W

=
= OO~ O O1

N NNNNRERRERR
5 WONFOWOO~OUTRWN

N
ol

NN N
o~N O

29

30
31
32
33
34

35
36

37

CIM Query Language Specification

CIM Query Language
Specification

DSP0202 Status: Second Preliminary -
Pending

Copyright © 2000-2006 Distributed Management Task Force, Inc. (DMTF). All rights
reserved.

DMTFis a not-for-profit associaion of industry members dedicated to promoting enterprise and sysems management and interoperability.
Members and non-members may reproduce DM TF specifi cations and documents for uses cond stent with this purpose, provided that correct
attributionisgiven. AsDMTF specifications may be revised from time to time, the particular version and rel ease date should always be
noted.

Implementation of certain d ements of this sandard or proposed standard may be subject to third party patent rights, including provisiona
patent rights (herein "patent rights'). DMTF makes no representations to users of the sandard asto the existence of such rights, and is not
respons ble to recognize, disclose, or identify any or all such third party patent right, ownersor claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, ownersor claimants. DMTF shall have no liability to any party, in any manner or
circumgtance, under any legal theory whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such
party’ sreliance on the standard or incorporation thereof inits product, protocol s or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation isforeseeable or not, nor to any patent owner or daimant, and shall have
no liability or respond bility for costs or lossesincurred if a sandard is withdrawn or modified after publication, and shall be indemnified
and held harmless by any party implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may re ate to or impact
implementations of DM TF standards, vist http://www.dmitf.org/about/policies/di scl osures.php.

CIM Query Language Specification

Version 1.0.0h Second Preliminary - Pending
March 22, 2006

Abstract

The DMTF Common Information Model (CIM) utilizes basic object-oriented structure and
conceptualization techniques in its approach to managing hardware, software, systems, and
networks. This approach provides aformal consstent model that enables cooperative
development of an object-oriented schema across multiple organizations and problem
domains.

This document describes a query language used to extract data from a ClIM-based
management infrastructure

Verson 1.0.0 Second Preliminary

http://www.dmtf.org/about/policies/disclosures.php

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

CIM Query Language Specification

Table of Contents

TADIE OF CONTENES......oiieeieee et et e e b e ee e et et se b e et e e e i
1 INtroduCtion 8N OVEIVIEWccuriririirereieie st see et st sa e ee e en 1
2 Background MEerialS........cccoiiiiriieciee ettt e e 2
G T = 110011070 oo |V ATV 3
4 Requirements and CONCEPLSoueereriieirieee ettt se e ese bbb e essbese e nenas 4
5 CIM Query Language (CQL) ...couceoeoeirieeeeeresieesee et e se s se s s sensssa e 6
o300 IR @ | I V' 1 0o 1 Tox 1 o o TS 6
5.2. Identifying the CIM QUENY LanQUAEGEcovrererueirierereeiesieiesee s eesee e 7
53. TheQuery Language TYPE LatiCecccoururueerererieirieie sttt 8
54, Query Language BINF ...t 10
54.1. RESEIVEA WOIAS........ceiee ettt s 11
542, SHING LITEIaAlS. ..ottt e e ee e 12
54.3. [0 1< 1L 1< £ OSSR 12
544, ClasSPaNS ...t 13
54.5. Property NAIMES........coo it s 13
54.6. NUMEITC LITEIAISceeieieeeeeeee ettt e 14
54.7. EXPIESSIONS ...ttt e e ettt 15
54.8. SOMt SPECITICAION.c.eiueiiieiree ettt sr e ee e 23
5.4.9. SEIECE LIS .ottt ettt 24
5400, FrOM CritEIIa...ccccereeeeeeirieeeree sttt st se e s b se s e as s eae bbb eae e ne e 25
5411, The SEleCt StAEMENLovciieeeiee et 26

5.5. Considerations of the Constructsin the BNF...........ccooiiiinneiniese e 27
55.1. Property [dentifiCatioN........ ..o e 27

o T N 1 - Y TP U SRR UT PSSO URPRUPSTRTIN 28
55.3. Embedded ODJECES.......ccoieieee et 28
554. SymDOIIC CONSLANTS......c.couiiireiieririeie ettt sr e ee e 29
555. Computation @nd TYPES.....cceeriiuruererieririeeeie st eesie s sesesse e sessese e e seas 29
5.5.6. COMPAIISONS.....couiiiiuerieirieiereeresisseree e stssessese st ieessesesaeessssese e e s e sensesesbssenseseseanas 30
55.7. Comparisons of Array and SCal@r..........ccoeerreinirineiree e 32

56. Query Language FUNCLIONS.........ccoiirireriieinee et e 33
56.1. AQQregation FUNCHIONS........ccooiiererinieeeie e eesee st se s see e e 33
5.6.2. NUMEITC FUNCLIONS ...ttt et st 33
56.3. SHING FUNCHONS.......ooiiiiiiieee ettt ee e 34
5.64. INSLANCE FUNCLIONS.......coiiiiceeeee et e 34
5.6.5. Path FUNCLIONS........oiieiieeeeeeee ettt e 35
5.6.6. Datetime FUNCLIONS. ..ottt en s 35

5.7. QUENY CONSIAEIBLIONSc.eueueeeererieitete sttt sese s e sese e s sesssese s e ssssese e e nesens 37
5.8 QUEIY EXTOIS.....oceiieieeeete ettt ettt sttt ee e et e e e s e e en e e e s nesseneenea 38
5.9. Query FUNCLIONal DESCITPLIONc.vuiieeereeiieieree et s 39

6 CIM Query Template LanQUAGE........cceueruruereririeieneeierisieiesee s ses e es st s ssses s 42
6.1. Pre-proCessor EXAMPIES... ...ttt 43

T EXAMPIES....coeeee ettt e e e bbb et e b n s 45
7.1, DiSCOVEIY EXAMPIES......oiiiriiirtereeeirtete sttt e e e sese b e s b se e e s e se e esens 45

Verson 1.0.0 Second Preliminary

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

CIM Query Language Specification

7.2, Event detection EXaMPIES........oo it e e 51
7.3, POICY BXAMPIES ... b e e 54
Appendix A: Change HISLOMY ..ottt e 56
Appendix B: Dependencies and REfEIENCES..........coiiereierree s 59
AppendiX B.1: DEPENUENCIES........cceerereereeieririeree ettt aese e se et s beses e s 59
AppendiX B.2: REFEIENCES.........ooeceeee e e 59
Appendix C: ACKNOWIEAGEMENLS ... e s 60
Appendix D: Regular EXPression BNF ... s 61
Appendix D.1: Basic Like Regular EXPIreSSIONS.........ccourreiriererierinieeneesesiseseesesieeesee s 61
Appendix D.2: Full Like Extended Regular EXPreSSIONS..........cocereeereenerinereeneseseeneeeenes 62
Appendix E: Datetime Operations and BNF.............cooiriieeeee s 63
Appendix E.1: Datetime OPEratioNS.........coururuereereririeresie s e sesssse e sesssessssessseses 63
Appendix E.2: Datetime BNF ...t 66

Verson 1.0.0 Second Preliminary i

98

99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114

115
116
117
118
119
120
121

CIM Query Language Specification

1 Introduction and Overview

CIM and WBEM support a query mechanism that is used to select sets of properties from
CIM object instances. Query support is available in some operations defined by the CIM
Operations Specification over HTTP [11] and some CIM classes within the Event [14] and
Policy [15] Models. Query definitions allow aWBEM client to specify the nature and the
number of instances that are selected and what information is returned from those instances.
This enables a WBEM managed environment to place less burden on the network
infrastructure. The precise mechanics for delivering query requests and receiving query
results are specified as a part of the CIM Operations over HTTP Specification [11].

A CIM service implements a Query Engine to parse the query and evaluate its results.
Parsing enables the server to understand the query sufficiently to determine where it should
be processed (even if the query is executed by some other process acting as a data provider
for the server). The Query Language isdivided into abase level of functionality and a
number of optiona features, which determine the complexity of the syntax and semantics.
These features enables CIM service implementations, especially on simple or resource-
sensitive installations, to support aquery interpreter that best suits the needs of clients while
also taking the capabilities of the server into account.

CIM implementations that support query may also support a query template mechanism. A
guery template can be used to model a generic query, and can be processed into avalid
query. An optiona pre-processing facility may be implemented to convert avalid query
template into avalid query string. Thisfeature alows for the writer of aquery template to
provide amodel for a query, but defer the decision on specific query elements to processing
point further along. It isimportant to note that the query template language can be used to
support the query engine, but is not part of the formal query language itself.

Verson 1.0.0 Second Preliminary

122

123
124
125
126

CIM Query Language Specification

2 Background Materials

CIM's query design is based on concepts from both ISO/IEC's Structured Query Language
[12] (SQL-92) and W3C's XML-Query [13]. Basic understanding of the use of relational
databases is required. However specific knowledge of these other worksis not required in
order to understand the CIM Query Language.

Verson 1.0.0 Second Preliminary

CIM Query Language Specification

12z 3 Terminology

Term Definition

CIM Common Information Model, an object-oriented definition of a
managed enterprise or Internet environment.

CIM Indications | A CIM class hierarchy, starting at CIM_Indication, which defines
the datain various types of management notifications.

CIM service A service that provides access to CIM object instances.

From-criteria A definition of the range of data over which aquery is conducted

Query An act of asking for specific data/ For purposes of this document, a

query will specify the range of data of interest (the from-criteria),

the conditions under which data should be returned in the query
result (the search-condition), and the specific datato be returned (the
select-list), plus other processing options.

Search-condition

A specification of the criteria/conditions that select datato be
returned in aquery result.

Select-list

A definition of the specific datato be returned in aquery result.

SOL

Structured Query Language [12] (SQL-92).

WBEM protocol

A protocol specified by DMTF for accessing a CIM service over the
internet. One of these is defined by the CIM Operations over HTTP
specification [11].

WBEM service

A CIM service that supports WBEM protocol interfaces.

XML-Query

XM L-based Query Language from W3C.

Verson 1.0.0 Second Preliminary

128

129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144

145
146
147
148
149
150

151
152
153
154
155
156
157
158

CIM Query Language Specification

4 Requirementsand Concepts

The CIM Query Language has been widely anticipated and exploited in the CIM Operations
over HTTP Specification, by the CIM Events Model [14], and by the CIM Policy Model
[15]. Thelanguage defines the desired instance-level dataranging over acertain set of
objects to be returned as the result of an ExecuteQuery CIM operation. Also, it definesthe
conditions and data for Indications returned as aresult of one of the following:

subscription to CIM _IndicationFilter within the event model

use of CIM_QueryCondition or CIM_MethodAction instances used within a

CIM_PolicySet.

Query semantics MUST include instance property projection (e.g., a SQL SELECT clause)
and arange (e.g., aSQL FROM clause) and MAY include predicate logic (e.g., aSQL
Where clause). This support (defined specifically using the keywords Select-From-Where)
was included in apreliminary version of the CIM Query specification, caled the WBEM
Query Language (WQL), and implemented in various code bases, athough the preliminary
specification was never released. It isimportant to maintain these keywords and concepts
(unless acritical performance or operational error is found), in order to prevent unnecessary
code churn.

As noted above, instance property projection MUST be supported. Thisisamechanism to
select particular properties from aclass to be included in a query response or Indication
object. The projection may include "static" entriesthat can be used for tagging the response
and/or Indication object. (These requirements are provided by the specific or array class-
property-identifier and select-string-literal constructs, respectively.) In addition, the CIM
Query Language MUST:

Support the ability to project meta-data such as instance name and instance class into
aresponse (see the OBJECTPATH() and CLASSPATH() methods, respectively).
Support query of class versioning information (see the query of CLASSQUALIFIER
data).

Define and support a mechanism for querying class inheritance/hierarchy in a query
predicate (provided using the ISA operator).

Support the ability to query all datatypes as well as the entries of an array, since CIM
defines arrays of simple datatypes as valid class properties.

Verson 1.0.0 Second Preliminary 4

159
160
161
162

163
164
165
166

167
168
169
170
171
172
173
174
175
176
177
178

CIM Query Language Specification

Various other requirements for the query language have arisen over the last few years, as
work on the Event Model continued. Additional Event Model requirements are specific to
Indication processing but must be defined in the basic query language in order to have a
consistent BNF and query engine. These requirements are:

The ability to set areturned property value (such as an Indication Priority which
could be overridden by a customer)

The ability to specify aconstant value set of properties to be returned

Support accessing property vaues of an EMBEDDEDOBJECT

CQL isdesigned to operate on instances of one or more classes. Query operations on the
schema are not in the scope of CQL. However, referencing a certain set of class-level
information such as class names or qualifier values is supported within the ‘ Extended Select
List’ feature.

CQL MUST support polymorphism. This means, if aquery isissued against abase class, all
derived class instances will be considered as well. For instance, consider:

SELECT *
FROM CIM_Indication

Thiswould match al instances of derived classes of CIM _Indication.

Verson 1.0.0 Second Preliminary

179

180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206

207
208
209
210

211
212
213

CIM Query Language Specification

5 CIM Query Language (CQL)

5.1. CQL Introduction

In its ssimplest form, the CIM Query Language is asubset of SQL-92 with some extensions
specific to CIM. It supports queries specified as follows:

SELECT <select-list>
FROM <classlist>
WHERE <selection expresson>

Where:
A <select-list> is acomma-separated list of:

o CIM property names (optionally qualified by their class name) related to the
individual classes specified in the FROM clause. The asterisk (*) can be used
to specify ALL the properties of aclass. The resultant column is named by
the property name, this may be modified using the keyword AS followed by a
new name.

0 Literals, named viathe keyword AS followed by a name.

o Function results, named viathe keyword AS followed by a name.

The <class-list> is acomma-separated list of class names.
A <selection expression> specifiesthe criteriaby which results are selected. It is
limited to relatively simple property comparisons.

Moving beyond the simple SELECT-FROM-WHERE format, the ORDER
BY functionality of SQL isadded. Other capabilities of the language, unique
to CIM, are:

the ability to process arrays viaindices,

the ability to query the properties of EMBEDDEDOBJECTS, and

the ability to traverse associations (based on the values of their REF

properties).

Queries are used to define the operation of some CIM classes, (e.g. CIM_IndicationFilter,
CIM_MethodAction and CIM_QueryCondition). If using CIM Operations, and if
supported, aclient MAY issue a query via the ExecuteQuery operation (see the CIM
Operations over HTTP specification [11].

CQL operates on instances of one or more class. Operations against the set of

classes are not supported. Some class-level information such as class names
and qualifier values are folded into the instances.

Verson 1.0.0 Second Preliminary 6

214

215
216

217
218
219

220
221

222

CIM Query Language Specification

5.2. ldentifying the CIM Query Language

In order to ensure uniqueness, valid values for query-language SHOULD conform to the
following syntax: <organization id>":"<language id>.

<organization id> MUST NOT include acolon (":") and MUST include a copyrighted,
trademarked or otherwise unique name that is owned by the entity that had defined query
language. For DM TF defined query languages, the <organization id> is "DMTF".

The <language id> MUST include a unique, (in the context of the identified organization),
name for the query language.

