
CIM Query Language Specification

Version 1.0.0 Second Preliminary

CIM Query Language 1

Specification 2

 DSP0202 Status: Second Preliminary - 3
Pending 4

Copyright © 2000-2006 Distributed Management Task Force, Inc. (DMTF). All rights 5
reserved. 6
DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. 7
Members and non-members may reproduce DMTF specifications and documents for uses consistent with this purpose, provided that correct 8
attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be 9
noted. 10
Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including provisional 11
patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to the existence of such rights, and is not 12
responsible to recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 13
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or 14
circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such 15
party’s reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 16
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have 17
no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified 18
and held harmless by any party implementing the standard from any and all claims of infringement by a patent owner for such 19
implementations. 20
 21
For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or impact 22
implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php. 23

 24

C I M Q u e r y L a n g u a g e S p e c i f i c a t i o n 25
 26

Version 1.0.0h Second Preliminary - Pending 27
March 22, 2006 28

Abstract 29

The DMTF Common Information Model (CIM) utilizes basic object-oriented structure and 30
conceptualization techniques in its approach to managing hardware, software, systems, and 31
networks. This approach provides a formal consistent model that enables cooperative 32
development of an object-oriented schema across multiple organizations and problem 33
domains. 34

This document describes a query language used to extract data from a CIM-based 35
management infrastructure 36

 37

http://www.dmtf.org/about/policies/disclosures.php

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Table of Contents 38

Table of Contents.. i 39
1 Introduction and Overview... 1 40
2 Background Materials ... 2 41
3 Terminology .. 3 42
4 Requirements and Concepts ... 4 43
5 CIM Query Language (CQL) ... 6 44

5.1. CQL Introduction.. 6 45
5.2. Identifying the CIM Query Language ... 7 46
5.3. The Query Language Type Lattice .. 8 47
5.4. Query Language BNF... 10 48

5.4.1. Reserved Words.. 11 49
5.4.2. String Literals.. 12 50
5.4.3. Identifiers .. 12 51
5.4.4. Class Paths .. 13 52
5.4.5. Property Names... 13 53
5.4.6. Numeric Literals ... 14 54
5.4.7. Expressions ... 15 55
5.4.8. Sort Specification.. 23 56
5.4.9. Select List.. 24 57
5.4.10. From Criteria... 25 58
5.4.11. The Select Statement .. 26 59

5.5. Considerations of the Constructs in the BNF.. 27 60
5.5.1. Property Identification.. 27 61
5.5.2. Arrays .. 28 62
5.5.3. Embedded Objects .. 28 63
5.5.4. Symbolic Constants .. 29 64
5.5.5. Computation and Types.. 29 65
5.5.6. Comparisons.. 30 66
5.5.7. Comparisons of Array and Scalar.. 32 67

5.6. Query Language Functions... 33 68
5.6.1. Aggregation Functions ... 33 69
5.6.2. Numeric Functions ... 33 70
5.6.3. String Functions.. 34 71
5.6.4. Instance Functions .. 34 72
5.6.5. Path Functions... 35 73
5.6.6. Datetime Functions... 35 74

5.7. Query Considerations ... 37 75
5.8. Query Errors .. 38 76
5.9. Query Functional Description .. 39 77

6 CIM Query Template Language... 42 78
6.1. Pre-processor Examples.. 43 79

7 Examples.. 45 80
7.1. Discovery examples .. 45 81

CIM Query Language Specification

Version 1.0.0 Second Preliminary

ii

7.2. Event detection examples ... 51 82
7.3. Policy examples .. 54 83

Appendix A: Change History ... 56 84
Appendix B: Dependencies and References ... 59 85

Appendix B.1: Dependencies.. 59 86
Appendix B.2: References... 59 87

Appendix C: Acknowledgements .. 60 88
Appendix D: Regular Expression BNF ... 61 89

Appendix D.1: Basic Like Regular Expressions.. 61 90
Appendix D.2: Full Like Extended Regular Expressions.. 62 91

Appendix E: Datetime Operations and BNF... 63 92
Appendix E.1: Datetime Operations... 63 93
Appendix E.2: Datetime BNF... 66 94

