifies how
- the power metric values can be collected on a more granular level, but in the case of system power
- 562 metrics no such granular levels are specified.

563 7.10.3.1 Metric Name

- 564 The CIM_BaseMetricDefinition.Name property shall have the value specified in the "Name" column, and
- shall conform to the requirements for one of the metrics types mentioned in the corresponding "Supported
- 566 Metrics" column per <u>DSP1053</u> if the metric matches the description in the "Description" column of Table 7.
- 567

Table 7 – Power Supply Profile Metrics

Name	Supported Metrics Type	Description
DMTF:Component Input Power	Simple, Aggregation	Power metric describing the input power by a specific component.
DMTF:Generic Input Power	Simple, Aggregation, Summation	Generic power metric that describes input power by a single or group of managed elements which could include a mix of power supplies and consuming components.
DMTF:Generic Output Power	Simple, Aggregation, Summation	Generic power metric that describes output power by a single or group of managed elements which could include a mix of power supplies and consuming components.

568 **7.10.3.2 Breakdown Dimension Definitions**

569 The CIM_BaseMetricDefinition.BreakdownDimensions, CIM_BaseMetricValue.BreakdownDimension and 570 CIM_BaseMetricValue.BreakdownValue properties shall be set to NULL.

571 8 Methods

572 This section details the requirements for supporting intrinsic operations and extrinsic methods for the CIM 573 elements defined by this profile.

574 8.1 Method: CIM_PowerSupply.RequestStateChange()

575 Invocation of the CIM_PowerSupply.RequestStateChange() method will change the element's state to 576 the value that is specified in the RequestedState parameter.

- 577 Return values for RequestStateChange() shall be as specified in Table 8 where the method-execution
 578 behavior matches the return-code description. RequestStateChange() method's parameters are specified
 579 in Table 9.
- 580 If the power supply state management is supported, the RequestStateChange() method shall be 581 implemented and shall not return a value of 1 (Not Supported) (see section 7.3.1).
- 582 If the value of the RequestedState parameter is 6 (Offline) and the power supply is not a Spare Power 583 Supply, the RequestStateChange() method shall return a value of 2 (Error Occurred).
- Invoking the CIM_PowerSupply.RequestStateChange() method multiple times could result in earlier
 requests being overwritten or lost.
- 586 No standard messages are defined for this method.

587

Table 8 – CIM_PowerSupply.RequestStateChange() Method: Return Code Values

Value	Description
0	Request was successfully executed.
1	Method is not supported in the implementation.
2	Error occurred
4096	Job started

588

Table 9 – CIM_PowerSupply.RequestStateChange() Method: Parameters

Qualifiers	Name	Туре	Description/Values
IN, REQ	RequestedState	uint16	Valid state values:
			2 (Enabled) 3 (Disabled) (see section 8.1.1) 6 (Offline) (see section 8.1.1) 11 (Reset)
OUT	Job	CIM_ConcreteJob REF	Returned if job started
IN, REQ	TimeoutPeriod	Datetime	Client specified maximum amount of time the transition to a new state is supposed to take:
			0 or NULL – No time requirements
			<interval> – Maximum time allowed</interval>

589 **8.1.1 RequestStateChange() for a Spare Power Supply**

590 After the successful execution of the RequestStateChange() method on a Spare Power Supply with the

591 RequestedState parameter set to 6 (Offline), the SpareStatus of the referenced CIM_IsSpare association 592 shall have value of 2 (Hot Standby).

- 593 After the successful execution of the RequestStateChange() method on a Spare Power Supply with the
- 594 RequestedState parameter set to 3 (Disabled), the SpareStatus of the referenced CIM_IsSpare
- association shall have value of 3 (Cold Standby).

596 8.2 Method: CIM_RedundancySet.Failover()