Following this convention, the string "DMTF:CQL" identifies the CIM Query Language.

Verson 1.0.0 Second Preliminary

223

224
225

226
227
228
229
230
231
232

233
234

235
236
237
238
239
240
241

242
243
244
245

246
247
248

249
250
251

252
253
254

CIM Query Language Specification

5.3. TheQuery Language Type Lattice

The CQL type system incorporates the type system of the CIM Infrastructure Specification
[1][11], but as0 extends that type system, as follows:

For every class C, thereis an "object of C" type, whose values may be either

instances of C (including instances of any subclasses of C), or

the class C itself, or one of C's subclasses.
Note that classes arise as CQL vaues only when they appear as embedded objects, and that
support for embedded objectsis an optional feature of CQL. CQL implementations that do
not support embedded objects may consider the values for "object of C" to be limited to
instances of C (including instances of any subclasses of C).

The "object of C" types recapitulate the CIM class hierarchy, in that, if C1 is asuperclass of
C2, then "object of C1" is a supertype of "object of C2".

There isan "object" type that is a supertype of "object of C" type, for al classes, C.

There isa"reference" type that is a supertype of "C REF" type, for al classes, C.
Thereisan "unsigned integer" type that is a supertype of uint8, uintl6, uint32, and uint64.
Thereisa"signed integer" type that is a supertype of sint8, sint16, sint32, and sint64.
Thereisan "integer" type that is a supertype of unsigned integer and signed integer.
Thereisa"rea" typethat is a supertype of rea 32 and rea 64.

Thereisa"numeric" type that is a supertype of integer and real.

CIM defines a"datetime” type, which contains either timestamp or interva values. Note that
timestamp and interval are not defined as explicit types within CIM, but are defined by
Appendix E: Datetime Operations and BNF. A timestamp with the year field set to 0000 is
interpreted asthe year 1 BCE. A year field set to 0001 isinterpreted as the year 1 CE.

Thereisa"string" type that is the CIM datatype string. It contains a sequence of Unicode [4]
characters. Therange of alowed code pointsis the same as the CIM datatype string. The
encoding form is defined by the specification that is using CQL.

Thereisa"charl6" type that isthe CIM datatype charl6. It contains one Unicode [4]
character. The range of alowed code pointsis the same as the CIM datatype charl6. The
encoding form is defined by the specification that is using CQL.

The CIM Infrastructure Specification [1] aso defines asystem of array types, which is

similarly extended. That is, every non-array type, T, in the CQL type lattice has a
corresponding array type, array of T. The structure of the array type lattice exactly matches

Verson 1.0.0 Second Preliminary 8

255
256

257
258
259
260

CIM Query Language Specification

that of the non-array types, i.e., if T; and T, are non-array types, then array of T1isa
supertype of array of T, if and only if Ty is a supertype of To.

CQL expressions are assigned types according to the rules that accompany the grammar,
below. Any CQL construct which has been assigned a particular type is said also to "have"
all the supertypes of that type. E.g., an expression which has been assigned type "object of
CIM_ManagedElement" aso "has" type "object”.

Verson 1.0.0 Second Preliminary

261

262
263

264
265
266
267
268
269
270
271

CIM Query Language Specification

5.4. Query Language BNF

The CQL grammar below uses Augmented BNF (ABNF) [3] with the following
exceptions.

1. Rules separated by abar (|) represent choices. (Instead of using aslash (/) as
defined in ABNF).

2. Therulesdefined in this syntax are meant to be assembled into a complete query by
assuming whitespace characters between them. (ABNF requires explicit specification
of whitespace.)

3. Thecomma(,) isused to explicitly designate concatenation of rules with all
intervening whitespace removed. (Instead of implicit concatenation of rules as
specified by ABNF.)

Verson 1.0.0 Second Preliminary 10

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

CIM Query Language Specification

Notes:

1. ABNFisNOT case-sensitive.

2. UNICODE-CHAR isaUnicode [4] character. The range of alowed codepointsisthe
same as the range for the charl6 datatype in the “ CIM Query Type Lattice” section.
UNICODE-SL1 is a subset of UNICODE-CHAR where the characters from the US-
ASCII range { U+0000...U+007F} are limited to the set S1, where S1 = { U+005F,
U+0041...U+005A, U+0061...U+007A} [Thisis alphabetic, plus underscore]. The
encoding form of UNICODE-CHAR is defined by the specification that is using
CQL.

3. The CQL string (i.e. the entire string, beyond just string literals) uses Unicode [4]
characters. The encoding of the CQL string is the same as the encoding of
UNICODE-CHAR.

In the following BNF, bold text marks a Basic Query component and italicized text marks
components not in the Basic Query feature.

The grammar for all featuresis defined asfollows. As much as possible, this grammar is
constructed to be LALR(1)-parsable.

54.1. Reserved Words
AND = “AND”

ANY = "ANY"

AS = "AS"

ASC = "ASC"

BY = "BY"

CLASSQUALIFIER =" CLASSQUALIFIER"
DESC = "DESC"

DISTINCT = "DISTINCT"

EVERY = "EVERY"

FALSE = "FALSE"

FIRST = "FIRST"

FROM = "FROM"

IN = "IN
IS = "IS"
ISA = "ISA"
LIKE = "LIKE"
NOT = "NOT"
NULL = "NULL"
OR="“OR"

ORDER = "ORDER"

PROPERTYQUALIFIER = "PROPERTYQUALIFIER"
SATISFIES = "SATISFIES!

SELECT = "SELECT"

TRUE = "TRUE"

Verson 1.0.0 Second Preliminary

315

316

317
318
319

320
321

322
323
324
325
326
327

328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343

344

345
346
347
348
349

350

351
352
353
354

CIM Query Language Specification

‘WHERE = "WHERE"

54.2. String Literals

| snglequote = """

\ literal-string = single-quote, *(UNICODE-CHAR | char-escape, single-quote)

: Theuse of char-escape for the non-printable Unicode characters these
escape sequences represent, is mandatory.

)

| ("U", 8*8(hex-digit)))

char-escape="\", ("\" | single-quote |"b" |"t" |"n" |"f" ["r" | ("u", 4*4(hex-digit)

- The escape characters directly following the initial backslash are case
: sensitive, even though ABNF is case insensitive. The meaning of these
. escape charactersis:

\\ - Backslash (U+005C)
\' - Single Quote (U+0027)
\b - Backspace (U+0008)

i \t - Horizontal Tab (U+0009)

£ \n - Line Feed (U+000A)

. \f - Form Feed (U+000C)

. \r - Carriage Return (U+000D)

: \u<hex> - One Unicode character, with <hex> being exactly 4 hexadecimal

t digitsinany lexical case, to beinterpreted asa Unicode [4] code point.

: Note: the hexidecimal value is not in an encoded form, but is given as a code
i point.

- \U<hex> - One Unicode character, with <hex> being exactly 8 hexadecimal

: digitsin any lexical case, to beinterpreted asaUnicode [4] code point.

i Note: the hexidecimal value is not in an encoded form, but is given as a code
i point. Therange of allowed code pointsis\uO to \ulOFFFF, unless restricted
: by therange of the CIM datatype char16.

! Note: The escaping of double quotesis not necessary within a literal string,

. since only single quotes can be used to delimit string literals. If the entire

i CQL string is put into an environment that uses double quotes to delimit that
- string (e.g. as adefault value for propertiesin the MOF), then that

: environment must define the escape rules for double quotes.

54.3. |dentifiers

| identifier-start = UNICODE-SL

| identifier-subsequent = identifier-start | DECIMAL-DIGIT

Verson 1.0.0 Second Preliminary

12

CIM Query Language Specification

355 \identifier = identifier-start, *(identifier-subsequent)

3B6 5.4.4. Class Paths

357 \ class-name = identifier

358 . Theidentifier MUST bein accordance with the definition of classnamein the
359 : CIM Infrastructure Specification [1].

360 | class-path =] literal-string"."] class-name

361 If specified,literal-string MUST conformto the format of the namespacePath
362 : production defined in the WBEM URI Mapping Specification, DSP0207.
363 5.4.5. Property Names

364 \ property- soope class-path " ::"

365 i The scoping operator " provides a class within which the property name
366 t identifier is interpreted. General ly, the class of the property is sufficient.
367 ; However, if aproperty of aclass is covered by another property, having the
368 i same name, that belongs to a subclass, then the “::” syntax is required to
369 . access the covered property when in the scope of the covering subclass.

370 * Details on how to determine which property to use are in Section 5.4.1.

371

Verson 1.0.0 Second Preliminary

372

373
374
375
376
377
378
379
380
381

382
383
384
385
386
387

388
389

390
391
392
393
394
395
396
397
398

CIM Query Language Specification

5.4.6. NumericLiterals

The numeric literas are intended to agree with the numeric litera's of MOF, as defined in the

CIM Infrastructure Specification [1].

|sign = "+" | "-"

| binary-digit = "0" | " 1"

‘ binary-value = [sign] 1*(binary-digit) " B"

. Since ABNF is case insensitive, this defines both upper and lower case.

decimal-digit = binary-digit |"2" ["3" |"4" |"5"
6" "7 1"8" |"9’

hex-digit = decimal-digit
["A" |"B" ["C" |"D" |"E" |"F"

. Since ABNF is case insensitive, this defines both upper and lower case.

\ hex-digit-vaIiJe = [sign] "OX" 1*(hex-digit)

Since ABNF is case insensitive, this defines both upper and lower case.

| unsigned-integer = 1*(decimal-digit)

| decimal-value = [sign] unsigned-integer

exact-numeric = unsigned-integer "." [unsigned-integer] |
"." unsigned-integer

real-value = [sign] exact-numeric ["E" decimal-value]

i Since ABNF is case insensitive, this defines both upper and lower case.

Verson 1.0.0 Second Preliminary

14

399

400
401
402
403

404
405

406
407

408
409

410
411

412
413
414

415

416
417
418
419

420
421

CIM Query Language Specification

54.7. Expressions

Expressions describe the caculation of values used in the SELECT and WHERE clauses.

\ literal = literal-string

: A literal-string has string type.

\ | decimal-value

i A decimal-value has integer type

\ | binary-value

: A binary-value hasinteger type

I hex-digit-value

i A hex-digit-value hasinteger type

I real-value

. A redl-valuehasreal type

I TRUE | FALSE

i Theseliterals have Boolean type. Since ABNF is case insensitive, this
: defines both upper and lower case.

| arg-list="*" | ([DISTINCT] expr)

\ chain =literal

. Thetype of theliteral istaken asthetype for this production.

1 ey

i Thetype of the expr is taken as the type for this production.

Verson 1.0.0 Second Preliminary

422
423

424
425
426
427

428
429
430

431
432
433

434
435
436
437

438
439
440
441
442

443

444
445

446
447
448
449

450
451
452
453
454

455
456
457
458
459

460

CIM Query Language Specification

. Theidentifier isinterpreted as one of the following:

If the identifier matches the name bound by an enclosing SATISFIES
production for array-comp, then the identifier istreated as a variable
whose type is determined by the SATISFIES expression. Variables
bound by a SATISFIES expression are described at that production.

Otherwise, if the identifier matches a class alias that appearsin a FROM
criterion on a class C, then the identifier refers to an instance of C, and
has type object of C;

Otherwise, if the identifier matches the name of a class C that appearsin
aFROM criterion without a class-alias, then the identifier refersto an
instance of C, and has type object of C;

Otherwise, if exactly one property defined by the CIM classesin the
FROM clause, or their superclasses, matches identifier, then the
identifier refersto that property, (see 5.5.1 Property Identification
below), and the type of the identifier is determined by that property;

For Basic Query, properties qualified with EMBEDDEDINSTANCE or
EMBEDDEDOBJECT shall betreated as type character string.

If query feature "Embedded Properties’ is supported then the ability to
directly access properties of the embedded instance shall be supported.
Otherwise, isthe query isinvalid.

If typeis Array, then this form without afollowing “[* is equivalent to
: “Identifier [*]”, and only “=" and “<>" comparisons are all owed.

property-scope identifier

: Property-scope declares that the identifier identifies a property exposed by
i the property-scope classname, (see 5.5.1 Property Identification below.) The
. type of the property is taken as the type of this production.

chain CLASSQUALIFIER identifier

i chain MUST be of type object of C for some class C. This production refers
: to aqualifier on that class, and the type of the expression is the type of that

i qualifier. If the class does not expose aqualifier with this name, the

: qualifier's default value applies.

identifier " #" literal-string

- identifier MUST unambiguously identify a property, (see 5.5.1 Property

: |dentification below.). Thetype of the property is taken asthetype of this

: production. This production forms asymbolic constant based on the

: VALUES and VALUEMAP qualifiers, see 5.5.4 Symbolic Constants, below.

Verson 1.0.0 Second Preliminary

16

461
462
463
464
465
466

467
468

469
470
471

472
473
474

475
476
477
478
479

480
481
482
483
484
485
486

487
488
489

490
491
492
493
494
495
496

497
498
499

500
501
502
503

CIM Query Language Specification

ldentlfler (" arg-list")"

i identifier MUST be the name of a query language function. See 5.6 Query

. Language Functions for type rules of function calls. For Basic Query, only

- the numeric, string, instance, path, pathname, and datetime functions shall be
: supported. Notein particular that this syntax does NOT describe the

+ invocation of amethod defined on a CIM class.

chaln [property-scope] identifier

Chai n MUST have type object of C for some class C.

Identifier MUST be the name of a property. For details on the selection of
* theidentified see 5.5.1 Property Identification below below. The type of this
i production is the type of the property.

For Basic Query, chain isrestricted to be a class name or class-alias bound in
i the FROM clause, i.e., Basic Query does not support extraction of properties
* from embedded objects.

|dent|f|erl PROPERTYQUALIFIER identifier,

i This production refers to a property qualifier. Identifier, MUST

. unambiguously identify a property, (see 5.5.1 Property Identification below),
: and the type of the expression isthe type of that qualifier. If the property

i doesn‘t expose a qualifier with this name, the qualifier's default value applies.

chaln " [property-scope] identifiery

PROPERTYQUALIFIER identifier,

¢ chain, property-scope (if present), and identifier; together identify a property,
i as described in 5.5.1 Property Identification below. This production refers to
. thevalue of a property qualifier from that property, and the type of the

: expression isthe type of that qualifier. If the property doesn't expose a

i qualifier with this name, the qualifier's default value applies.

For Basic Query, chain is restricted to be a class name or class-alias bound in
' the FROM clause, i.e., Basic Query does not support extraction of properties
: from embedded aobjects.

chaln " [property-scope] identifier

"#" literal-string

i chain, property-scope (if present), and identifier together identify a property,
: as described in 5.5.1 Property Identification below. This production formsa
! symbolic constant based on the VALUES and VALUEMAP qualifiers; see

: 5.5.4 Symbolic Constants, below. Thetype of this expression is the type of

i theidentified property.

For Basic Query, chain is restricted to be a class name or class-alias bound in
i the FROM clause, i.e., Basic Query does not support extraction of properties
- from embedded objects.

chain"[" array-index-list "]"

i chain MUST havetypearray of T. If array-index-list comprises just asingle
. expr, then this production hastype T; otherwise, the production has type
: array of T.