 95
 96
 97

CIM Query Language Specification

Version 1.0.0 Second Preliminary

1 Introduction and Overview 98

CIM and WBEM support a query mechanism that is used to select sets of properties from 99
CIM object instances. Query support is available in some operations defined by the CIM 100
Operations Specification over HTTP [11] and some CIM classes within the Event [14] and 101
Policy [15] Models. Query definitions allow a WBEM client to specify the nature and the 102
number of instances that are selected and what information is returned from those instances. 103
This enables a WBEM managed environment to place less burden on the network 104
infrastructure. The precise mechanics for delivering query requests and receiving query 105
results are specified as a part of the CIM Operations over HTTP Specification [11]. 106

A CIM service implements a Query Engine to parse the query and evaluate its results. 107
Parsing enables the server to understand the query sufficiently to determine where it should 108
be processed (even if the query is executed by some other process acting as a data provider 109
for the server). The Query Language is divided into a base level of functionality and a 110
number of optional features, which determine the complexity of the syntax and semantics. 111
These features enables CIM service implementations, especially on simple or resource-112
sensitive installations, to support a query interpreter that best suits the needs of clients while 113
also taking the capabilities of the server into account. 114

CIM implementations that support query may also support a query template mechanism. A 115
query template can be used to model a generic query, and can be processed into a valid 116
query. An optional pre-processing facility may be implemented to convert a valid query 117
template into a valid query string. This feature allows for the writer of a query template to 118
provide a model for a query, but defer the decision on specific query elements to processing 119
point further along. It is important to note that the query template language can be used to 120
support the query engine, but is not part of the formal query language itself. 121

CIM Query Language Specification

Version 1.0.0 Second Preliminary

2

2 Background Materials 122

CIM's query design is based on concepts from both ISO/IEC's Structured Query Language 123
[12] (SQL-92) and W3C's XML-Query [13]. Basic understanding of the use of relational 124
databases is required. However specific knowledge of these other works is not required in 125
order to understand the CIM Query Language. 126

CIM Query Language Specification

Version 1.0.0 Second Preliminary

3 Terminology 127

Term Definition
CIM Common Information Model, an object-oriented definition of a

managed enterprise or Internet environment.
CIM Indications A CIM class hierarchy, starting at CIM_Indication, which defines

the data in various types of management notifications.
CIM service A service that provides access to CIM object instances.
From-criteria A definition of the range of data over which a query is conducted
Query An act of asking for specific data / For purposes of this document, a

query will specify the range of data of interest (the from-criteria),
the conditions under which data should be returned in the query
result (the search-condition), and the specific data to be returned (the
select-list), plus other processing options.

Search-condition A specification of the criteria/conditions that select data to be
returned in a query result.

Select-list A definition of the specific data to be returned in a query result.
SQL Structured Query Language [12] (SQL-92).
WBEM protocol A protocol specified by DMTF for accessing a CIM service over the

internet. One of these is defined by the CIM Operations over HTTP
specification [11].

WBEM service A CIM service that supports WBEM protocol interfaces.
XML-Query XML-based Query Language from W3C.

CIM Query Language Specification

Version 1.0.0 Second Preliminary

4

4 Requirements and Concepts 128

The CIM Query Language has been widely anticipated and exploited in the CIM Operations 129
over HTTP Specification, by the CIM Events Model [14], and by the CIM Policy Model 130
[15]. The language defines the desired instance-level data ranging over a certain set of 131
objects to be returned as the result of an ExecuteQuery CIM operation. Also, it defines the 132
conditions and data for Indications returned as a result of one of the following: 133

• subscription to CIM_IndicationFilter within the event model 134
• use of CIM_QueryCondition or CIM_MethodAction instances used within a 135

CIM_PolicySet. 136

Query semantics MUST include instance property projection (e.g., a SQL SELECT clause) 137
and a range (e.g., a SQL FROM clause) and MAY include predicate logic (e.g., a SQL 138
Where clause). This support (defined specifically using the keywords Select-From-Where) 139
was included in a preliminary version of the CIM Query specification, called the WBEM 140
Query Language (WQL), and implemented in various code bases, although the preliminary 141
specification was never released. It is important to maintain these keywords and concepts 142
(unless a critical performance or operational error is found), in order to prevent unnecessary 143
code churn. 144