- 597 The CIM_RedundancySet.Failover() method forces a failover from one member of a
- 598 CIM_RedundancySet collection to another. When the method executes successfully, the power supply
- that is represented by the CIM_PowerSupply instance referenced by the FailoverFrom parameter will
- 600 become inactive. The power supply that is represented by the CIM_PowerSupply instance referenced by 601 the FailoverTo parameter will take over as the active power supply.
- The Failover() method may be supported if the FailoverSupported property of at least one instance of CIM_IsSpare that references the CIM_RedundancySet has a value of 3 (Manual) or 4 (Both Manual and Automatic).
- 605 The Failover() method shall not be supported if the FailoverSupported property of every instance of 606 CIM_IsSpare that references the CIM_RedundancySet has a value of 2 (Automatic).
- The execution of the Failover() method shall return a value of 2 (Error Occurred) under the following conditions:
- The CIM_PowerSupply instance that is referenced by the FailoverTo parameter is not a Spare
 Power Supply.
- The CIM_PowerSupply instance that is referenced by the FailoverFrom parameter is not
 associated with the CIM_RedundancySet instance only through the CIM_MemberOfCollection
 association.
- 614 After the Failover() method executes successfully:
- The CIM_PowerSupply instance that is referenced by the FailoverTo parameter shall take over as the active power supply. The CIM_PowerSupply instance that is referenced by the FailoverTo parameter shall be associated with the CIM_RedundancySet only through the CIM_MemberOfCollection association.
- The CIM_PowerSupply instance that is referenced by FailoverFrom parameter shall become a
 Spare Power Supply.
- If the power supply state management is supported, the EnabledState property of the
 CIM_PowerSupply instance that is referenced by the FailoverFrom parameter shall have a value
 a value of 6 (Enabled but Offline) or 3 (Disabled).
- 624 CIM_RedundancySet.Failover() return values shall be as specified in Table 10.
- 625 CIM_RedundancySet.Failover() parameters are specified in Table 11.
- 626 No standard messages are defined for this method.
- 627

Table 10 – CIM_RedundancySet.Failover() Method: Return Code Values

Value	Description
0	Request was successfully executed.
1	Method is not supported in the implementation.
2	Error occurred

Table 11 – CIM_RedundancySet.Failover() Method: Parameters

Qualifiers	Name	Туре	Description/Values
IN, REQ	FailoverFrom	CIM_ManagedElement REF	The redundant element that will become inactive
IN, REQ	FailoverTo	CIM_ManagedElement REF	The redundant element that will become active and take over the inactivated element

629 8.3 Profile Conventions for Operations

630 For each profile class (including associations), the implementation requirements for operations, including those in the following default list, are specified in class-specific subclauses of this clause. 631

- 632 The default list of operations is as follows:
- 633 GetInstance .
- 634 EnumerateInstances •
- 635 EnumerateInstanceNames •
- 636 Associators .
- 637 AssociatorNames
- References 638 .
- 639 ReferenceNames •

CIM_ElementCapabilities Operations 640 8.4

Table 12 lists implementation requirements for operations. If implemented, these operations shall be 641

implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 12, all operations 642 in the default list in 8.3 shall be implemented as defined in DSP0200. 643

- 644 NOTE: Related profiles may define additional requirements on operations for the profile class.
- 645

Table 12 – CIM ElementCapabilities Operations

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

8.5 CIM_EnabledLogicalElementCapabilities Operations 646

- 647 All operations in the default list in 8.3 shall be implemented as defined in DSP0200.
- 648 NOTE: Related profiles may define additional requirements on operations for the profile class.

CIM HostedCollection Operations 8.6 649

- Table 13 lists implementation requirements for operations. If implemented, these operations shall be 650 implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 13, all operations 651 in the default list in 8.3 shall be implemented as defined in DSP0200.
- 652
- 653 NOTE: Related profiles may define additional requirements on operations for the profile class.

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

Table 13 – CIM_HostedCollection Operations

655 8.7 CIM_IsSpare Operations

Table 14 lists implementation requirements for operations. If implemented, these operations shall be

657 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 14, all operations 658 in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.

659 NOTE: Related profiles may define additional requirements on operations for the profile class.

660

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

661 8.8 CIM_MemberOfCollection Operations

Table 15 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 15, all operations

664 in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.

665 NOTE: Related profiles may define additional requirements on operations for the profile class.

666

Table 15 – CIM_MemberOfCollection Operations

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

667 8.9 CIM_OwningCollectionElement Operations

Table 16 lists implementation requirements for operations. If implemented, these operations shall be

669 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 16, all operations

670 in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.

671 NOTE: Related profiles may define additional requirements on operations for the profile class.

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

673 8.10 CIM_PowerSupply Operations

Table 17 lists implementation requirements for operations. If implemented, these operations shall be

675 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 17, all operations
 676 in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.