Verson 1.0.0 Second Preliminary

504
505

506

507
508

509
510
511

512
513
514

515

516
517

518
519
520

521
522

523
524
525
526

527
528

529
530

531
532
533
534

535
536

537
538

539
540

CIM Query Language Specification

\ concat = chain

. Thetype of the chain istaken as the type of this production.

\ | concat " ||* chain

. concat and chain MUST have string or char16 type, and the result has string
i type.

factor = concat

. Thetype of the concat is taken as the type of this production.

‘ | (II+II | ll_ll) Conca

i When this production is used, concat MUST have numeric type, which will
: be thetype of the production

If concat isNULL, then the production evaluatesto NULL.

\ term = factor

: Thetype of thefactor istaken as the type of this production.

I term "**" factor

i If termand factor both have numeric types, the production has numeric type.

 If term has a numeric type, and factor has datetime type and evaluates to an
t interval, then the production has datetime type and will produce an interval
; value.

! If term has datetime type and evaluates to an interval, and factor hasa

- numeric type, then the production has datetime type and will produce an
- interval value. Therules for operations with datetime type operands are
: defined in Appendix E.1: Datetime Operations.

If term or factor isNULL, then the production evaluatesto NULL.
" No other type combinations are allowed.

I term "/" factor

. If term and factor both have numeric types, the production has numeric type.

i If term has a datetime type and evaluates to an interval, and factor has a

. numeric type, the production has datetime type and will produce an interval
i value. The rules for operations with datetime type operands are defined in

. Appendix E.1: Datetime Operations.

: If term or factor isNULL, then the production evaluates to NULL.
No other type combinations are allowed.

\ arith =term

: Thetype of theterm is taken as the type of this production.

I arith ("+" |"-") term

+ If arith and term both have numeric type, the result has numeric type.

Verson 1.0.0 Second Preliminary

18

CIM Query Language Specification

541 : If arith and term have datetime types, then refer to Appendix E.1: Datetime
542 : Operations for a definition of the operation.

543 No other type combinations are allowed.

544 L If arith contains multiple occurences of arithmetic operators, normal
545 : mathematical precedence rules apply.

546 - If arith or term is NULL, then this production evaluates to NULL.

547 \ value-symbol =" #" literal-string

548 | Thisisa degenerate syntax for symbolic constants, used only for direct
549 . comparison; typeis determined by context. See productions for comp.
550 \ arith-or-vaue-symbol = arith | value-symbol

551

552 ‘ Comp—op = n :II | n <>II | n <II | n <:II | n >II | n >:II

553

Verson 1.0.0 Second Preliminary

554
555

556
557

558

559
560

561

562

563
564

565
566

567
568

569

570
571

572
573

574
575

576

577
578
579

580
581

582
583

584
585

586

587
588

589
590
591
592
593

CIM Query Language Specification

\ comp = arith

. Thetype of thearith is taken as the type of this production.

arith IS[NOT] NULL

. This production has type Boolean.

arith 6omp-op arith

. This production has type Boolean for all casesin which it applies. See5.5.6
: Comparisons for more detailed description of comparisons.

i If either arith isNULL, then the production evaluates to NULL.

chaln oomp op value-symbol

* Theleft-hand-side MUST be a property reference, and that property is used
: asthe context for the value-symbol, see 5.5.4 Symbolic Constants below.

! This production has type Boolean for all casesin which it applies. See5.5.6
© Comparisons for more detailed description of comparisons.

: If chain or the value-symbol is NULL, then the production evaluates to
{ NULL.

valueg/mbol comp-op chain

! Theright-hand-side MUST be a property reference and that property is used
. as the context for the value-symbol, see 5.5.4 Symbolic Constants below.

' This production has type Boolean for al casesin which it applies. See5.5.6
: Comparisons for more detailed description of comparisons.

¢ If chain or the value-symbol is NULL, then the production evaluates to
. NULL.

arith ISA identifier

i Theleft-hand-side MUST be either an instance, or a property containing an
: EMBEDDEDOBJECT or EMBEDDEDINSTANCE. Theright-hand-side
i MUST bethe name of aclassor aclass-alias.

¢ TheISA tests whether the |eft-hand-side is of the class or a subclass of the
: class named by the right-hand-side identifier.

If arith is NULL, then the production evaluatesto NULL.
: The production has Boolean type.

arith LI KE literal-string

: arith MUST have string or char16 type; the result has Boolean type.
If arith is NULL, then the production evaluatesto NULL.

i The Basic Query feature only includes the Like features described in:
: Appendix D.1: Basic Like Regular Expressions,

arith LIKE arith

: Both sides of the LIKE comparison must have string or char16 type; the

i result has Boolean type. The LIKE comparison allows a string or char16 to

i be tested by pattern-matching, using special characters in the pattern on the

- right-hand-side. See Appendix D.2: Full Like Extended Regular Expressions

Verson 1.0.0 Second Preliminary

20

594

595
596
597
598

599
600

601

602
603

604

605
606

607

608
609

CIM Query Language Specification

: If either arith isNULL, then the production evaluates to NULL.

array-comp

| expr-factor = comp

- Thetype of the comp istaken as the type for this production.

NOT comp

; comp MUST have Boolean type; this production has Boolean type.

i Thefollowing table defines the result of the NOT expression:

comp NOT comp
TRUE FALSE
FALSE TRUE
NULL NULL

| expr-term = expr-factor

. Thetype of the expr-factor istaken asthetypefor this production.

expr- term AND expr-factor

i expr-term and expr-factor must both have Boolean type; the production has

: Boolean type.

: The following table defines the result of the AND expression:

expr-term expr-factor expr-term AND expr-factor
TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE FALSE

FALSE FALSE FALSE

FALSE NULL FALSE

expr = expr-term

i Thetype of the expr-term is taken as the type for this production.

Verson 1.0.0 Second Preliminary

610
611
612

613

614

615
616
617

618
619

620

621
622

623
624

625
626

627
628

629

630
631

632

CIM Query Language Specification

expr OR expr-term

: expr and expr-term must both have Boolean type; the production has Boolean
. type.
: Thefollowing table defines the result of the OR expression:

expr-term expr-factor expr-term OR expr-factor
TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

array-index = expr

{ expr MUST have unsigned integer type.

Array indices are zero-relative. Note that arrays defined with the qualifier
. 'ArrayType ("Bag")' SHOULD NOT be referenced using specific indices
: since these may vary across retrievals and time.

expr ".." [expr] ‘

: Both exprs MUST have unsigned integer type. The".." notation is used to
specify ranges of indices within an array.

. expr

: expr MUST have unsigned integer type.

‘ ar ray-index-iist = array-index *("," array-index) ‘

i The array-index-list specifies one or more elements of an array.

Ny 1 ‘

i This array-index-list refers to all the elements of the array.

I Thisarray-index-list refers to none of the array elements. x[] is an empty
. array with the same type as x, for any x with array type.

Verson 1.0.0 Second Preliminary 22

633
634
635
636
637
638

639

640
641

642
643
644
645
646
647
648

649

650
651
652
653
654
655
656

657

CIM Query Language Specification

array-comp = (ANY | EVERY) arith

comp-op arith-or-value-symbol

. arith MUST havetypearray of T. Each element of arith's value will be

: compared to the value of the arith-or-value-symbol. If ANY is specified, the
 results of these comparisons are combined asif by OR; if EVERY is

. specified, the results are combined as if by AND.

arith- or-valuewrrbol comp-op (ANY | EVERY) arith

: This production acts like the preceding one, except that the array value
; appears on the right-hand side.

(ANY | EVERY) identifier IN expr

SATISFIES"(" comp")"

5.4.8.

- The SATISFIES construct makes identifier available as a name whose scope

* istheincluded comp. expr MUST havetypearray of T, in which case

: identifier will have type T within comp. Identifier MUST NOT be the same

i as any name established by the from-criteria, and MUST NOT be the same as
i any name established by any surrounding SATISFIES clauses.

Sort Specification

| sort-spec = expr(ASC| DESC)

! The specified expr MUST be defined inthe SELECT clause. Note that

. properties resulting from the specification of a star-expr as the selected-entry
i can be subject to sorting. NULL values are considered "higher" than all

: other values. If the ORDER BY clause does not completely order the

: instances of the resbult set, instances with duplicate valuesin sorting
pI‘OpeI‘tIeSWIII be displayed in an arbitrary order.

sort- spec-llst = sort-spec *(",

sort-spec)

Verson 1.0.0 Second Preliminary

658

659

660
661
662
663

664
665
666

667
668
669
670
671

672
673
674
675
676
677
678
679
680

681
682
683
684
685

686
687
688
689
690
691
692

693
694
695

696

697
698
699
700

5.4.9.

CIM Query Language Specification

Select List

\ star-expr ="*"

: This production refers to all the properties exposed by all classes defined in

i the from-criteria. Thisincludes uncovered properties of superclasses of the

: from-criteria classes. Properties of subclasses of the from-criteria classes are
i NOT included.

' Covered properties (i.e. properties of the same name that are not overridden
: MAY be explicitly referenced by using the scoping operator “::" in the expr
i of the selected-entry production.

i Asa consequence of these rules, the property list produced does NOT vary

. over thequery. For example, if referencing a CIM 2.8 schema and the from-
. criteriaincludes CIM_ManagedSystemElement, then the properties

i ‘Caption’, ‘Description’, ‘ElementName’, ‘InstallDate’, ‘Name,
‘Operational Status’, ‘StatusDescriptions’, and ‘ Status' would be included.

[property-scope] " **

: chal n MUST have type object of C for some class C. If property scopeis not
i present, this production refersto all the properties exposed by C, including

i those of C's superclasses. Properties of subclasses of C are NOT included in

* the set. If property-scope is present and identifies some class S, it must be the
; sameclass as, or be a superclass of, class C; this production refersto all the

. properties exposed by S, including those of S's superclasses. Properties of

i subclasses of Sare NOT included in the set. The property list produced does
¢ NOT vary over the query.

selected- entry = expr [AS identifier]

! expr may have any primitive, reference, or array type, and defines the type of
: the column defined by this production. If the type of the expression is an

. object type, then the corresponding result column MUST have string type,

: and be populated with string representations of the values.

. The set of column names in the query result MUST NOT contain duplicates.
i To avoid duplicated column names in the query result, the"AS identifier"

! cdlause is used to explicitly specify aname. If the“ ASidentifier” clause is not
: present, then the selected entry MUST be a property reference, and the expr

i itsdf (minus any white space) is taken as the name of the corresponding
 result column. Note that this means that Basic Query allows only properties
: inthe select-list.

 If there is more than one entry in the FROM list, then each selected entry that
. isaproperty reference MUST be a chain expression starting with either a
i classnameor an aliasthat isincluded in the FROM list.

Star-expr

i This generates a set of selected entries in the query result wherethe “*” is
i enumerated to be alist of properties. The set of selected entries istaken as
: the default names for a sub-set of the columns returned.

Verson 1.0.0 Second Preliminary

24

701
702
703

704
705

706
707

708

709
710
711
712
713
714
715
716

717
718
719

720
721
722

723
724
725
726
727

728
729

CIM Query Language Specification

: If there is more than one entry in the FROM list, then each star-expr MUST
i be achain expression starting with either a class name or an alias that is
; included in the FROM list.

| select-list = selected-entry *("," selected-entry)

5.4.10.

; If the select-list contains any aggregating expressions, then all items in the
. select-list MUST be aggregating expressions.

From Criteria

| subquery = select-statement

\ from-specifier = class-path [[AS] identifier]

: Each from—speC|f|er using this production identifies a CIM class which will
: participate in the query, along with a name by which instances of that class
. will bereferenced in the query. If the explicit identifier is present, it isthe
. name that will be used; otherwise, the name of the class will be used asthe
i name.

Evenif the explicit identifier is present, the name of the class may also be
. used as an alternative name for instances of the class, provided such use
- would not conflict with a name established by any other from-specifier.

: Additionally, each property of the classidentified by class-path can be
i accessed by its name alone, provided that name doesn’t conflict with any
. other property or class namein the from-criteria.

(" subquery ")" identifier

! This production defines identifier as a name by which the rows returned by

i the subquery are identified. The subquery is self-defined. Thereis no

i correlation between identifiers used within the select-statement of the

: subquery and those used within the select-statement containing the subquery.

from-criteria = from-specifier *("," from-specifier)

Verson 1.0.0 Second Preliminary

730

731
732

733
734
735
736
737

738
739

740
741

742
743
744

745
746

747
748
749
750
751
752

753
754
755
756
757
758
759
760

761

CIM Query Language Specification

54.11. The Select Statement

\ sear ch-condition = expr

: expr MUST have Boolean type.

select-statement = SELECT [FIRST unsigned-integer] [DISTINCT]
select-list
FROM from-criteria
[WHERE search-condition]
[ORDER BY sort-spec-list]

: This clause produces information that represents the rows returned by the
' query. Eachrow hasan entry for each selected-entry.

The FROM clause produces a candidate set of rows from instances identified
. by the from-criteria.

When present, the WHERE clause rejects all rows of the candidate set
i produced by the FROM clause except those for which the search-condition is
- evaluatesto true. (Evaluationto NULL isNOT the sameastrue.)

: The select-list selects particular columns of the rows of the candidate set and
i also MAY introduce additional derived columns.

_ If DISTINCT isused, all but one of each set of duplicate rows will be

: diminated from the result set. Two instances are considered duplicates of

: oneanother if and only if the values of all of the properties, (including those
i of embedded instances), are equal after the projection operation has been

| executed. When determining duplicates, two NULL val ues are considered

. equal.

! If FIRST isused, the result set will only contain the first N rows. Typically,
: thisclause is used with ORDER BY to define a specific and repeatable sort
i order of theresults, and then define the number of instancesto return. Note
! that the sort order for string or char16 is defined by the rules for operator
=", operator “ <", and operator “>" in the Comparison section. Note that if
: DISTINCT isalso specified, the duplicate entries are eliminated before the
: FIRST N instances are determined. If N instances do not exist, then all the

I available instances are returned and the query completes normally.

Sart = select-statement

Verson 1.0.0 Second Preliminary

26

762

763
764
765
766

767
768
769

770
771

772

773
774
775
776
7
778
779
780
781
782
783
784
785
786
787

CIM Query Language Specification

5.5. Consgderations of the Constructsin the BNF

The CIM Query Language does not currently define "data change" operations (INSERT,
DELETE or UPDATE). These may be added at alater time, but are not currently required.
Today, these operations are supported by invoking individual operations defined in the CIM
Operations over HTTP Specification [11].

CQL queries only operate against instances and their properties. They do not have the
ability to query the supported schema, or invoke methods of instances. Query does support
the ability to determine if an instance is amember of a CLASS viathe ISA operator.

Severd of the constructs in the BNF require usage information and/or additional explanation,
as described below.

55.1 Property I dentification

A CIM class may expose more than one property with agiven name, but it is not permitted to
define more than one property with aparticular name. This can happen if a base class defines
aproperty with the same name as a property defined in a derived class without overriding the
base class property. The scoping operator, "::", is used to provide an explicit context for
resolving identifiers to properties.

The genera syntax by which aproperty isidentified is:

[chain™."]] [property-scope] identifier, where chain MUST have type object of C.