As noted above, instance property projection MUST be supported. This is a mechanism to 145
select particular properties from a class to be included in a query response or Indication 146
object. The projection may include "static" entries that can be used for tagging the response 147
and/or Indication object. (These requirements are provided by the specific or array class-148
property-identifier and select-string-literal constructs, respectively.) In addition, the CIM 149
Query Language MUST: 150

• Support the ability to project meta-data such as instance name and instance class into 151
a response (see the OBJECTPATH() and CLASSPATH() methods, respectively). 152

• Support query of class versioning information (see the query of CLASSQUALIFIER 153
data). 154

• Define and support a mechanism for querying class inheritance/hierarchy in a query 155
predicate (provided using the ISA operator). 156

• Support the ability to query all data types as well as the entries of an array, since CIM 157
defines arrays of simple data types as valid class properties. 158

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Various other requirements for the query language have arisen over the last few years, as 159
work on the Event Model continued. Additional Event Model requirements are specific to 160
Indication processing but must be defined in the basic query language in order to have a 161
consistent BNF and query engine. These requirements are: 162

• The ability to set a returned property value (such as an Indication Priority which 163
could be overridden by a customer) 164

• The ability to specify a constant value set of properties to be returned 165
• Support accessing property values of an EMBEDDEDOBJECT 166

CQL is designed to operate on instances of one or more classes. Query operations on the 167
schema are not in the scope of CQL. However, referencing a certain set of class-level 168
information such as class names or qualifier values is supported within the ‘Extended Select 169
List’ feature. 170
 171
CQL MUST support polymorphism. This means, if a query is issued against a base class, all 172
derived class instances will be considered as well. For instance, consider: 173

 174
SELECT * 175
FROM CIM_Indication 176

 177
This would match all instances of derived classes of CIM_Indication. 178

CIM Query Language Specification

Version 1.0.0 Second Preliminary

6

5 CIM Query Language (CQL) 179

5.1. CQL Introduction 180

In its simplest form, the CIM Query Language is a subset of SQL-92 with some extensions 181
specific to CIM. It supports queries specified as follows: 182

 183
SELECT <select-list> 184
FROM <class list> 185
WHERE <selection expression> 186

 187
Where: 188

• A <select-list> is a comma-separated list of: 189
o CIM property names (optionally qualified by their class name) related to the 190

individual classes specified in the FROM clause. The asterisk (*) can be used 191
to specify ALL the properties of a class. The resultant column is named by 192
the property name, this may be modified using the keyword AS followed by a 193
new name. 194

o Literals, named via the keyword AS followed by a name. 195
o Function results, named via the keyword AS followed by a name. 196

• The <class-list> is a comma-separated list of class names. 197
• A <selection expression> specifies the criteria by which results are selected. It is 198

limited to relatively simple property comparisons. 199

Moving beyond the simple SELECT-FROM-WHERE format, the ORDER 200
BY functionality of SQL is added. Other capabilities of the language, unique 201
to CIM, are: 202

• the ability to process arrays via indices, 203
• the ability to query the properties of EMBEDDEDOBJECTs, and 204

the ability to traverse associations (based on the values of their REF 205
properties). 206

Queries are used to define the operation of some CIM classes, (e.g. CIM_IndicationFilter, 207
CIM_MethodAction and CIM_QueryCondition). If using CIM Operations, and if 208
supported, a client MAY issue a query via the ExecuteQuery operation (see the CIM 209
Operations over HTTP specification [11]. 210

CQL operates on instances of one or more class. Operations against the set of 211
classes are not supported. Some class-level information such as class names 212
and qualifier values are folded into the instances. 213

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.2. Identifying the CIM Query Language 214

In order to ensure uniqueness, valid values for query-language SHOULD conform to the 215
following syntax: <organization id>":"<language id>. 216