677 NOTE: Related profiles may define additional requirements on operations for the profile class.

678

Operation	Requirement	Messages
ModifyInstance	Optional. See section 8.10.1.	None

679 8.10.1 CIM_PowerSupply — ModifyInstance

680 This section details the requirements for the ModifyInstance operation applied to an instance of 681 CIM_PowerSupply. The ModifyInstance operation may be supported.

682 The ModifyInstance operation shall be supported and CIM_PowerSupply.ElementName shall be

modifiable if the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities

instance that is associated with the CIM_PowerSupply instance has a value of TRUE. See section8.10.1.1.

686 8.10.1.1 CIM_PowerSupply.ElementName

If the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance that
 is associated with the CIM_PowerSupply instance has a value of TRUE, the implementation shall allow
 the ModifyInstance operation to change the value of the ElementName property of the CIM_PowerSupply
 instance. The ModifyInstance operation shall enforce the length restriction specified in the

691 MaxElementNameLen property of the CIM_EnabledLogicalElementCapabilities instance.

If the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance has
 a value of FALSE, the implementation shall not allow the ModifyInstance operation to change the value of
 the ElementName property of the CIM_PowerSupply instance.

695 8.11 CIM_RedundancySet Operations

- All operations in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.
- 697 NOTE: Related profiles may define additional requirements on operations for the profile class.

698 **8.12 CIM_SuppliesPower Operations**

- Table 18 lists implementation requirements for operations. If implemented, these operations shall be
 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 18, all operations
- in the default list in 8.3 shall be implemented as defined in <u>DSP0200</u>.
- 702 NOTE: Related profiles may define additional requirements on operations for the profile class.

Table 18 – CIM	_SuppliesPowe	r Operations
----------------	---------------	--------------

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

704 8.13 CIM SystemDevice Operations

705 Table 19 lists implementation requirements for operations. If implemented, these operations shall be

706 implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 19, all operations in the default list in 8.3 shall be implemented as defined in DSP0200. 707

708 NOTE: Related profiles may define additional requirements on operations for the profile class.

709

Table 19 – CIM	SystemDevice Operations
----------------	-------------------------

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

9 Use Cases 710

711 This section contains object diagrams and use cases for the *Power Supply Profile*.

9.1 **Object Diagrams** 712

713 Figure 2 represents a possible instantiation of the Power Supply Profile. In this instantiation, the managed

714 system, system1, has a power supply, pwrsupply1. The power supply is operating but in a degraded

state. pwrsupply1 produces 4000 milliwatts of power. pwrsupply1's physical package information is 715

represented as well. 716

717 Because pwrsupply1 does not have the CIM SuppliesPower association reference, pwrsupply1 is 718 supplying power to system1, which is denoted by the CIM SystemDevice association. system1 is also the

scoping instance for pwrsupply1. Thus, following the CIM ElementConformsToProfile association to 719

720 profile1 and then the referenced CIM ReferencedProfile association to a CIM RegisteredProfile instance

721 with the RegisteredName property set to "Power Supply", the client can retrieve profile2. profile2 will show the version of the current Power Supply Profile implementation.

722

723 For simplicity, the prefix CIM has been removed from the names of the classes in the figure.

725

Figure 2 – Power Supply Profile: Object Diagram

Figure 3 represents a possible instantiation of the *Power Supply Profile* with redundancy. system1 has spare power supply redundancy. Because pwrsupply1 is associated with redundancyset1 through the CIM_IsSpare association, and the value of the pwrsupply1's EnabledState property is 6 (Enabled but Offline), the pwrsupply1 is a Spare Power Supply that is enabled but is not actively providing power to system1. pwrsupply2 is the active power supply of system1 because the value of its EnabledState property is 2 (Enabled) and pwrsupply2 is associated with redundancyset1 only through the CIM_MemberOfCollection association.

If redundancyset1 supports the Failover() method, a client can execute the Failover() method with the
 FailoverFrom parameter referencing pwrsupply2 and the FailoverTo parameter referencing pwrsupply1.

735 When the Failover() method executes successfully, pwrsupply1 will be the active power supply for

736 system1 with an EnabledState property value of 2 (Enabled) and will not be associated with

redundancyset1 through the CIM_IsSpare association. Additionally, pwrsupply2 will not have an

T38 EnabledState property value of 2 (Enabled) and will be associated to redundancyset1 through the

739 CIM_IsSpare association. Because pwrsupply1 and pwrsupply2 do not have the CIM_SuppliesPower

association reference, both are supplying power to system1, which is denoted by the CIM_SystemDeviceassociation.