Property names identify properties relative to aclass context. Given aclass context C, the
search for the property begins at C and selects a property defined on C whose name matches
theidentifier, if thereisone; if C does not define a property with this name, then the search
continues with C's direct superclass, and so on. If no property islocated with this search,
then the property referenceisinvalid.

Verson 1.0.0 Second Preliminary

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807

808
809
810

811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

CIM Query Language Specification

The class context is determined according to the following rules:
If property-scope is present, then it declares the class context C.

o If the scoped identifier does NOT name a property exposed by C, then the query
isinvaid.

0 If chainisNOT present, C MUST be the same as, a superclass of, or a subclass
of, exactly oneentry in the FROM list. Inthiscase, chainisinferred to refer to
instances produced by that FROM list entry.

o If chainispresent, and it hastype object of D, for some D, then C MUST be the
same as, or asuperclass of, or asubclassof D.

o If chainispresent, and it does NOT have type object of D for some D, then chain
MUST have type object.

o If thevalue of the chain expresson isNOT of class C, (or subclasses of C), then
the application of the property produces NULL.

Otherwise, if chain "." is present, then chain MUST be of type object of C, and Cisthe
class context.

Finally if neither are present, then the identifier must be declared in at most one of the
classes named in the FROM list.

Otherwise the context cannot be determined, and the query isinvalid.

55.2. Arrays

For properties of type Array, [*] isimplicitly used if no specific array-index-list is given, so
e.g. “Operational Status’ has the same semantical meaning as “ Operational Status[*]” . For
more details on Arrays, please refer to the CIM specification (DSP0004).

55.3. Embedded Objects

An embedded object is conveyed as a property of type string annotated only with the
EMBEDDEDOBXECT qudlifier. Thisqualifier indicates that the property's value isto be
interpreted as an embedded object, but identifies neither whether the embedded object will be
aclassor an instance, nor the class to which the embedded instances belong. For this reason,
expressions in CQL which refer to string properties with the EMBEDDEDOBJECT qualifier are
assigned type object. Reference to the embedded properties of that property have their native
type unless they too are qualified with EMBEDDEDOBJECT.

The actual type of an EMBEDDEDOBJECT is not known until an instance is selected. Thiscan
lead to situations in which the type of a projected result cannot be determined in advance of
the query's execution, and, indeed, may vary even within the execution of a single query.
This affects the resolution of properties of the embedded object. To remove ambiguity,
gueries that concern themsel ves with properties of embedded objects MUST use the scoping
operator ("::") to scope those properties. A CQL implementation MUST reject any query
which involves expressions whose type cannot be determined.

Verson 1.0.0 Second Preliminary 28

828
829
830
831
832
833
834
835
836

837

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

866

867
868
869

CIM Query Language Specification

For example, the following would be permitted since both properties of Sourcelnstance were
provided a scope. The DevicelD property would be returned as NULL when Sourcelnstance
isaCIM_PhysicalElement.

SELECT Sourcelnstance. CIM_L ogicalDevice::Devicel D,
Sourcelnstance. CIM_ManagedSystemElement::Operational Status
FROM CIM_InstIndication
WHERE Sourcelnstance ISA CIM_Logica Device
OR Sourcelnstance ISA CIM_PhysicalElement

55.4. Symbolic Constants

The "#" syntax usesthe VALUES and VALUEMAP qualifiers of a property to look up an
enumerated val ue that a particular property may take. The property MUST expose a
VALUES qudifier, and the accompanying literal-string MUST match one of the stringsin
the VALUES qualifier's value.

If the property does not also expose aVALUEMAP qudifier, then the property MUST have
integer type, and the index of the literal-string among the VALUES quadlifier's value is taken
as the value of this production. If, conversely, the property does also expose aVALUEMAP
qualifier, then the value for this production will be based on the value in the VALUEMAP
array corresponding to the selected value of the VALUES array, as follows: (1) if the
property has type string, then the VALUEMAP entry itself is the value of the production;
otherwise, (2) the property MUST have integer type, the VALUEMARP entry MUST NOT
include the sequence "..", and the VALUEMAP entry is converted into an integer of the
appropriate type. E.g., CIM_FCPort.Operationa Status#'OK' is equivalent to the constant 2,
and CIM_FCPort.Operational Status# Predictive Fallure' is equivalent to 5.

If the expression on one side of a comparison identifies exactly one property,then the #
syntax MAY be used in a standalone form on the opposite side of the comparison. The
identified property becomes the defining context of the symbolic constant. For example:
CIM_FCPort.Operational Statug] 3] > #OK'
isequivalient to
CIM_FCPort.Operational Statug[3] > CIM_ FCPort.Operati onal Status #OK'"

If aclass nameis used to qualify asymbolic constant, that class does not need to be related to
any classin the query. For example the following query isvalid even though
CIM _Logica Device has nothing to do with the query:

SELECT * FROM CIM_Alertindication WHERE AlertType >

CIM_L ogicd Device.Operational Status#' OK’

5.5.5. Computation and Types

The use of arithmetic operators causes numeric types to be "widened" as necessary to
minimize the loss of precision. Unless both operands are unsigned, addition, subtraction, and
multiplication among integer typesresultsin sint64. If both operands are unsigned, then the

Verson 1.0.0 Second Preliminary

870
871
872
873
874

875

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

CIM Query Language Specification

result isuinté4. Otherwise (i.e., al cases of division, as well as addition, subtraction, or
multiplication involving at |east one non-integer type), al arithmetic operations produce
real64 type. If an overflow or underflow occurs, an error is returned.

Arithmetic and comparisons on datetime types are defined in Appendix E: Datetime
Operations and BNF

5.5.6. Comparisons

Comparison is supported between al numeric types. When comparisons are made between
different numeric types, comparison is performed using the type with the greater precision.

Comparison between strings and between charl6 values is supported, and is done case-
sensitively on aunicode character basis. A comparison between astring and achar1l6is
accomplished by treating the char16 vaue as a single-character string. For string and char16
comparison and sort operations, the Default Collation Algorithm as defined in ISO/IEC
14651 [21] and Unicode Technical Report #10 [20] MUST be gpplied. Unicode character
based comparison is done as follows:

The"=" and '<>" operators MUST use the string identity matching rules defined in W3C
"Character Model for the World Wide Web 1.0: Normaization" [7], section 4 "String
Identity Matching".

The following rules apply to comparison between strings and charl6 values using the "<",
and ">" operators:

1) For Basic Query, these operators MUST behave as if the normalization defined in
"Character Model for the World Wide Web 1.0: Normaization" [7], section 4 "String
Identity Matching", was applied and then the comparison was performed on the resulting
strings. The strings are compared from the beginning, on a Unicode character basis. Each
character is compared based on its Unicode codepoint order. The first character found to be
different determines the result of the comparison. If the strings are of different lengths, but
are otherwise equal, then the longer string is greater than the shorter string. Note: for
implementations that use the UTF-8 or UTF-32 asthe encoding, the binary order of the
encoded characters matches the Unicode codepoint order. For UTF-16, the binary order of
the supplementary characters does not match their Unicode codepoint order. For more
information, refer to section 2.5 of "The Unicode Standard” [5].

2) For the Full Unicode feature, these operators MUST behave asif the normalization
defined in [7], section 4 "String Identity Matching”, was applied and then the default
collation order defined in the Unicode Collation Algorithm [8] was used on the resulting
strings. Note that this collation order accomodates most languages, without having to take
any locales into account.

Verson 1.0.0 Second Preliminary 30

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

CIM Query Language Specification

Comparison between datetime typesis supported and isdefined in Appendix E: Datetime
Operations and BNF.

Comparison between Boolean values, complete Arrays and References is supported, but is
limited to the "=" and "<>" operators.

Reference comparison is performed viaa process of comparing certain components of the
references. The components to be compared are the namespace type, namespace handle, and
model path, as defined by the CIM Infrastructure Specification [1]. Two references are
considered to be equa if al of the following conditions are true:
For the model path, all of the following conditions must be true: There must be the
same number of key property name/vaue pairs. For each key property name/vaue
pair in one reference, exactly one matching key property name/value pair must be
found in the other reference. The order of the key property name/value pairs does not
affect the comparison. Comparison is done case-insensitively for key property
names. Key property values are compared according to their type, as defined in
section 5.4.6, Comparisons.
For al components except the model path, the comparison is done case-insensitively.

Note: the implementation MAY perform reference comparisons using alternative, but
equivaent, paths or representations.

Comparison of classes REQUIRES that the ClassName is the same and that the properties
and property types defined by this class and by each superclassin the classes hierarchy
compare equal. The comparison of class names, property names and property typesisdone
case-insensitively. The set of qualifiers defined on each class MUST be the same and
evauate to the same values.

Comparison of instances REQUIRES that the instances be of the same class, and that all
property vaues either compare equal or are both null. The comparison of the property values
is done case-sensitively.

For comparison between an array property and a non-array property, please refer to section
5.5.7 (Comparisons of Array and Scalar). Note that this type of comparison shall be
supported if query feature "Array Range" is supported.

For comparison between arrays, comparison of complete arrays shall be supported in Basic
Query. Comparison of parts of arrays shall be supported in query feature Array Range. The
ArrayType governs how matches are made. There are three types: Bag, Ordered, and
Indexed. If one of the arraysis a Bag, then comparison rules for Bags are used. As defined
in DSPO004 [1], abag is an unordered multiset. Two arrays of ArrayType “Bag” are equal if
and only if the number of elementsisequa and if it is possible to find a permutation for one
of the arrays so that for an element-by-element comparison, al elements of the compared
arrays are equal. Equality for Bag-type arrays MAY be tested by sorting both arrays and then
doing an element-by-element comparison. For comparison of Ordered and Indexed, an

Verson 1.0.0 Second Preliminary

958
959
960
961
962

963

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

CIM Query Language Specification

element-by-element comparison is performed. Arrays which have different numbers of
elements do not compare equal.

Other than the cases described in this section, comparisons among disparate types are not
part of CQL.

55.7. Comparisons of Array and Scalar

This section only applies to comparison operations between array properties and non-array
properties, as part of query features “Array Range” and “ Satisfies Array”. A comparison
between an array property and a non-array property isillega if neither “EVERY” nor
“ANY” keyword isused. If multiple elements of an array property are compared, the
operation evaluates to TRUE if and only if the specified comparison is TRUE for all the
indicated Array Range. Here are afew examples of the use of array processing:

"EVERY CIM_L ogicalDevice.Operationa Status[*] <> 2" isTRUE if and only if
every value of the Operational Status array is not 2

"EVERY CIM_L ogicalDevice.Operationa Status[*] = 2" isTRUE if and only if all of
the values of Operationa Status are 2

"EVERY CIM_L ogicalDevice.Operationa Status[*] < 2" isTRUE if and only if all of
the values of Operationa Status are less than 2

"ANY CIM _LogicaDevice.Operationa Statug[*] > 2" is TRUE if and only if any the
values of the Operational Status array are greater than 2

"ANY CIM_Logica Device.Operationd Statug[*] <> 2" isTRUE if and only if any of
the values of the Operationa Status array are NOT 2

"NOT EVERY CIM_L ogicalDevice.Operationa Status[*] = 2" isTRUE if and only if
any of the values of the Operational Status array are <> 2
"CIM_LogicalDevice.Operationa Status[0] = 2" is TRUE if the first value of the array
issetto2

"EVERY CIM_L ogicalDevice.Operationa Status[0..3] > 2" isTRUE if thefirst 4
values of the Operational Status array are each greater than 2

"ANY stat IN CIM_Logica Device.Operationa Statug[*] SATISFIES (stat=3 OR stat
> 5)"is TRUE if any vaue of the Operationa Status array is equa to 3 or greater than
5

Verson 1.0.0 Second Preliminary 32

990

991
992
993
994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

1022

1023
1024
1025
1026
1027
1028

CIM Query Language Specification

5.6. Quey Language Functions
This section describes the functions available for CIM Query Language.

If the arguments of these functions do not conform to the defined constraints, then the query
will bein error.

5.6.1. Aggregation Functions

These functions are only valid within the select-list. If the select-list contains any
aggregating expressions, then all itemsin the select-list MUST be aggregating expressions.
In this case, the result set contains one row and the aggregating expressions operate on the
rows determined by the WHERE clause. An aggregating expression is an expression with at
|east one aggregation function, where any properties are used only in the expression
representing the argument of an aggregation function.

COUNT([DISTINCT] expr): Counts the number of rows for which the argument is non-
NULL. If DISTINCT is specified, then COUNT counts the number of different non-NULL
values the argument assumes. The set of rows which COUNT considersis affected by
FIRST or DISTINCT on the select-statement. The result type isuint64.

COUNT (*): COUNT (*) isaspecia function returning the number of rows the query selects.
The vaue returned by COUNT is affected by FIRST or DISTINCT on the select-statement.
The result type isuint64.

MIN(expr)

MAX(expr)

SUM (‘expr): These functions al act analogously to the like-named SQL functions. The
argument to each function must have numeric type; the result is of the same type as the
argument. The result type is the same as the type of expr.

MEAN(expr)

M EDIAN(expr): These functions compute the mean and median, respectively, of the
distribution represented by the non-NULL values the arguments assumes. The result type for
MEAN isrea64. Theresult type for MEDIAN isthe type of expr.

5.6.2. Numeric Functions

DATETIMETOMICROSECOND(expr): The argument MUST have datetime type, and
the result has type uint64. If the argument is atimestamp, it is converted to the number of
mi croseconds since 00:00:00.000000UTC on 1/1/0000; otherwise (i.e., if the argument isan
interval), it is converted to microseconds.

If expr computes to atime before 00:00:00.000000UTC on 1/1/0000 the result is an
arithmetic underflow error. If expr computes to atime after 23:59:59.999999 UTC on

Verson 1.0.0 Second Preliminary

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

1067

1068
1069
1070

CIM Query Language Specification

12/31/9999, the result is an arithmetic overflow error. In either case, the query will result in
an error.

STRINGTOUINT (expr): The argument MUST have string or charl6 type and must be a
binary-value, hex-digit-value, decimal-value, or real-vaue in the range of 0 to 2°*-1. The
result has type uint64. The fractional portion of any real-value is discarded.

STRINGTOSINT (expr): The argument MUST have string or charl6 type and must be a
binary-value, hex-digit-value, decimal-value, or real-valuein the range of -2% to 2%%-1. The
result has type sint64. The fractional portion of any real-value is discarded.

STRINGTOREAL (expr): The argument MUST have string type and must be a binary-
value, hex-digit-value, decimal-value, or real-value. The result has type real64.

5.6.3. String Functions

UPPERCASE(expr): The argument MUST have string or char16 type, and the result has
string type. This function canonicalizes its argument by converting al lowercase characters
to uppercase. For Basic Query, this function converts lowercase charactersin the US-ASCII
range (U+0000...U+007F) to uppercase. Characters outside of the US-ASCII range are not
changed. For the Full Unicode feature, this function performs Case Mapping, as defined in
the Unicode standard [5], on all characters.

NUMERICTOSTRING(expr): The argument MUST have numeric type, and the result has
string type. This function constructs a string representation of its argument, using the
following rules:

- If the argument is of one of the integer types, it is represented using decimal radix.
Positive numbers do not have a plus sign, and negative numbers have a preceding
minus sign.