<organization id> MUST NOT include a colon (":") and MUST include a copyrighted, 217
trademarked or otherwise unique name that is owned by the entity that had defined query 218
language. For DMTF defined query languages, the <organization id> is "DMTF". 219

The <language id> MUST include a unique, (in the context of the identified organization), 220
name for the query language. 221

Following this convention, the string "DMTF:CQL" identifies the CIM Query Language. 222

CIM Query Language Specification

Version 1.0.0 Second Preliminary

8

5.3. The Query Language Type Lattice 223

The CQL type system incorporates the type system of the CIM Infrastructure Specification 224
[1][11], but also extends that type system, as follows: 225

For every class C, there is an "object of C" type, whose values may be either 226
• instances of C (including instances of any subclasses of C), or 227
• the class C itself, or one of C's subclasses. 228

Note that classes arise as CQL values only when they appear as embedded objects, and that 229
support for embedded objects is an optional feature of CQL. CQL implementations that do 230
not support embedded objects may consider the values for "object of C" to be limited to 231
instances of C (including instances of any subclasses of C). 232

The "object of C" types recapitulate the CIM class hierarchy, in that, if C1 is a superclass of 233
C2, then "object of C1" is a supertype of "object of C2". 234

There is an "object" type that is a supertype of "object of C" type, for all classes, C. 235

There is a "reference" type that is a supertype of "C REF" type, for all classes, C. 236

There is an "unsigned integer" type that is a supertype of uint8, uint16, uint32, and uint64. 237

There is a "signed integer" type that is a supertype of sint8, sint16, sint32, and sint64. 238

There is an "integer" type that is a supertype of unsigned integer and signed integer. 239

There is a "real" type that is a supertype of real32 and real64. 240

There is a "numeric" type that is a supertype of integer and real. 241

CIM defines a "datetime" type, which contains either timestamp or interval values. Note that 242
timestamp and interval are not defined as explicit types within CIM, but are defined by 243
Appendix E: Datetime Operations and BNF. A timestamp with the year field set to 0000 is 244
interpreted as the year 1 BCE. A year field set to 0001 is interpreted as the year 1 CE. 245

There is a "string" type that is the CIM datatype string. It contains a sequence of Unicode [4] 246
characters. The range of allowed code points is the same as the CIM datatype string. The 247
encoding form is defined by the specification that is using CQL. 248

There is a "char16" type that is the CIM datatype char16. It contains one Unicode [4] 249
character. The range of allowed code points is the same as the CIM datatype char16. The 250
encoding form is defined by the specification that is using CQL. 251

The CIM Infrastructure Specification [1] also defines a system of array types, which is 252
similarly extended. That is, every non-array type, T, in the CQL type lattice has a 253
corresponding array type, array of T. The structure of the array type lattice exactly matches 254

CIM Query Language Specification

Version 1.0.0 Second Preliminary

that of the non-array types, i.e., if T1 and T2 are non-array types, then array of T1 is a 255
supertype of array of T2 if and only if T1 is a supertype of T2. 256

CQL expressions are assigned types according to the rules that accompany the grammar, 257
below. Any CQL construct which has been assigned a particular type is said also to "have" 258
all the supertypes of that type. E.g., an expression which has been assigned type "object of 259
CIM_ManagedElement" also "has" type "object". 260

CIM Query Language Specification

Version 1.0.0 Second Preliminary

10

5.4. Query Language BNF 261

The CQL grammar below uses Augmented BNF (ABNF) [3] with the following 262
exceptions. 263

1. Rules separated by a bar (|) represent choices. (Instead of using a slash (/) as 264
defined in ABNF). 265

2. The rules defined in this syntax are meant to be assembled into a complete query by 266
assuming whitespace characters between them. (ABNF requires explicit specification 267
of whitespace.) 268

3. The comma (,) is used to explicitly designate concatenation of rules with all 269
intervening whitespace removed. (Instead of implicit concatenation of rules as 270
specified by ABNF.) 271