743

Figure 3 – Power Supply Profile: Redundancy Object Diagram

Figure 4 shows a possible instantiation of the *Power Supply Profile* in which the power supply is

dedicated to supply power to a particular managed element. In this diagram, pwrsupply1 is associated to

blade2 through the CIM_SuppliesPower association. This association denotes that pwrsupply1 supplies

power only to blade2 and does not supply power to modular1 and blade1. In this case, the

748 CIM_SystemDevice association does not reference the element to which pwrsupply1 supplies power.

Figure 4 – Power Supply Profile: Dedicated Power Supply

751 9.2 Power Sensor Information

Figure 5 shows a possible instantiation of the *Power Supply Profile* including the power measuring

753 sensors. Numsensor1, represents the numeric reading of Watts for the total power produced by all the 754 power supplies of system1, pwrsupply1, and pwrsupply2. Each individual power supply's supplied power

is represented by sensors numsensor3 and numsensor4. Numsensor2 represents the total power

consumed by all the power consuming devices of system1.

757 758

Figure 5 – Power Supply Profile: Power Sensors

759 9.3 Power Metrics

Figure 6 shows a possible instantiation of the *Power Supply Profile* including the power metrics. The metval1 through metval200 are values collected for interval metrics, bmd1, that represents the external input power of system1. Amd1 represents the high watermark for the bmd1 metrics, the high watermark of the system1 external input power. Psbmd1 is the interval metrics measuring the output power by pwrsupply1.

766

Figure 6 – Power Supply Profile: Power Metrics

Figure 7 shows a possible instantiation of the *Power Supply Profile* that includes metrics with breakdown
 dimensions. Bmd2 defines power supply metrics for output power that does not have any further
 breakdown. Thus, the bmd2.BreakdownDimension is set to NULL. The BreakdownDimension and

770 BreakdownValue of the associated metric value, metval1bmd2, is also set to NULL, and the MetricValue

property is a measurement for the total output power for pwrsupply1.

772 On the other hand, bmd1, which represents pwrsupply1's input power metric, defines a more granular

773 metric value. The bmd1.BreakdownDimension array property contains "DMTF:Cord" and "DMTF:Phase"

values representing that metric for input power can be collected per cord and/or per phase. Metval1

represents metric for input power collected for Cord1, metval2 represents input power metric collected for

776 Cord1 and PhaseA, and metval3 represents input power metric collected for Cord1 and PhaseB.

778

Figure 7 – Power Supply Profile: Power Metrics with Breakdown Dimensions

779 9.4 Retrieve the Power Supply's Power Output Information

780 A client can determine the power output information for a given instance of CIM_PowerSupply by

781 retrieving the TotalPowerOutput property.

782 9.5 Reset the Power Supply

- 783 A client can reset the power supply as follows:
- For the given instance of CIM_PowerSupply, find the associated instance of CIM_EnabledLogicalElementCapabilities.
- If the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is a non if the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is a non empty array that contains the value 11 (Reset), execute the RequestStateChange() method
 with the value of the RequestedState parameter set to 11 (Reset), which will disable and then
 enable the power supply represented by this instance.

790 **9.6 Retrieve the Power Supply Redundancy Status**

- A client can determine the redundancy status for a given instance of CIM_PowerSupply as follows:
- 7921)Find the instance of CIM_RedundancySet that is associated with the instance of793CIM_PowerSupply through an instance of CIM_MemberOfCollection.
- 2) Retrieve the value of the CIM_RedundancySet.RedundancyStatus property.

9.7 Find the Elements to Which the Power Supply Supplies Power

- A client can determine the elements to which a given instance of CIM_PowerSupply supplies power as follows:
- 7981)Find all of the CIM_SuppliesPower association instances that reference the given instance of
CIM_PowerSupply.
- 800 2) If the CIM_SuppliesPower association instances exist, the CIM_SuppliesPower.Dependent
 801 properties will reference all the instances of the subclass of CIM_ManagedSystemElement that
 802 receive power from the power supply.
- 8033)If no CIM_SuppliesPower association instances exist, select the CIM_ComputerSystem804instance associated with the given instance of the CIM_PowerSupply instance through the805CIM_SystemDevice association.

9.8 Determine Whether the CIM_PowerSupply.ElementName Is Modifiable

- A client can determine whether it can modify the CIM_PowerSupply.ElementName property as follows:
- Find the CIM_EnabledLogicalElementCapabilities instance that is associated with the
 CIM_PowerSupply instance.
- Query the value of the ElementNameEditSupported property of the instance. If the value is
 TRUE, the client can modify the CIM_PowerSupply.ElementName property.