If the argument is of one of the real types, it is represented using decima mantissa. If
an exponent is needed, it uses decimal radix and follows after an upper case "E", and
does not have any leading zeros. If the mantissa has more than one digit, the decimal
point is aways after the first digit. Positive mantissas and exponents do not have a
plus sign, and negative mantissas and exponents have a preceding minus sign.

If the argument has avaue of zero, it is represented as the single character “0”.

REFERENCETOSTRING(expr): The argument MUST have reference type, and the
result has string type. Thisfunction returns an object path string based exclusively on the
information in the input reference. Canonicalization MAY be accomplished by using the
Path Functions.

5.6.4. | nstance Functions

These functions operate on objects, references or strings whose contentsisaWBEM-URI, as
defined in the WBEM URI Mapping Specification, DSP0207 [2].

Verson 1.0.0 Second Preliminary 34

1071
1072
1073
1074
1075
1076

1077

1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

1105
1106
1107
1108
1109
1110
1111

CIM Query Language Specification

INSTANCEOF([expr]): The argument MUST be an instance, an embedded instance, an
embedded object, areference to an instance, or a string containing aWBEM-URI to an
instance. If the argument is of type embedded object, it MUST represent an instance and
MUST be scoped using the property-scope syntax. In al casesusing valid input, if the
instance is of type C, the result of this function is an embedded instance of type C. Inall
other cases, the query isinvalid

5.6.5. Path Functions

These functions operate on objects, references or strings whose contentsisaWBEM-URI, as
defined in the WBEM URI Mapping Specification, DSP0207 [2].

CLASSPATH([expr]): The argument MUST be an object, areference, or astring
containing aWBEM-URI. The result of this function is of type reference. If the argument is
of type reference or string and it refers to aclass, the result of this function refers to that
class. If the argument is of type reference or string and it refers to an instance, the result of
this function refers to the creation class of that instance. If the argument is of type object, it
MUST be an instance value that is NOT an Indication or an embedded instance and the result
of this function refersto the creation class of that instance. In al other cases, the query is
invalid. Whether or not the class or instance referenced by the argument exists, does not
matter for the successful execution of the function. The function does not add any missing
components to the namespace path of the resulting reference.

OBJECTPATH([expr]): The argument MUST be an object, areference, or astring
containing aWBEM-URI. The result of this function is of type reference. If the argument is
of type reference or string and it refers to aclass, the result of this function refers to that
class. If the argument is of type reference or string and it refers to an instance, the result of
this function refers to that instance. If the argument is of type object, it MUST be an instance
valuethat isNOT an Indication or an embedded instance and the result of this function refers
to that instance. In al other cases, the query isinvalid. Whether or not the class or instance
referenced by the argument exists, does not matter for the successful execution of the
function. The function does not add any missing components to the namespace path of the
resulting reference.

5.6.6. Datetime Functions

CURRENTDATETIME(): Returnsthe "current” datetime as determined by the
implementation.

DATETIME(expr): The argument MUST be of type string, and at runtime MUST takeon a
25-character value conformant with a datetime specification (either timestamp or interval).
The result has datetime type.

Verson 1.0.0 Second Preliminary

1112
1113
1114
1115
1116
1117
1118
1119

CIM Query Language Specification

MICROSECONDTOTIMESTAMP(expr): The argument MUST be of an integer type,
and the result has datetime type. The argument will be interpreted as a number of
mi croseconds since 00:00:00.000000UTC on 1/1/0000, and the result will be atimestamp.

MICROSECONDTOINTERVAL (expr): The argument MUST be of an integer type, and

the result has interval (datetime) type. The argument will be interpreted as a number of
microseconds, and the result will be an interval.

Verson 1.0.0 Second Preliminary 36

1120

1121
1122
1123
1124

1125

1126
1127
1128

1129
1130

1131
1132

1133
1134

1135
1136

1137
1138
1139
1140
1141
1142
1143

5.7.

CIM Query Language Specification

Query Considerations

The result of aquery isatable that contains a set of zero or more rows that contain the
columns defined in the select-list.. Thistable is not stored beyond the execution of a
particular invocation of the query.These instances have the following additional
characteristics:

Each column has atype and adistinct name.

Each classname in the FROM list is consdered by query as atable that has one row
for each class instance and where the properties of the class are mapped to columns of
the table.

Subqueries are considered by query to produce tables.

On the relation to classes, instances, and properties.

1.

Each table MAY be considered as a class. However, it is NOT required to
conform to the definition a CIM class.

Each row MAY be considered as an instance. However, it is NOT required to
conform to the definition a CIM instance.

Each column MAY be considered a property that conforms to the definition of
aCIM Property.

A query may be specified as part of a class definition, (such as CIM_IndicationFilter,
CIM_QueryCondition, and CIM_MethodAction.) The implementation of the classis
responsible for processing query specified in instances of that class For example,
CIM_IndicationFilter subclasses constrain the select-list to produce entries that
conform to the CIM_Indication subclass that is used in the FROM clause. The results
are then typicaly delivered by the CIM _ListenerDestination subclass as instances of
the named CIM _Indication subclass.

Verson 1.0.0 Second Preliminary

1144

1145
1146
1147

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160
1161
1162
1163
1164
1165
1166
1167

1168

CIM Query Language Specification

5.8. Query Errors

When processing a query (either by a CIM Server or aprovider), it islegitimate to reject the
query. Thefollowing errors are defined in the CIM Operations Specification for Exec

Query:

CIM_ERR_ACCESS_DENIED

CIM_ERR_NOT_SUPPORTED

CIM_ERR_INVALID_NAMESPACE

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)
CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (the requested query
language is not recognized)

CIM_ERR_INVALID_QUERY (the query isnot avalid query in the specified query
language; i.e., a syntax or semantic error occurred. For CQL, thiserror isalso
returned if the language is correct, but the query features used by the query are not
supported)

CIM_ERR_FAILED (some other unspecified error occurred)

If aQuery isimplemented as part of a Class, then the Provider of the classis responsible for
error handling and for appropriately passing errors back to the client of the class or its
instances. For instance, if the class supports a string property named Query and the string is
aconstant, then the implementation must assure that the string is correct. Note that in this
case, the implementation may be completely hard-coded. If the property is set by a CIM
Client, then the implementation is responsible for checking the validity of the query when the
property isset. If invalid, the CIM operation used to set the property MUST return
CIM_ERR_INVALID_QUERY if an ExecuteQuery or CIM_ERR_FAILED for al others.

In the future, the CIM_Error class will be used to expand on the errors defined above.

Verson 1.0.0 Second Preliminary 38

1169

1170
1171
1172

1173
1174
1175
1176
1177

1178
1179
1180
1181

CIM Query Language Specification

5.9. Query Functional Description

CIM environments vary greatly in terms of processing capabilities, and required
functionality. The CIM Query Language can be segmented based on functionality, with the
assumption that areduction in functionality is equivalent to reduced processing requirements.

The following table defines the "Basic Features' required for CQL support and a set of
optional CQL processing features that MAY be provided by a component. Discovery of
these features is enabled via the CQL Features enumeration property of the QueryCapabilities
class. Each optional feature MUST be fully supported before it is advertised as being
supported.

The table a so tracks the status of each feature. A statusof "Fina" means that the feature
has at least two independent implementations and that all issues have been resolved in a
manner consistent with DMTF policy. Otherwise, the status will be marked as
"Experimental”.

Query Prerequisite | Feature

Feature Description Feature(s) Status
Basic Query The query MUST support the syntax and None Experimental
=2 processing rules designated as Basic Query in

Section 5.4, “ Query Language BNF".

Simple Join The FROM clause hasthe following constraints. | Basic Query Experimental
=3 - MUST support at least two from-specifiers.
Support for more than two from-specifiers IS
NOT part of Simple Join.

Verson 1.0.0 Second Preliminary

CIM Query Language Specification

Query _ Prerequisite | Feature
Feature Description Feature(s) Status
Complex Join | The FROM clause MUST support morethantwo | Simple Join Experimental
= from-specifiers
Subquery The FROM clause MUST support subqueries Basic Query Experimental
Result Set The query MUST support the DISTINCT and Basic Query Experimental
Operations FIRST operators
=6
The ORDER BY clause MUST be supported
Extended The select-list Basic Query Experimental
Select List - MUST support functions
= MUST support CLASSQUALIFIER and
PROPERTYQUALIFIER
MUST support the AS construct for property
aliasing
Embedded The query MUST support the ability to reference | Basic Query Experimental
Properties the properties of the embedded instance.
=8
Aggregations | The query MUST support aggregation functions. | Extended Experimental
Regular The WHERE clause MUST support for thelike- | Basic Query Experimental
Expression predicate with the capabilities defined in
Like Appendix D.2: Full Like Extended Regular
=10 Expressions
Array Range | The query MUST support thefull range of array- | Basic Query Experimental
=11 index-list productionsin order to compare Array
properties with Non-Array properties as described
in section 5.6 or in order to compare parts of
arrays.
The WHERE clause MUST support the array-
comp production
Satisfies Array The WHERE clause MUST support the Array Range Experimental
=12 satisfies clause
Foreign The query MUST support references to Basic Query Experimental
Namespace namespaces other than the one in which the query
Support is executed.
=13
Arithmetic The query must support arithmetic expressions Basic Query Experimental
Expression using +, -, *, and/.
=14

Verson 1.0.0 Second Preliminary

40

1182

1183
1184
1185

CIM Query Language Specification

Query _ Prerequisite | Feature
Feature Description Feature(s) Status

Full Unicode | The query must support the Unicode string Basic Query Experimental
=15 processing algorithms described in this

specification.

Table1: Query Features

If aquery includes clauses or constructs not supported by the infrastructure, the error
CIM_ERR_INVALID_QUERY MUST be returned on arequest made via ExecuteQuery or
CIM_ERR_FAILED for dl other CIM operations.

Verson 1.0.0 Second Preliminary

1186

1187
1188

1189
1190

1191
1192

1193
1194
1195
1196
1197

1198
1199
1200
1201
1202
1203
1204

1205
1206
1207
1208
1209

1210
1211
1212

1213
1214

CIM Query Language Specification

6 CIM Query Template L anguage

This section defines a separate and optional pre-processing facility that supports the
conversion of CQL template strings into CQL strings.

The pre-processing facility parses the input string from left to right for pre-processor tokens.
Each pre-processor token represents a pre-processor variable named by identifier.

The pre-processor recognizes abackdash, (\) as an escape character when the next
character is asingle-quote (') (U+0027)

Note: The escagping of double quotes is not necessary within alitera string,
since only single quotes can be used to delimit string literals. If the entire pre-
processor string is put into an environment that uses double quotes to delimit
that string (e.g. as a default value for propertiesin the MOF), then that
environment must define the escape rules for doubl e quotes.

If anon-escaped single-quote is encountered, detection of pre-processor tokens is
disabled until the first character after a corresponding non-escaped single-quote.
While detection is enabled, the sequence "$"identifier"$" is recognized as a pre-
processor token.

For each pre-processor token encountered, the pre-processor makes a string
substitution for that token and resumes parsing with the first character after the
replaced token.

The string substitution replaces the token with the value of the pre-processor variable as
defined to the pre-processing facility. The value of the pre-processor variable must be a
string value. Note that any occurrences of the sequence "$"identifier"$" in that string vaue
will not be replaced. The mapping of a pre-processor variable to a value is not specified here
and must be specified where this facility is used.

Pre-processor tokens are semantically unrelated to the identifiers of the CQL query itself.
Unquoted $'s may not appear in the query template except as part of pre-processing tokens.
Following the convention detailed in section 5.2 on identifying a query language, the string

“DMTF.CQLT” will identify the CIM Query Template language to represent the use of this
pre-processing capability for CQL.

Verson 1.0.0 Second Preliminary 42

1215

1216
1217

1218
1219

1220

1221

1222

1223

1224

1225
1226

1227

1228

1229

1230

1231

1232

1233

1234
1235

1236
1237

1238

1239

CIM Query Language Specification

6.1. Pre-processor Examples

1) Define atemplate for retrieving instances of the class identified by the variable
targetClassName.

Assuming the value of targetClassName is "CIM_StorageExtent”, the CQL pre-processor
would translate the string

SELECT *

FROM $targetClassName$
into

SELECT *

FROM CIM_StorageExtent

2.) Define atemplate for requesting account information about the entity identified by the
variable User|D.

Assuming the value of UserID is "guest”, the CQL pre-processor would translate the string
SELECT *
FROM CIM_Account
WHERE UserID = $UserlD$
into
SELECT *
FROM UserlD = 'guest’

3.) Define atemplate that allows the filter condition to be restricted based on the value of the
variable whereClause.

Assuming the value of whereClause is "WHERE UPSttyPath = /dev/ttyOpl’ AND
MonitorEventID = 20", the CQL pre-processor would trand ate the string

SEL ECT DetectionTime,

SystemlPAddress,

Verson 1.0.0 Second Preliminary

1243
1240

1241

1242

1244

1245

1246

1247

1248

1249

1250

1251

1252

into

CIM Query Language Specification

PercelvedSeverity,
MonitorEventID,
UPSttyPath

FROM Acme_UPSAlertIndication

$whereClause$

SELECT DetectionTime,
SystemlPAddress,
PercelvedSeverity,
MonitorEventID,

UPSttyPath
FROM Acme_UPSAlertIndication

WHERE UPSttyPath = "/dev/ttyOpl' AND MonitorEventID = 20

Verson 1.0.0 Second Preliminary

1253

1254

1255

1256
1257

1258
1259
1260
1261
1262

1263
1264

1265
1266
1267

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284

CIM Query Language Specification

7 Examples

This section provides a number of sample queriesto illustrate the use of the Query language.

7.1. Discovery examples

1. Get the object path, ElementName and Caption for all StorageExtents
Required Features: Basic Query, Extended Select List

SELECT OBJECTPATH(CIM_StorageExtent) AS Path,
ElementName, Caption
FROM CIM_StorageExtent

A set of instances would be returned with three properties: the object path of the
instance, as well as the ElementName and Caption properties.

2. Select all LogicalDevices on a particular ComputerSystem that have an
Operational Status not equa to “OK” (value = 2), and return their object paths
and Operational Status.

Required Features: Basic Query, Extended Select List, Complex Join,
Array Range

SELECT OBJECTPATH(CIM_LogicalDevice) AS Path,
CIM_Logica Device.Operational Statug*]
FROM CIM_LogicaDevice,
CIM_ComputerSystem,
CIM_SystemDevice
WHERE CIM_ComputerSystem.ElementName = 'MySystemName'
AND CIM _SystemDevice.GroupComponent =
OBJECTPATH(CIM _ComputerSystem)
AND CIM__ SystemDevice.PartComponent =
OBJECTPATH(CIM_L ogicalDevice)
AND ANY CIM_LogicalDevice.Operational Statug[*] <> 2)

A set of instances would be returned, each with the following properties: astring

containing the object path of the instance of CIM_L ogical Device and the
Operational Status array property.