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Notes: 272
1. ABNF is NOT case-sensitive. 273
2. UNICODE-CHAR is a Unicode [4] character. The range of allowed codepoints is the 274

same as the range for the char16 datatype in the “CIM Query Type Lattice” section. 275
UNICODE-S1 is a subset of UNICODE-CHAR where the characters from the US-276
ASCII range {U+0000…U+007F} are limited to the set S1, where S1 = {U+005F, 277
U+0041…U+005A, U+0061…U+007A} [This is alphabetic, plus underscore]. The 278
encoding form of UNICODE-CHAR is defined by the specification that is using 279
CQL. 280

3. The CQL string (i.e. the entire string, beyond just string literals) uses Unicode [4] 281
characters. The encoding of the CQL string is the same as the encoding of 282
UNICODE-CHAR. 283

 284
In the following BNF, bold text marks a Basic Query component and italicized text marks 285
components not in the Basic Query feature. 286
 287
The grammar for all features is defined as follows. As much as possible, this grammar is 288
constructed to be LALR(1)-parsable. 289

5.4.1. Reserved Words 290

AND = “AND” 291
ANY = "ANY" 292
AS = "AS" 293
ASC = "ASC" 294
BY = "BY" 295
CLASSQUALIFIER = "CLASSQUALIFIER" 296
DESC = "DESC" 297
DISTINCT = "DISTINCT" 298
EVERY = "EVERY" 299
FALSE = "FALSE" 300
FIRST = "FIRST" 301
FROM = "FROM" 302
IN = "IN" 303
IS = "IS" 304
ISA = "ISA" 305
LIKE = "LIKE" 306
NOT = "NOT" 307
NULL = "NULL" 308
OR = “OR” 309
ORDER = "ORDER" 310
PROPERTYQUALIFIER = "PROPERTYQUALIFIER" 311
SATISFIES = "SATISFIES" 312
SELECT = "SELECT" 313
TRUE = "TRUE" 314

CIM Query Language Specification

Version 1.0.0 Second Preliminary

12

WHERE = "WHERE" 315

5.4.2. String Literals 316

single-quote = "'" 317
 318
literal-string = single-quote, *(UNICODE-CHAR | char-escape , single-quote) 319

The use of char-escape for the non-printable Unicode characters these 320
escape sequences represent, is mandatory. 321

char-escape = "\", ("\" | single-quote | "b" | "t" | "n" | "f" | "r" | ("u", 4*4(hex-digit) 322
) 323
 | ("U", 8*8(hex-digit))) 324

The escape characters directly following the initial backslash are case 325
sensitive, even though ABNF is case insensitive. The meaning of these 326
escape characters is: 327
 \\ - Backslash (U+005C) 328
 \' - Single Quote (U+0027) 329
 \b - Backspace (U+0008) 330
\t - Horizontal Tab (U+0009) 331
\n - Line Feed (U+000A) 332
\f - Form Feed (U+000C) 333
\r - Carriage Return (U+000D) 334
\u<hex> - One Unicode character, with <hex> being exactly 4 hexadecimal 335
digits in any lexical case, to be interpreted as a Unicode [4] code point. 336
Note: the hexidecimal value is not in an encoded form, but is given as a code 337
point. 338
\U<hex> - One Unicode character, with <hex> being exactly 8 hexadecimal 339
digits in any lexical case, to be interpreted as a Unicode [4] code point. 340
Note: the hexidecimal value is not in an encoded form, but is given as a code 341
point. The range of allowed code points is \u0 to \u10FFFF, unless restricted 342
by the range of the CIM datatype char16. 343
 344
Note: The escaping of double quotes is not necessary within a literal string, 345
since only single quotes can be used to delimit string literals. If the entire 346
CQL string is put into an environment that uses double quotes to delimit that 347
string (e.g. as a default value for properties in the MOF), then that 348
environment must define the escape rules for double quotes. 349

5.4.3. Identifiers 350

identifier-start = UNICODE-S1 351
 352
identifier-subsequent = identifier-start | DECIMAL-DIGIT 353
 354