812 **10 CIM Elements**

- Table 20 shows the instances of CIM Elements for this profile. Instances of the CIM Elements shall be
- 814 implemented as described in Table 20. Sections 7 ("Implementation Requirements") and section 8 ("Methode") movime additional requirements on these elements
- 815 ("Methods") may impose additional requirements on these elements.

Table 20 – CIM Elements: Power Supply Profile

Element Name	Requirement	Description
Classes		·
CIM_BaseMetricDefinition	Optional	See section 10.1.
CIM_BaseMetricValue	Optional	See section 10.2.
CIM_ElementCapabilities	Conditional	See section 10.3.
CIM_EnabledLogicalElementCapabilities	Optional	See sections 7.2 and 10.4.
CIM_HostedCollection	Conditional	See section 10.5.
CIM_IsSpare	Optional	See section 10.6.
CIM_MemberOfCollection	Conditional	See section 10.7.
CIM_NumericSensor	Optional	See sections 10.8 and 10.9.
CIM_OwningCollectionElement	Conditional	See section 10.16.
CIM_PowerSupply	Mandatory	See sections 7.1 and 10.10.
CIM_RedundancySet	Optional	See sections 7.7 and 10.11.
CIM_RegisteredProfile	Mandatory	See section 10.12.
CIM_Sensor	Optional	See sections 7.9 and 10.14.
CIM_SuppliesPower	Optional	See sections 7.6 and 10.17.
CIM_SystemDevice	Mandatory	See sections 7.6 and 10.15.
Indications		
None defined in this profile		

817 **10.1 CIM_BaseMetricDefinition**

818 The CIM_BaseMetricDefinition class is defined by the *Base Metrics Profile* (<u>DSP1053</u>). The requirements

- 819 denoted in Table 21 are in addition to those mandated by the <u>DSP1053</u>.
- 820

Table 21 – Class: CIM_BaseMetricDefinition

Properties	Requirement	Description
Name	Mandatory	See section 7.10.
IsContinuous	Mandatory	Matches TRUE
BreakdownDimension	Mandatory	See section 7.10.

Table 22 describes the requirements for using CIM_BaseMetricDefinition to define a "DMTF:System Input Power Histogram" metric. These constraints are in addition to those specified in <u>DSP1053</u>.

823

Table 22 – Class: CIM_BaseMetricDefinition – Histogram

Properties	Requirement	Notes	
Name	Mandatory	"DMTF:System Input Power Histogram"	
DataType	Mandatory	Matches 3 (datetime)	
ProgramaticUnits	Mandatory	Matches NULL	
ChangeType	Mandatory	Matches 3 (counter)	
Timescope	Mandatory	Matches 3 (Interval) or 4 (StartupInterval)	
BreakdownDimensions	Mandatory	Matches "DMTF:Power Range Milliwatts"	

824 **10.2 CIM_BaseMetricValue**

The CIM_BaseMetricValue class is defined by <u>DSP1053</u>. The requirements denoted in Table 23 are in addition to those mandated by <u>DSP1053</u>.

		_
Properties	Requirement	Description
BreakdownDimension	Mandatory	See section 7.10.
BreakdownValue	Mandatory	See section 7.10.

Table 23 – Class: CIM_BaseMetricValue

828 **10.3 CIM_ElementCapabilities**

- 829 CIM_ElementCapabilities is used to associate an instance of CIM_PowerSupply with an instance of
- 830 CIM_EnabledLogicalElementCapabilities that describes the capabilities of the CIM_PowerSupply
- 831 instance. CIM_ElementCapabilities is mandatory if the CIM_EnabledLogicalElementCapabilities instance

is instantiated.

833

827

Table 24 – CIM	ElementCapabilities

Properties	Requirement	Notes
ManagedElement	Mandatory	Key : Shall reference the instance of CIM_PowerSupply
		Cardinality 1* indicating one or more references
Capabilities	Mandatory	Key : Shall reference the instance of CIM_EnabledLogicalElementCapabilities
		Cardinality 01 indicating zero or one reference

10.4 CIM_EnabledLogicalElementCapabilities

- 835 CIM_EnabledLogicalElementCapabilities represents the capabilities of the power supply.
- 836

Table 25 - CIM_EnabledLogicalElementCapabilities

Properties	Requirement	Notes
InstanceID	Mandatory	Кеу
RequestedStatesSupported	Mandatory	See section 7.2.1.
ElementNameEditSupported	Mandatory	See section 7.2.2.
MaxElementNameLen	Conditional	See section 7.2.3.
ElementNameMask	Conditional	See section 7.2.4.