Verson 1.0.0 Second Preliminary

1285
1286
1287
1288

1289

1290
1291
1292
1293

1294
1295

1296
1297

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

1309
1310
1311
1312

1313

CIM Query Language Specification

Get al StorageExtent and MediaAccessDevice instances. Note that the
projection is limited to instances that are either CIM_StorageExtent or
CIM_MediaAccessDevice, however only properties of CIM_LogicaDevice
and its superclasses are returned.

Required Features: Basic Query

SELECT *

FROM CIM_LogicaDevice

WHERE CIM_LogicalDevice ISA CIM_StorageExtent OR
CIM_L ogicdDevice ISA CIM_MediaAccessDevice

A set of instances would be returned with a complete select-list as defined by
CIM_L ogicaDevice.

List al ComputerSystems and the object paths of any instances dependent on
the system as described by the Dependency association.

Required Features: Basic Query, Extended Select List, Complex Join

SELECT CIM_ComputerSystem.*,
OBJECTPATH(CIM_ManagedElement) AS MEObjectName
FROM CIM_ComputerSystem,
CIM_ManagedElement,
CIM_Dependency
WHERE CIM_Dependency.Antecedent =
OBJECTPATH(CIM_ComputerSystem)
AND CIM_Dependency.Dependent =
OBJECTPATH(CIM_ManagedElement)

This query returns a set of instances defined by the references of the Dependency
association'sinstances. The instances that are created contain al the properties of
CIM_ComputerSystem and a string representing the rel ated/associ ated
ManagedElement's object path.

Verson 1.0.0 Second Preliminary 46

1314
1315
1316
1317
1318

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

1337
1338
1339

1340
1341
1342
1343
1344
1345

CIM Query Language Specification

Traverse from a resource (CIM_ComputerSystem) to the
CIM_BaseMetricVaue instances associated through the CIM_MetricForME
association. The resource instance is known by its keys, and there are many
BaseMetricValue objects associated with it (>10000), and the selection criteria

is such that only a handful of them matches.
Required Features: Basic Query, Extended Select List, Complex Join

SELECT OBJECTPATH(CIM_ComputerSystem) AS CSOBJECTPATH,
CIM_BaseMetricValue.*
FROM CIM_ComputerSystem,
CIM_BaseMetricValue,
CIM_MetricForME
WHERE CIM_ComputerSystem.Name = 'MySystem1'
AND CIM_BaseMetricVaue.TimeStamp >
DATETIME('200407101000%* ******4+30(")
AND CIM_BaseMetricVaue.TimeStamp <
DATETIME('200407101030%* ******1+30Q")
AND CIM_BaseMetricValue.Duration =
DATETIME('000000000005*** *****:000")
AND CIM_MetricForM E.Antecedent =
OBJECTPATH(CIM _ComputerSystem)
AND CIM_MetricForME.Dependent =
OBJECTPATH(CIM_BaseMetricVaue)

Asin #4, this query returns a set of instances defined by the query'sjoin. The
instances that are returned contain all properties of CIM_BaseMetricValue and
the associated ComputerSystem'’s object path.

The query in this example is very selective: Only 6 instances are returned, where
the combined number of instances in the classes selected from can be in the tens
of thousands. This shows that it is essential that these instances never be
enumerated or "waked" in the implementation of the query engine, since this
would likely result in huge computationa penalties. It iscritical to appropriately
break down the query to the different providers involved.

Verson 1.0.0 Second Preliminary

CIM Query Language Specification

1346 6. Display all the Settings for a particular CIM_ManagedSystemElement in a
1347 Composite Setting that is associated with the M SE.

1348 Required Features: Basic Query, Complex Join

1349

1350 SELECT SD.*

1351 FROM CIM_SettingData CSD,

1352 CIM_SettingData SD,

1353 CIM_ManagedSystemElement MSE,

1354 CIM_ElementSettingData ESD,

1355 CIM__ConcreteComponent CC

1356 WHERE OBJECTPATH(MSE) = 'some desired key'

1357 AND ESD.ManagedElement = OBJECTPATH(MSE)

1358 AND ESD.SettingData= OBJECTPATH(CSD)

1359 AND CC.GroupComponent = OBJECTPATH(CSD)

1360 AND CC.PartComponent = OBJECTPATH(SD)

1361 A set of instances would be returned (which meet the association criteria) with
1362 properties as specified by CIM _SettingData.

Verson 1.0.0 Second Preliminary 48

1363
1364
1365
1366
1367
1368
1369
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406

CIM Query Language Specification

Get a storage array's LUN masking and mapping for a falled FCPort. This
guery uses aliasing in the FROM clause and a series of sub-queries. The use of
nested subqueries guides the query engine through a step-wise process that is
similar to one that would be used by a client executing a series of CIM intrinsic
operations. Use of subqueries is recommended to limit the complexity of
otherwise very large joins. The principle advantage over the series of intrinsic
operations is that the query is a single operation that only returns the find
results.

Required Features: Basic Query, Extended Select List, Complex Join,

Subquery, Array Element

SELECT OBJECTPATH(pms) AS PrivilegeM gmtServicelnst,

Oh AS StorageHardwarelDInst, Op AS AuthorizedPrivilegelnst,
Ov AS StorageVolumelnst

FROM CIM_HostedService hs,

CIM_ PrivilegeM anagementService pms,
(SELECT OBJECTPATH(cs) AS Oc, 0O.0p, O.0h, O.0v
FROM CIM_ComputerSystem cs, CIM_SystemDevice s,
(SELECT OBJECTPATH(v) ASOv, P.Op, P.Oh
FROM CIM_AuthorizedTarget t,
CIM_StorageVolume,
(SELECT OBJECTPATH(p) AS Op,
OBJECTPATH(hi) AS Oh
FROM CIM _StorageHardwarel D hi, CIM_AuthorizedPrivilege p,
CIM_AuthorizedSubject s,
(SELECT Sourcelnstance.
CIM_FCPort ::PermanentAddress
FROM CIM_InstModification
WHERE Sourcelnstance ISA CIM_FCPort
AND ANY
Sourcelnstance.CIM _FCPort::Operationa Status[*]
<># OK’
) fc
WHERE fc.PermanentAddress = hi.StoragelD
AND s.PrivilegedElement = OBJECTPATH(hi)
AND s.Privilege = OBJECTPATH(p)
)P
WHERE t.Privilege = P.Op AND t.TargetElement = OBJECTPATH(V)
) O
WHERE sd.PartComponent = Ov
AND sd.GroupComponent = OBJECT PATH(cs)
)C

WHERE hs.Antecedent = Oc AND hs.Dependent = OBJECTPATH(pms)

Verson 1.0.0 Second Preliminary

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

1443
1444
1445
1446
1447
1448
1449
1450
1451

CIM Query Language Specification

Without the use of subqueries, but keeping the same color codes to relate to the
subqueries of the above query, an equivalent query can be expressed as:

SELECT OBJECTPATH(pms) AS PrivilegeMgmtServicelnst,
OBJECTPATH(hi) AS StorageHardwarel DInst,
OBJECTPATH(p) AS AuthorizedPrivilegelnst,
OBJECTPATH(v) AS StorageV olumelnst

FROM CIM_InstModification im,

CIM_StorageHardwarel D hi,
CIM_AuthorizedSubject s,
CIM_AuthorizedPrivilege p,
CIM_AuthorizedT arget t,
CIM_StorageVolumev,
CIM_SystemDevice sd,
CIM_ComputerSystem cs,
CIM_HostedService hs,
CIM_PrivilegeManagementService pms

WHERE im.Sourcelnstance ISA CIM_FCPort
AND ANY im.Sourcelnstance.CIM _FCPort::Operational Statug[*] <> #'OK"
AND im.Sourcelnstance.CIM _FCPort::PermanentAddress = hi.Storagel D
AND s.PrivilegedElement = OBJECTPATH(hi)

AND s.Privilege = OBJECTPATH(p)

AND t.Privilege = OBJECTPATH(p)

AND t.TargetElement = OBJECTPATH(V)
AND sd.PartComponent = OBJECTPATH(V)
AND sd.GroupComponent = OBJECTPATH(cs)
AND hs.Antecedent = OBJECTPATH(cs)

AND hs.Dependent = OBJECTPATH(pms)

The primary difference is that without the use of subqueries, the query
implementation would have to determine how to optimize this query to avoid an
uncorrelated join across all of the instances belonging to the 10 classes named in
the 'FROM' clause. Thislevel of analysisis beyond the capability of most
expected implementations.

Example of mathematical aggregation function

Required Features: Basic Query, Extended Select List, Aggregation, Result Set
Operations, Subquery

SELECT DISTINCT OBJECTPATH(sv) AS VolumePath,
(sv.BlockSize * sv.NumberOfBlocks) AS Size
FROM CIM_StorageVolume sv,
(SELECT MAX(v.BlockSize*v.NumberOfBlocks) AS Maxbytes
FROM CIM_StorageVolume v) mv
WHERE (sv.BlockSize * sv.NumberOfBlocks) = mv.Maxbytes

Verson 1.0.0 Second Preliminary 50

1452

1453
1454
1455

1456
1457
1458
1459
1460
1461

1462
1463
1464
1465
1466
1467

1468
1469
1470
1471
1472
1473

1474
1475
1476
1477
1478
1479
1480
1481

CIM Query Language Specification

7.2. Event detection examples

1. Asregards query in Indication processing, the following examples are taken
from storage management requirements.

Required Features: Basic Query

SELECT *
FROM CIM_InstCreation
WHERE Sourcelnstance ISA CIM_FCPort

Using the lifecycle indication classes, this query would be stored in the Query string
property of an instance of IndicationFilter and its delivery defined by an
IndicationSubscription association to a ListenerDestination (please see the CIM Event
Model [14]). An InstCreation notification would be delivered any time that an
FCPort was created. The notification would consist of a single instance with a select-
list as defined by the CIM _InstCreation class.

2. As above, this query would be stored in the Query string property of an
instance of IndicationFilter, and its delivery defined by an
IndicationSubscription association. An InstModification notification would be
delivered any time that an FCPort was modified and its first array property had
changed. The notification would consist of a single instance with a select-list
as defined by the CIM_InstModification class.

Required Features. Basic Query, Embedded Properties

SELECT *
FROM CIM_InstModification
WHERE Sourcelnstance ISA CIM_FCPort
AND Previousinstance ISA CIM_FCPort
AND Sourcelnstance.CIM _FCPort::Operational Status[0] <>
Previouslnstance.CIM_FCPort::Operationa Status[0]

Verson 1.0.0 Second Preliminary

1482
1483
1484
1485

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

CIM Query Language Specification

3. Send an Indication consisting of DetectionTime, SystemlPAddress,
PerceivedSeverity, MonitorEventiD and UPSttyPath properties, whenever
MonitorEventID = 20 occurs on device /dev/ttyOp1.

Required Features: Basic Query

SELECT DetectionTime,
SystemlPAddress,
PercelvedSeverity,
MonitorEventID,

UPSttyPath

FROM Acme_UPSAlertIndication

WHERE UPSttyPath = '/dev/ttyOp1'
AND MonitorEventID = 20

4. Building on the previous example, in order to facilitate auditing and
maintenance, the IT department requires that all Indications are "tagged” with
an ID that identifies the filter condition that the Indication satisfied.

Required Features: Basic Query, Extended Select List

SELECT DetectionTime,
SystemlPAddress,
PerceivedSeverity,
MonitorEventlD,

UPSttyPath,
'HP12345' AS FilterlD

FROM Acme_UPSAlertIndication

WHERE UPSttyPath = ‘/dev/ttyOp1'
AND MonitorEventID = 20

Verson 1.0.0 Second Preliminary 52

1513
1514

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

1542
1543

1544
1545
1546
1547
1548
1549
1550
1551

1552

CIM Query Language Specification

5. Continuing the example above, to ensure prompt processing of this type of
Indication, define a CustomSeverity and set it to "Critical".

Required Features: Basic Query, Extended Select List

SELECT DetectionTime,
SystemlPAddress,
PercelvedSeverity,

‘Critical' AS CustomSeverity,
MonitorEventID,
UPSttyPath,
'HP12345' AS FilterID
FROM Acme_UPSAlertindication
WHERE UPSttyPath = "/dev/ttyOp1'
AND MonitorEventID = 20

6. L ocate sick System/Logica Device combinations
Required Features: Basic Query, Satisfies Array, Complex Join

SELECT s.Name, d.Name
FROM CIM_System s, CIM_SystemDevice sd, CIM_LogicalDeviced
WHERE OBJECTPATH(s) = sd.GroupComponent
AND OBJECTPATH(d) = sd.PartComponent
AND ANY i IN s.OperationalStatug*] SATISFIES
(i = #Non-Recoverable Error' OR i=#'Degraded’)
AND ANY j in d.Operationa Staus[*] SATISFIES (j =#'Degraded’)

7. L ocate creation of an export relationship for aFileShare
Required Features: Basic Query

SELECT
InstanceOf(

Sourcelnstance.CIM _SharedElement:: SameElement)
AS FileShare

FROM CIM_InstCreation

WHERE Sourcelnstance ISA CIM_SharedElement

AND InstanceOf(Sourcelnstance.CIM _SharedElement:: SameElement)
ISA CIM_FileShare

Verson 1.0.0 Second Preliminary

1553

1554
1555
1556
1557
1558
1559
1560
1561
1562

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

CIM Query Language Specification

7.3. Policy examples

For policy, identify a StoragePool that islow on space and allocate more spacetoit. In this
example, there are two underlying StoragePools to draw space from. The preferred oneisa
free pool. The other is only used if the free pool can not satisfy the need.

1. This first query is used in a QueryCondition with QueryResultName set to
"PR_Needy". The query selects a StoragePool that is low on space.
Evaluation results in zero or more PR_Needy instances that are used by a
related MethodAction.

Required Features: Basic Query, Extended Select List, Complex Join, Embedded
Properties

SELECT OBJECTPATH(IM.Sourcelnstance) AS NeedySPPath
FROM CIM_InstModification AS IM,
CIM_PolicyRule ASPR,
CIM_PolicySetAppliesToElement AS PSATE
WHERE IM.Sourcelnstance ISA CIM_StoragePool
AND PR.Name = 'AllocateM oreSpace’
AND OBJECTPATH(PR) = PSATE.PolicySet
AND OBJECTPATH(IM.Sourcelnstance) = PSATE.ManagedElement
AND 100 * (IM.Sourclnstance. CIM_StoragePool ::Remai ningManagedSpace /
IM.Sourclnstance. CIM _StoragePool::Tota M anagedSpace) < 10
AND IM .Sourclnstance. CIM_StoragePool::Remai ningM anaged Space <>
IM.Previouslnstance. CIM_StoragePool ::RemainingM anagedSpace

Verson 1.0.0 Second Preliminary 54

1580
1581
1582
1583

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620

CIM Query Language Specification

2. This next query is wused in MethodAction to invoke a
CreateOrM odifyStoragePool method. It uses PR_Needy instances produced by
the previous QueryCondition. The InstMethodCall results of the cal are
named by the property InstMethodCallName set to "PR_ModifySP".