CIM Query Language Specification

Version 1.0.0 Second Preliminary

identifier = identifier-start, *(identifier-subsequent) 355

5.4.4. Class Paths 356

class-name = identifier 357
The identifier MUST be in accordance with the definition of classname in the 358
CIM Infrastructure Specification [1]. 359

class-path = [literal-string "."] class-name 360
If specified,literal-string MUST conform to the format of the namespacePath 361
production defined in the WBEM URI Mapping Specification, DSP0207. 362

5.4.5. Property Names 363

property-scope = class-path "::" 364
The scoping operator “::” provides a class within which the property name 365
identifier is interpreted. Generally, the class of the property is sufficient. 366
However, if a property of a class is covered by another property, having the 367
same name, that belongs to a subclass, then the “::” syntax is required to 368
access the covered property when in the scope of the covering subclass. 369
Details on how to determine which property to use are in Section 5.4.1. 370

 371

CIM Query Language Specification

Version 1.0.0 Second Preliminary

14

5.4.6. Numeric Literals 372

The numeric literals are intended to agree with the numeric literals of MOF, as defined in the 373
CIM Infrastructure Specification [1]. 374
 375
sign = "+" | "-" 376
 377
binary-digit = "0" | "1" 378
 379
binary-value = [sign] 1*(binary-digit) "B" 380

Since ABNF is case insensitive, this defines both upper and lower case. 381

decimal-digit = binary-digit | "2" | "3" | "4" | "5" 382
 | "6" | "7" | "8" | "9" 383
 384
hex-digit = decimal-digit 385
 | "A" | "B" | "C" | "D" | "E" | "F" 386

Since ABNF is case insensitive, this defines both upper and lower case. 387

hex-digit-value = [sign] "0X" 1*(hex-digit) 388
Since ABNF is case insensitive, this defines both upper and lower case. 389

unsigned-integer = 1*(decimal-digit) 390
 391
decimal-value = [sign] unsigned-integer 392
 393
exact-numeric = unsigned-integer "." [unsigned-integer] | 394
 "." unsigned-integer 395
 396
real-value = [sign] exact-numeric ["E" decimal-value] 397

Since ABNF is case insensitive, this defines both upper and lower case. 398

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.4.7. Expressions 399

Expressions describe the calculation of values used in the SELECT and WHERE clauses. 400
 401
literal = literal-string 402

A literal-string has string type. 403

| decimal-value 404
A decimal-value has integer type 405

| binary-value 406
A binary-value has integer type 407

| hex-digit-value 408
A hex-digit-value has integer type 409

| real-value 410
A real-value has real type 411

| TRUE | FALSE 412
These literals have Boolean type. Since ABNF is case insensitive, this 413
defines both upper and lower case. 414
 415

arg-list = “*” | ([DISTINCT] expr) 416
 417
chain = literal 418

The type of the literal is taken as the type for this production. 419

| "(" expr ")" 420
The type of the expr is taken as the type for this production. 421

CIM Query Language Specification

Version 1.0.0 Second Preliminary

16

| identifier 422
The identifier is interpreted as one of the following: 423
• If the identifier matches the name bound by an enclosing SATISFIES 424

production for array-comp, then the identifier is treated as a variable 425
whose type is determined by the SATISFIES expression. Variables 426
bound by a SATISFIES expression are described at that production. 427

• Otherwise, if the identifier matches a class alias that appears in a FROM 428
criterion on a class C, then the identifier refers to an instance of C, and 429
has type object of C; 430

• Otherwise, if the identifier matches the name of a class C that appears in 431
a FROM criterion without a class-alias, then the identifier refers to an 432
instance of C, and has type object of C; 433

• Otherwise, if exactly one property defined by the CIM classes in the 434
FROM clause, or their superclasses, matches identifier, then the 435
identifier refers to that property, (see 5.5.1 Property Identification 436
below), and the type of the identifier is determined by that property; 437

• For Basic Query, properties qualified with EMBEDDEDINSTANCE or 438
EMBEDDEDOBJECT shall be treated as type character string. 439
 440
If query feature "Embedded Properties" is supported then the ability to 441
directly access properties of the embedded instance shall be supported. 442