837 **10.5 CIM_HostedCollection**

838 CIM_HostedCollection is used to associate an instance of CIM_RedundancySet with the instance of

839 CIM_ComputerSystem of which the CIM_RedundancySet instance is part of. The instance of

840 CIM_HostedCollection is conditional on the instantiation of the CIM_RedundancySet class.

841

Table 26 – Class: CIM	_HostedCollection
-----------------------	-------------------

Properties	Requirement	Description
Antecedent	Mandatory	Key: Shall reference the CIM_ComputerSystem instance of which the CIM_RedundancySet instance is a member
		Cardinality 1 indicating one reference
Dependent	Mandatory	Key: Shall reference the CIM_RedundancySet instance
		Cardinality * indicating zero or more references

842 **10.6 CIM_IsSpare**

843 CIM_IsSpare is used to associate an instance of CIM_PowerSupply with the instance of

844 CIM_RedundancySet of which the CIM_PowerSupply instance is a member and is a Spare Power

845 Supply.

846

Table 27 – Class: CIM_IsSpare

Properties	Notes	Description
Antecedent	Mandatory	Key: Shall reference the CIM_RedundancySet instance of which the CIM_PowerSupply instance is a member and where the CIM_PowerSupply instance is a spare
		Cardinality 01 indicating zero or one reference
Dependent	Mandatory	Key: Shall reference the CIM_PowerSupply instance
		Cardinality 1* indicating one or more references
SpareStatus	Mandatory	
FailoverSupported	Mandatory	

847 **10.7 CIM_MemberOfCollection**

848 CIM_MemberOfCollection is used to associate an instance of CIM_PowerSupply with the instance of

849 CIM_RedundancySet of which the CIM_PowerSupply is a member. CIM_MemberOfCollection is

850 mandatory if CIM_RedundancySet is instantiated.

851

Table 28 – Class: CIM_MemberOfCollection

Properties	Requirement	Description
Collection	Mandatory	Key: Shall reference the CIM_RedundancySet instance of which the CIM_PowerSupply instance is a member
		Cardinality 01 indicating zero or one reference
Member	Mandatory	Key: Shall reference the CIM_PowerSupply instance
		Cardinality 1* indicating one or many references

10.8 CIM_NumericSensor — Input Power Measurement Sensor

The CIM_NumericSensor class is defined by the *Sensors Profile* (<u>DSP1009</u>). The requirements denoted in Table 29 are in addition to those mandated by <u>DSP1009</u>.

855

Table 29 – Class: CIM_NumericSensor

Properties	Requirement	Description
SensorType	Mandatory	SensorType shall be set to 13 (Power Consumption).

10.9 CIM_NumericSensor — Output Power Measurement Sensor

The CIM_NumericSensor class is defined by <u>DSP1009</u>. The requirements denoted in Table 30 are in addition to those mandated by <u>DSP1009</u>.

859

Table 30 – Class: CIM_NumericSensor

Properties	Requirement	Description
SensorType	Mandatory	SensorType shall be set to 14 (Power Production).

860 **10.10 CIM_PowerSupply**

861 CIM_PowerSupply is used to represent the power supply.

862

Table 31 – Class: CIM_PowerSupply

Properties and Methods	Requirement	Description
SystemCreationClassName	Mandatory	Кеу
SystemName	Mandatory	Кеу
CreationClassName	Mandatory	Кеу
DeviceID	Mandatory	Кеу
TotalOutputPower	Mandatory	Shall match 0 if the power supply's total output power is unknown
ElementName	Mandatory	See section 7.8.
OperationalStatus	Mandatory	
HealthState	Mandatory	
EnabledState	Mandatory	See section 7.5.
RequestedState	Mandatory	See section 7.4.
RequestStateChange()	Conditional	See section 8.1.