Required Features: Basic Query, Extended Select List, Complex Join

SELECT OBJECTPATH(SCYS) || '.CreateOrModifyStoragePool’
AS MethodName,
QCR.NeedySPPath AS Pooal,
QCR.NeedySPPath.Size + (QCR.TotalManagedSpace / 10) AS Size,
OBJECTPATH(SP) AS InPools
FROM PR_Needy AS QCR,
CIM_ServiceAffectsElement AS SAE,
CIM_StorageConfigurationService AS SCS,
CIM_StoragePool AS SP,
CIM_AllocatedFromStoragePool AS AFSP
WHERE QCR.NeedySPPath = SAE.AffectedElement
AND OBJECTPATH(SCS) = SAE.AffectingElement
AND SP.ElementName = 'FreePool’
AND QCR.NeedySPPath = AFSP.Antecedent
AND OBJECTPATH(SP) = AFSP.Dependent

3. Use the results of the previous MethodActionResults as input to a second
MethodAction to take action on an error. It aso cals
CreateOrM odifyStoragePool.

Required Features: Basic Query, Extended Select List, Complex Join, Array Range,
Embedded Properties

SELECT MAR.MethodName,
M AR.MethodParameters.Pool,
MAR.MethodParameters.Size,
OBJECTPATH(SP) AS InPools
FROM PR_ModifySP MAR,
StoragePool SP,
AllocatedFromStoragePool AFSP
WHERE MAR.ResultVaue <> '0'
AND SP.ElementName = 'SafetyPool’
AND MAR.MethodParameters ISA _ MethodParameters
AND MAR.MethodParameters. MethodParameters::Pool = AFSP.Antecedent
AND OBJECTPATH(SP) = AFSP.Dependent

Verson 1.0.0 Second Preliminary

1621

CIM Query Language Specification

Appendix A: ChangeHistory

Version 0.1 — October 2002, Initial release of the CIM Query Language definition. Document is
based on work in the WBEM Interoperability Working Group and the original WBEM Query
Language proposed and documented in 2000.

Version 0.2 — November 2002, Corrected one example in Section 5 and acknowledged that more
examples/use cases need to be provided

Version 0.3 — January 2003, Updates to the CIM Query Language BNF based on email feedback from
Dan Nuffer; Completion of Section 3.2; Addition of information regarding what is returned by
specific query examplesin Section 5

Version 0.4 — January 2003, Clarified requirement for | SA function as mechanism to query class
inheritance/hierarchy, and added check for aclass Version qualifier

Version 0.5 — September 2003, Updated much of the text previously missing, defined additional
examples, clarified the text of the examplesto indicate that "query-specific" instances are returned,
clarified that _KEY isacomplete instance path and that a property value of "*" indicates all
properties+ KEY, CLASSand_VERSION, added a section on naming of the returned "query row
instances" (3.2), corrected the BNF rules, cleaned up many of the comments ("//") in the BNF, and
added many capabilitiesto the BNF and/or corrected BNF errors. The ability to specify aliases and
subqueries was also added at this time.

Version 0.6 — September 2003, Updated internal document version number, corrected example that
still included the BETWEEN construct, and defined requirement for propertiesto be returned in the
order specified in the SELECT clause.

Version 0.7 — October 2003, Updated internal document version number and made clarification
changes and minor correctionsto the text and BNF. Specifically, the following changes were made:
- CIM_ERR_NOT_SUPPORTED is ambiguous, used CIM_Error instead
- Added ahility to reference a specific-class-proper ty-identifier in select-string-literal
- Added [("."property-identifier)*] to specific-class-proper ty-identifier, deleted
embedded_object in the property-identifier definition, and deleted the embedded_abject
definition — To allow arbitrary depth of embedding in class_property_identifier
- Moved "dias' from class-list in the from-criteriato the individual class-namesin class-list
- Eliminated recursive definition of sort-spec-list, and defined a " sort-spec” entry

Version 0.8 and 0.9 — January 2004, Updated internal document version numbers and made many
changes simplifying and clarifying the text and BNF, based on Interop and DM TF member review
feedback. Also, added an Acknowledgements Section.

Version .10 — February 2004, Many updates to deal with member comments.
KEY renamed to OBJECTPATH.

_CLASSrenamedto CLASSPATH.

_VERSION diminated.

Extended BNF to added support for Character and Arithmetic operations.
Added Symbolic constants.

Version .11 — March 2004, Updates to cover review comments
Clarified CQL Feature:

Remove'MAY NOT' clauses

Isolate complex Array processing from Basic

Verson 1.0.0 Second Preliminary 56

CIM Query Language Specification

Do not include Array ANY/EVERY processing
Make consistent with ABNF: | ETF RFC 2234, http://ww. fags.org/rfcs/rfc2234. htni.
With several exceptions called out.
Isolated URI BNF to appendix. Expectation that this will moveinto WBEM URI spec and to reference
RFC2396, or equivalent.
Added ANY/EVERY/ SATISFIES syntax to clarify Array element references.
Add use case for CREATEARRAY. "For MethodAction..."
Clarified descriptions for DISTINCT and FIRST
Agreed to include LIKE Posix API as optional feature. Simple LIKE functionality is defined as a Posix subset,
described in chapter 3.3
Many editorial changes
Allow White Space between "." period operator. Added "," operator to BNF to make explicit when White
Spaceisnot allowed.
Make clear that Query does NOT execute intrinsic methods
Agreeto capitalize all keywords. However, note that these are not case sensitive.
Added production for parenthesization in arithmetic-expression.
Switched from properties for Path ements to using Path functions.
Removed all referencesto Quaifying Class.
Remove references to new errors. These can not be introduced with this revision.
Add language that covers comparison between arrays for
Bag: set match
Ordered: element by element match to maxsize of both arrays.
Indexed: eement by element match to maxsize of both arrays.

Added Scoping: Theincorporating identifier MAY be named in an ISA comparison-predicate of the WHERE
clause. Thisservesto specify the class of the embedded object as used in the select-list and the containing
boolean-primary of the search-condition. A different class MAY be compared to in different boolean-primaries.
The outermost ISA class in a class-hierarchy that compares TRUE scopesthe properties that MAY be
referenced in the select-list.

Add ISA back into the spec.

Implementation casts object paths to internd REFs and compare based on theinternd form. The
implementation should know aternative, equivalent forms of NamespacePath and treat them all as equal.

Do not dlow use of LIKE on result of OBJECTPATHY(). Only support =, <>.

Add capability to make case in-sensitive comparisons. Add UpperCase function.

Created and added table of conversions.

Added arithmetic-expression

Added Scopingclass function

Added use-case examples.

Defined QueryResult subclass usage

A reference is represented as an Object Path. A property that is areference MAY be named in the Select-
Critera

Add semantics for ANY/EVERY /SATISFIES as proposed by Jeff.

Select classname.* returns only properties defined in named class or its superclasses

Version .12 — April 2004, Updates to cover review comments
Made Scopingclass be ScopingType function

Clarify that Path_functions are part of the basic functions

Clarified prereguiste column

Clarified errors

Clarified string definition

Removed Truth values from arithmetic expressions

Clarified Count

Clarified Regular Expression use by Basic and Regular Expression Like.

Version .13 — May 2004, Updates to cover review comments
Simplify Basic Like

Verson 1.0.0 Second Preliminary

http://www.faqs.org/rfcs/rfc2234.html

CIM Query Language Specification

Clarify conversion table
Many corrections

Version .14 Review resolutions
Version .15 Morereview resolutions. Accepted by Interop pending resolution of set of issues

Version .16 Resolution resulted in conversion to compilable BNF. Thisisa significant revision.

Version .17 Resolution of issues after conversion.

Version .18 (Company Review Version, Version 1.0.0 Prelim)
Clarify that Timestamp 0 is1 BCE
Remove notes from text.

Draft 1.0.0f — December 15, 2005
Applied CRs WIPCR00251.001, WIPCR00231.009

Draft 1.0.0f (Prelim 2) — January 13, 2006
Applied CRs WIPCR00255.002, WIPCR00242.007, WIPCR00240.002

Draft 1.0.0f (Prelim 2) — February 2, 2006
Applied CRs WIPCR00270.000.htm

Draft 1.0.0f (Prelim 2) — February 8, 2006
Applied CRs WIPCR00272.002.htm, WIPCR00268.001.htm

Draft 1.0.0g (Prelim 2) — February 10, 2006
Applied CRs WIPCR00261.002.htm, WIPCR00247.006.htm

Draft 1.0.0g (Prelim 2) — February 15, 2006
Fixed typo wrt closing paranthesis after char-escape

Draft 1.0.0g (Prelim 2) — February 16, 2006
Applied CRs WIPCR00245.008.htm, WIPCR00269.001.htm, WIPCR00271.002.htm

Draft 1.0.0g (Prelim 2) — February 27, 2006

Applied CRs WIPCR00266.001.htm, WIPCR00268.001.htm, WIPCR00265.001.htm, WIPCR00264.000.htm,

WIPCR00263.000.htm, WIPCR00262.000.htm, WIPCR00254.003.htm, WIPCR00248.001.htm

Draft 1.0.0g (Prelim 2) — March 16, 2006
Applied CRs WIPCR00280.000.htm, WIPCR00282.000.htm
Updated reference numbers

Draft 1.0.0h (Prelim 2) — March 22, 2006
Ballot version of the spec

Verson 1.0.0 Second Preliminary

58

1622

1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

1654

1655
1656
1657

CIM Query Language Specification

Appendix B: Dependencies and References

Appendix B.1: Dependencies

[1]

[2]

3]
[4]
[5]

[6]

[7]
(8]

[9]

[10]

DMTF [2004] Distributed Management Task Force: CIM Infrastructure
Specification, DSPO004.pdf, version 2.3,

http://www.dmtf.org/standards/published documents.

DMTF [2004] Distributed Management Task Force: WBEM URI Specification,
DSP0207.pdf, version 1.0,

http://www.dmtf.org/standards/published documents.

Augmented BNF for Syntax Specifications: ABNF, RFC 2234, Nov 1997,
http://www.fags.org/rfcs/rfc2234.html.

In this document, the term Unicode refers to the Universal Character Set (UCS),
defined jointly by the Unicode Standard [5] and 1SO/IEC 10646 [6].

The Unicode Consortium, "“The Unicode Standard, Version 4.1", ISBN 0-321-
18578-1, as updated from time to time by the publication of new minor versions.
See http://www.unicode.org/unicode/standard/versions for the latest version and
additional information on versions of the standard and of the Unicode Character
Database.

ISO/IEC 10646:2003, “Information technology — Universal Multiple-Octet Coded
Character Set (UCS)” as, from time to time, amended replaced by a new edition or
expanded by the addition of new parts. See http://www.iso.org for the latest version.
W3C Working Draft "Character Model for the World Wide Web 1.0:
Normalization", February 24, 2004, http://www.w3.org/TR/charmod-norm/

The Unicode Consortium, “Unicode Collation Algorithm (Unicode Technical
Standard #10)". - as, from time to time, amended, replaced by a new edition or
expanded by the addition of new parts. See http://www.unicode.org/reports/trl0 for
the latest version.

The Unicode Consortium, "Unicode Regular Expressons (Unicode Technical
Standard #18)". - as, from time to time, amended, replaced by a new edition or
expanded by the addition of new parts. See http://www.unicode.org/reports/trl8 for
the latest version.

See "XQuery 1.0 and XPath 2.0 Functions and Operators", section 7.6.1 Regular
Expression Syntax. The latest version is at http://www.w3.org/T R/xpath-functions.

Appendix B.2: References

[11] DMTF [2003] Distributed Management Task Force: CIM Operationsover HTTP

Specification, DSP0200, version 1.2,
http://www.dmtf.org/standards/documents/WBEM/DSP200.html.

Verson 1.0.0 Second Preliminary

http://www.dmtf.org/standards/published_documents
http://www.dmtf.org/standards/published_documents
http://www.faqs.org/rfcs/rfc2234.html
http://www.unicode.org/unicode/standard/versions
http://www.iso.org
http://www.w3.org/TR/charmod-norm/
http://www.unicode.org/reports/tr10
http://www.unicode.org/reports/tr18
http://www.w3.org/TR/xpath-functions
http://www.dmtf.org/standards/documents/WBEM/DSP200.html

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680

1681

1682
1683
1684
1685

1686
1687

CIM Query Language Specification

[12] I1SO/IEC [1992] ISO/IEC 9075:1992, Database Language SQL - July 30, 1992. See
http://www.iso.org for the |atest version.

[13] W3C [2001] World-Wide Web Consortium: XML-Query,
http://www.w3.org/ XML /Query.

[14] DMTF [2002] Distributed Management Task Force: CIM Event Model V2.9
(Find), http://www.dmtf.org/standards/cim/cim_schema v29.

[15] DMTF [2002] Distributed Management Task Force: CIM Policy Model V2.9
(Find), http://www.dmtf.org/standards/cim/cim_schema v29.

[16] UTF-8, atransformation format of 1SO 10646,
http://www.ietf.org/rfc/rfc3629.txtumber=3629.

[17] RFC 1034: DOMAIN NAMES - CONCEPTS AND FACILITIES,
http://www.ietf.org/rfc/rfc1034.txtumber=1034.

[18] RFC 1123: Requirements for Internet Hosts -- Application and Support,
http://www.ietf.org/rfc/rfc1123.txtumber=1123.

[19] DMTF [2002] Distributed Management Task Force: Specification for the
Representation of CIM in XML, DSP0201, version 2.1
http://www.dmtf.org/standards/documents/ WWBEM/DSP201.html.

[20] UNICODE [2005] Unicode, Inc.: Unicode Technical Standard #10: Unicode
Collation Algorithm, http://www.unicode.org/unicode/reports/tr10/

[21] ISO/EC 14651[2000], Information technology — International string ordering and
comparison — Method for comparing character strings and description of the
common template tailorable ordering

Appendix C: Acknowledgements

The primary authors of this specification are George Ericson of EMC Corporation, Jeff
Piazzaof ApplQ, Inc. and Andrea Westerinen of Cisco Systems, Inc. The document is
based on an original WBEM Query Language Specification submitted by Patrick
Thompson of Microsoft.

Significant editing contributions were made by Andreas Maier, Oliver Benke and others
of IBM.

Verson 1.0.0 Second Preliminary 60

http://www.iso.org
http://www.w3.org/XML/Query
http://www.dmtf.org/standards/cim/cim_schema_v29
http://www.dmtf.org/standards/cim/cim_schema_v29
http://www.ietf.org/rfc/rfc3629.txt?number=3629
http://www.ietf.org/rfc/rfc1034.txt?number=1034
http://www.ietf.org/rfc/rfc1123.txt?number=1123
http://www.dmtf.org/standards/documents/WBEM/DSP201.html
http://www.unicode.org/unicode/reports/tr10/

1688

1689
1690

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1712

1713
1714
1715
1716
1717
1718
1719

1720
1721
1722

CIM Query Language Specification

Appendix D: Regular Expression BNF

The Regular Expression grammar below uses Augmented BNF (ABNF) [3] with the
following exceptions.

1. Rules separated by abar (|) represent choices. (Instead of using aslash (/) as
defined in ABNF).

2. Ranges of alphabetic characters or numeric values are specified using two
periods (..) placed between the beginning and ending values of the range.
(Instead of using the minus sign (-) as defined in ABNF).

3. Therulesdefined in this syntax are meant to be assembled into a complete
query by assuming whitespace characters between them, except where noted
otherwise. (ABNF requires explicit specification of whitespace.)

4. Thecomma(,) isused to explicitly designate concatenation of rules.

(Instead of implicit concatenation of rules as specified by ABNF.)

Note:
1. ABNFisNOT case-sensitive.
2. Therules above apply to the ABNF used here and NOT to the resultant Regular
Expression used in Full or Basic Like. In particular, except where noted, white
space is significant within the resultant Regular Expression.

The grammar is defined in two sections. Thefirst is used to construct Regular
Expressions used by the Basic Like feature. The second, Extended Regular Expressions
is used to create Regular Expressions used by the Regular Expression Like feature. Both
are defined as follows:

Appendix D.1: Basic Like Regular Expressions

Basic Like Regular Expressions is a subset of the XQuery Regular Expression syntax as
defined in Regular Expressions [10].

Note: Basic Like Regular Expressions complieswith levelsRL1.1 and RL 1.7 of
Unicode Regular Expressions Level 1 [9], which isa subset of the XQuery Regular
Expression [10] compliance to Unicode Regular Expressions Level 1 [9].

bire-ordinary-char= UNI CODE-CHAR
i A character, other than a metacharacter excluded from the Char
: production of XQuery Regular Expressions [10].

Verson 1.0.0 Second Preliminary

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732

1733
1734

1735
1736

1737
1738
1739

1740
1741
1742

1743
1744

1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

CIM Query Language Specification

blre-escaped-char = char-escape | SingleChar Esc

; An escaped character. The char-escapeis defined in the String Literals
. section. The SingleCharEsc is defined in XQuery Regular Expressions
i [10]. The"/u" and "/U" syntax of char-escape replaces the character
reference syntax defined in XQuery Regular Expressions [10].

Note: the char-escape includes escape sequences that may not be
. supported by XQuery. The CQL processor may need to convert these
: escape sequences to aformthat is compatible with XQuery.

blre-single-char ="." | blre-ordinary-char| blr e-escaped-char

: Single character regular expression. The'." meta-character matches any
: character except the newline character (\uO00A).

blre-multi-char = blre-single-char," *"

i Matches multiple occurences of a single character

blre-expression = *(blre-single-char | blre-multi-char)

: Basic Like regular expression

Appendix D.2: Full Like Extended Regular
Expressions

Full Like Regular Expressions is conformant with the XQuery Regular Expression syntax
as defined in Regular Expressions [10], with the following exceptions:
1) The Unicode characters allowed in the expression are defined by UNICODE-
CHAR in the Query Language BNF section.

2) The escape sequences of char-escepe in the String Literals section may be used
in addition to the escape sequences in SingleCharEsc in XQuery Regular
Expressions[10]. The"/u" and "/U" syntax of char-escape replaces the character
reference syntax defined in XQuery Regular Expressions[10]. Note: the char-
escape includes escape sequences that may not be supported by XQuery. The
CQL processor may need to convert these escagpe sequences to aform that is
compatible with XQuery.

3) None of the flags defined in section 7.6.1.1 of XQuery Regular Expressions

[10] are supported, and the expression matching behaves asif dl the flags have
the default values.

Verson 1.0.0 Second Preliminary 62

1761

1762
1763
1764

1765

1766
1767

1768
1769
1770
1771
1772
1773
1774
1775

1776
1777

1778
1779
1780
1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796

CIM Query Language Specification

Appendix E: Datetime Operations and BNF

The operations on datetime and the datetime BNF described in this appendix will
ultimately be incorporated into some other DM TF specification and referencesto this
appendix should be updated to refer to the incorporating specification.

Appendix E.1: Datetime Operations

The following operations are defined on datetime types:
1. Arithmetic operations:

§ Adding or subtracting an interval to or from an interval resultsin an
interval

8§ Adding or subtracting an interval to or from atimestamp resultsin a
timestamp

§ Subtracting atimestamp from atimestamp resultsin an interval

§ Multiplying an interval with anumeric or vice versaresultsin an
interval

§ Dividing an interval by anumeric resultsin an interval

Other arithmetic operations are NOT defined.
2. Comparison operations:

§ Testing for equality or unequality of two timestamps or two intervals
resultsin aboolean

8 Testing for the ordering relation (<, <=, >, >=) of two timestamps or
two intervals results in a boolean

Other comparison operations are NOT defined.

Note that comparison between atimestamp and an interval, and vice versa, is not
defined.

Specifications using the definition of these operations (for instance, query languages)
SHOUL D define how undefined operations are handled.

Any operations on datetime typesin an expression MUST be handled asif the following
sequentia steps were performed:

1. Each datetime value is converted into arange of microsecond values, as
follows:
The lower bound of the range is cal culated from the datetime
value, with any asterisks replaced by their minimum value,

Verson 1.0.0 Second Preliminary

1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

CIM Query Language Specification

the upper bound of the range is calculated from the datetime
value, with any asterisks replaced by their maximum value,
the basis value for timestamps is the oldest valid value (i.e. 0
mi croseconds corresponds to 00:00.000000 in the timezone
with datetime offset +720, on January 1st in the year 1 BCE,
using the proleptic Gregorian calendar). Note that this
definition implicitly performs timestamp normalization. Note
that 1 BCE is the year before 1 CE.

2. Theexpression is evauated, using the following rules for any datetime

ranges:

Definitions:

Rules:

T(x, y) isthemicrosecond range for atimestamp with the
lower bound x and the upper bound y

I (x, y) isthemicrosecond range for an interval with the lower
bound x and the upper bound y

D(x, y) isthemicrosecond range for a datetime (timestamp or
interval) with the lower bound x and the upper bound y

I(a, b) + 1(c, d) = Il (atc, b+d)

I(a, b) - I(c, d) = lI(a-d, b-c)

T(a, b) + I(c, d) = T(atc, b+d)

T(a, b) - I(c, d) = T(a-d, b-c)

T(a, b) - T(c, d) = lI(a-d, b-c)

I(a, b) * c = l(a*c, b*c)

I(a, b) / c = lI(alc, b/c)

Da, b) < Dc, d := trueif b <c, false
if a >= d, otherwi se NULL (uncertain)

D(a, b) <=Dc, d := trueif b <= c,
false if a > d, otherwi se NULL (uncertain)
Da, b) > D(c, d := trueif a > d, false
if b <= c, otherwise NULL (uncertain)

Da, b) >=D(c, d := trueif a >=d,
false if b < c, otherwi se NULL (uncertain)
Da, b) = Dc, d := trueif a=Db=c =

d, false if b <c ORa > d, otherwi se NULL
(uncertain)

Da, b) <> Dc, d := trueif b<c ORa >
d, false if a=b =c¢c = d, otherwi se NULL
(uncertain)

These rules follow the well known mathematica interval arithmetic. An
informational link to a definition of mathematical interval arithmeticis
http://en.wikipediaorg/wiki/lnterval _arithmetic.

Verson 1.0.0 Second Preliminary 64

http://en.wikipedia.org/wiki/Interval_arithmetic

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

CIM Query Language Specification

Note that mathematical interval arithmetic is commutative and associative
for addition and multiplication, like ordinary arithmetic.

Note that mathematical interval arithmetic mandates the use of three-state
logic for the result of comparison operations, using a specia vaue called
"uncertain” to represent that a decision cannot be made. The special value
of "uncertain" is mapped to the NULL value in datetime comparison
operations.
Overflow and underflow condition checking is performed on the result of
the expression, as follows:
For timestamp results:
A timestamp older than the oldest valid value in the timezone
of the result produces an arithmetic underflow condition
A timestamp newer than the newest vaid value in the timezone
of the result produces an arithmetic overflow condition
For interval results:
A negative interval produces an arithmetic underflow condition
A positive interva greater than the largest vaid vaue produces
an arithmetic overflow condition

Specifications using the definition of these operations (for instance, query languages)
SHOUL D define how these conditions are handled.

Examples:

4.

If the result of the expression is again a datetime type, the microsecond
range gets converted into avalid datetime value such that the set of
asterisks (if any) determines arange that matches the actual result range,
or encloses it as closely as possble. The GMT timezone MUST be used
for any timestamp results.

Note that for most fields, asterisks can be used only with the granularity of
the entire field.

"20051003110000. 000000+000" + "00000000002233. 000000: 000"

eval uates to "20051003112233. 000000+000"

"20051003110000. ******+000" + "00000000002233. 000000: 000"

eval uates to "20051003112233. ******4+000"

"20051003110000. ******+000" + "00000000002233. 00000*: 000"

eval uates to "200510031122** . ******+000"

"20051003110000. ******+000" + "00000000002233. ******: 000"

eval uates to "200510031122** . ******+000"

"20051003110000. ******+000" + "00000000005959. ******: 000"

eval uates to "20051003****** ***x**1+00Q"

"20051003110000. ******+000" + "000000000022**. ******: (000"

eval uates to "2005100311**** ******+00Q"

"20051003112233. 000000+000" - "00000000002233. 000000: 000"

eval uates to "20051003110000. 000000+000"

"20051003112233. ******+000" - "00000000002233. 000000: 000"

Verson 1.0.0 Second Preliminary

CIM Query Language Specification

1893 eval uates to "20051003110000. ******+000"

1894 "20051003112233. ****** +000" - "00000000002233. 00000*: 000"
1895 eval uates to "20051003110000. ******+000"

1896 "20051003112233. ****** +000" - "00000000002232. * *****: 000"
1897 eval uates to "200510031100%* . ******+000"

1898 "20051003112233. ****** +000" - "00000000002233. * *****: 000"
1899 eval uates to "20051003* ***** **xx%xx4+000"

1900 " 20051003060000. 000000- 300" + "00000000002233. 000000: 000"
1901 eval uates to "20051003112233. 000000+000"

1902 "20051003060000. ******_.300" + "00000000002233. 000000: 000"
1903 eval uates to "20051003112233. ******+000"

1904 " 000000000011* *. *****x: 000" * 60

1905 eval uates to "0000000011**** ****xx:(QQ"

1906 60 tines adding up "000000000011%* *****%: 000"

1907 eval uates to "0000000011**** ****xx:(0Q"

1908 "20051003112233. 000000+000" = "20051003112233. 000000+000"
1909 eval uates to true

1910 "20051003122233. 000000+060" = "20051003112233. 000000+000"
1911 eval uates to true

1912 "20051003112233. ****** +000" = "20051003112233. * *****+000"
1913 eval uates to NULL (uncertain)

1914 "20051003112233. ****** +000" = "200510031122**_ ******4+000"
1915 eval uates to NULL (uncertain)

1916 "20051003112233. ****** +000" = "20051003112234. * ***** +000"
1917 eval uates to fal se

1918 "20051003112233. ****** +000" < "20051003112234. ****** +000"
1919 eval uates to true

1920 "20051003112233. 5***** +000" < "20051003112233. * ***** +000"
1921 eval uates to NULL (uncertain)

1922 Appendix E.2: Datetime BNF

1923 The URI grammar below uses Augmented BNF (ABNF) [3] with the following
1924 exceptions.

1925 1. Rules separated by abar (|) represent choices. (Instead of using aslash (/) as
1926 defined in ABNF).

1927 2. Ranges of aphabetic characters or numeric values are specified using two
1928 periods (..) placed between the beginning and ending values of the range.
1929 (Instead of using the minus sign (-) as defined in ABNF).

1930 3. Therulesdefined in this syntax are meant to be assembled into a complete
1931 guery by assuming whitespace characters between them, except where noted
1932 otherwise. (ABNF requires explicit specification of whitespace.)

1933 4. Thecomma(,) isused to explicitly designate concatenation of rules.

1934 (Instead of implicit concatenation of rules as specified by ABNF.)

1935 Note: ABNFis NOT case-sensitive.
1936
1937 The grammar is defined as follows:

1938 | dt-decimal-digit = "0" | "1" | "2" |"3" | "4" |"5" |"6" | "7" | "8" | "9"

1939

Verson 1.0.0 Second Preliminary 66

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1951
1952

1953
1954
1955
1956

1957
1958

1959
1960
1961

1962
1963
1964

1965
1966
1967

1968
1969
1970

1971
1972
1973

1974

1975
1976

CIM Query Language Specification

| dt-single-quote =

| dt-two-time-digits = (2* 2(dt-decimal-digit)) | ("**")

dt-microsecond-digits = 6* 6(dt-decimal-digit)

| 5*5(dt-decimal-digit), ("*")

| 4*4(dt-decimal-digit), ("**")

| 3*3(dt-decimal-digit), ("***")

| 2*2(dt-decimal-digit), ("****")
| 1*1(dt-decimal-digit), ("*****")
|

("******")

i Seethe CIM Infrastructure Specification [1] for a detailed description of
- the use of interval-specification.

dt-timestamp-specification = dt-single-quote,
(
| ((4*4(dt'deC|md'd|g|tS) | "****")' "**********"’
L (EEEEE ("), 3* 3(dt-decimal -digit))

- years: A timestamp with the year field set to 0000 isinterpreted as the
i year 1 BCE. A year field set to 0001 isinterpreted as the year 1 CE.

| (6*6(dt-decimal-digits), dt-two-time-digits, "******",
L (EEEEEE ("), 3* 3(dt-decimal -digit))

. months

| (8*8(dt-decima-digits), dt-two-time-digits, "****",
(R ("-"), 3* 3(dt-decimal -digit))

: days

| (10* 10(dt-decimal-digits), dt-two-time-digits,"**",
(R ("), 3* 3(dt-decimal -digit))

: minutes

| (12*12(dt-decimal-digits), dt-two-time-digits,
wn (ke (e 330G decimal-digit))

i seconds

| (14* 14(dt-decima-digits),
".", (dt-microsecond-digits), ("+"[*-"), 3* 3(dt-decimal-digit))

i microseconds

|), dt-single-quote

: Seethe CIM Infrastructure Specification [11] for a detailed description
. of the use of interval-specification.

Verson 1.0.0 Second Preliminary

1977
1978
1979

1980
1981
1982

1983
1984
1985

1986
1987
1988

1989
1990
1991

1992
1993
1994

1995

1996
1997

CIM Query Language Specification

dt-interval-specification = dt-single-quote,
((2dx 14"y, ., (FxFxExm) (), 3* 3(dt-decimal-digit))

. nothing

| (8*8(dt'd&|mal'd|g|t) | ("********"))’ ("******")’
n(eRseeRny oy 330t decimal-digit)

: days

| (8*.8(dt-deci mal-digits), dt-two-time-digits, "****",
(R (M), 3*3(dt-decimal-digit))

hours

| (10* 10(dt-decimal-digits), dt-two-time-digits,"**",
(e (M), 3* 3(dt-decimal -digit))

: minutes

| (12*12(dt-decimal-digits), dt-two-time-digits,
L (ErERRR) () 3* 3(dt-decimal-digit))

i seconds

| (14* 14(dt-decimaldigits),
".", (dt-microsecond-digits), (":"), 3*3(dt-decimal-digit))

i microseconds

), dt-single-quote

. Seethe CIM Infrastructure Specification [11] for a detailed description
: of the use of interval-specification.

Verson 1.0.0 Second Preliminary

68