863 **10.11 CIM_RedundancySet**

- 864 CIM_RedundancySet is used to represent the aggregation of redundant power supplies.
- 865

Table 32 – Class: CIM_RedundancySet

Properties and Methods	Requirement	Description
InstanceID	Mandatory	Кеу
RedundancyStatus	Mandatory	
TypeOfSet	Mandatory	See section 7.7.1.
MinNumberNeeded	Mandatory	Shall match 0 if the minimum number of power supplies needed for the redundancy is unknown
ElementName	Mandatory	Shall be formatted as a free-form string of variable length (pattern ".*")
Failover()	Optional	See section 8.1.1.

866 **10.12 CIM_RegisteredProfile**

- 867 The CIM_RegisteredProfile class is defined by the *Profile Registration Profile* (<u>DSP1033</u>). The
- 868 requirements denoted in Table 33 are in addition to those mandated by <u>DSP1033</u>.
- 869

Table 33 – Class: CIM_RegisteredProfile

Properties	Requirement	Description
RegisteredName	Mandatory	This property shall have a value of "Power Supply".
RegisteredVersion	Mandatory	This property shall have a value of "1.1.0".
RegisteredOrganization	Mandatory	This property shall have a value of 2 (DMTF).

870 NOTE: Previous versions of this document included the suffix "Profile" for the RegisteredName value. If

871 implementations querying for the RegisteredName value find the suffix "Profile", they should ignore the suffix, with

any surrounding white spaces, before any comparison is done with the value as specified in this document.

10.13 CIM_Sensor — Input Power Measurement Sensor

- The CIM_Sensor class is defined by <u>DSP1009</u>. The requirements denoted in Table 34 are in addition to those mandated by <u>DSP1009</u>.
- 876

Table 34 – Class: CIM_Sensor

Properties	Requirement	Description
SensorType	Mandatory	SensorType shall be set to13 (Power Consumption).

10.14 CIM_Sensor — Output Power Measurement Sensor

The CIM_Sensor class is defined by <u>DSP1009</u>. The requirements denoted in Table 35 are in addition to those mandated by <u>DSP1009</u>.

880

Table 35 - Class: CIM Sensor

Properties	Requirement	Description
SensorType	Mandatory	SensorType shall be set to 14 (Power Production).

88110.15CIM_SystemDevice

882 CIM_SystemDevice is used to associate an instance of CIM_PowerSupply with the instance of

883 CIM_ComputerSystem of which the CIM_PowerSupply instance is a member.

884

Table 36 – Class	: CIM_SystemDevice

Properties	Requirement	Description
GroupComponent	Mandatory	Key: Shall reference the CIM_ComputerSystem instance of which the CIM_PowerSupply instance is a member
		Cardinality 1 indicating one reference
PartComponent	Mandatory	Key: Shall reference the CIM_PowerSupply instance
		Cardinality * indicating zero or more references

885 **10.16 CIM_OwningCollectionElement**

CIM_OwningCollectionElement is used to associate an instance of CIM_RedundancySet with the
 instance of CIM_ComputerSystem of which the CIM_RedundancySet instance is a member. The instance
 of CIM_OwningCollectionElement is conditional on the instantiation of the CIM_RedundancySet class.

or Civi_OwningCollectionElement is conditional on the instantiation of the Civi_RedundancySe

889

Table 37 – Class: CIM_OwningCollectionElement

Properties	Requirement	Description
OwningElement	Mandatory	Key: Shall reference the CIM_ComputerSystem instance of which the CIM_RedundancySet instance is a member
		Cardinality 1 indicating one reference
OwnedElement	Mandatory	Key: Shall reference the CIM_RedundancySet instance
		Cardinality * indicating zero or more references

890 **10.17 CIM_SuppliesPower**

891 CIM_SuppliesPower is used to associate an instance of CIM_PowerSupply with the instance of

892 CIM_ManagedSystemElement to which the power supply represented by the CIM_PowerSupply instance 893 supplies power. See section 7.6.

894

Table 38 – Class: CIM_SuppliesPower

Properties	Requirement	Description
Antecedent	Mandatory	Key: Shall reference the CIM_PowerSupply instance
		Cardinality 1* indicating one or more references
Dependent	Mandatory	Key: Shall reference the instance of the subclass of CIM_ManagedSystemElement that represents the element receiving the power
		Cardinality * indicating zero or more references

ANNEX A (informative)

Change Log

Version	Date	Description
1.0.0a	05/07/2007	Preliminary 1.0.0 version.
1.1.0a	5/22/08	Preliminary 1.1.0 version.
1.1.0	8/14/09	DMTF Standard Release

899 900

895 896 897

898