• Otherwise, is the query is invalid. 443
If type is Array, then this form without a following “[“ is equivalent to 444
“Identifier [*]”, and only “=” and “<>” comparisons are allowed. 445

| property-scope identifier 446
Property-scope declares that the identifier identifies a property exposed by 447
the property-scope classname, (see 5.5.1 Property Identification below.) The 448
type of the property is taken as the type of this production. 449

| chain CLASSQUALIFIER identifier 450
chain MUST be of type object of C for some class C. This production refers 451
to a qualifier on that class, and the type of the expression is the type of that 452
qualifier. If the class does not expose a qualifier with this name, the 453
qualifier's default value applies. 454

| identifier "#" literal-string 455
identifier MUST unambiguously identify a property, (see 5.5.1 Property 456
Identification below.). The type of the property is taken as the type of this 457
production. This production forms a symbolic constant based on the 458
VALUES and VALUEMAP qualifiers; see 5.5.4 Symbolic Constants, below. 459

 460

CIM Query Language Specification

Version 1.0.0 Second Preliminary

| identifier "(" arg-list ")" 461
identifier MUST be the name of a query language function. See 5.6 Query 462
Language Functions for type rules of function calls. For Basic Query, only 463
the numeric, string, instance, path, pathname, and datetime functions shall be 464
supported. Note in particular that this syntax does NOT describe the 465
invocation of a method defined on a CIM class. 466

| chain "." [property-scope] identifier 467
Chain MUST have type object of C for some class C. 468
Identifier MUST be the name of a property. For details on the selection of 469
the identified see 5.5.1 Property Identification below below. The type of this 470
production is the type of the property. 471
For Basic Query, chain is restricted to be a class name or class-alias bound in 472
the FROM clause, i.e., Basic Query does not support extraction of properties 473
from embedded objects. 474

| identifier1 PROPERTYQUALIFIER identifier2 475
This production refers to a property qualifier. Identifier1 MUST 476
unambiguously identify a property, (see 5.5.1 Property Identification below), 477
and the type of the expression is the type of that qualifier. If the property 478
doesn't expose a qualifier with this name, the qualifier's default value applies. 479

| chain "." [property-scope] identifier1 480
 PROPERTYQUALIFIER identifier2 481

chain, property-scope (if present), and identifier1 together identify a property, 482
as described in 5.5.1 Property Identification below. This production refers to 483
the value of a property qualifier from that property, and the type of the 484
expression is the type of that qualifier. If the property doesn't expose a 485
qualifier with this name, the qualifier's default value applies. 486
For Basic Query, chain is restricted to be a class name or class-alias bound in 487
the FROM clause, i.e., Basic Query does not support extraction of properties 488
from embedded objects. 489

| chain "." [property-scope] identifier 490
 "#" literal-string 491

chain, property-scope (if present), and identifier together identify a property, 492
as described in 5.5.1 Property Identification below. This production forms a 493
symbolic constant based on the VALUES and VALUEMAP qualifiers; see 494
5.5.4 Symbolic Constants, below. The type of this expression is the type of 495
the identified property. 496
For Basic Query, chain is restricted to be a class name or class-alias bound in 497
the FROM clause, i.e., Basic Query does not support extraction of properties 498
from embedded objects. 499

| chain "[" array-index-list "]" 500
chain MUST have type array of T. If array-index-list comprises just a single 501
expr, then this production has type T; otherwise, the production has type 502
array of T. 503

CIM Query Language Specification

Version 1.0.0 Second Preliminary

18

concat = chain 504
The type of the chain is taken as the type of this production. 505

| concat "||" chain 506
concat and chain MUST have string or char16 type, and the result has string 507
type. 508

 509
factor = concat 510

The type of the concat is taken as the type of this production. 511

| ("+" | "-") concat 512
When this production is used, concat MUST have numeric type, which will 513
be the type of the production 514
If concat is NULL, then the production evaluates to NULL. 515

term = factor 516
The type of the factor is taken as the type of this production. 517

| term "*" factor 518
If term and factor both have numeric types, the production has numeric type. 519
If term has a numeric type, and factor has datetime type and evaluates to an 520
interval, then the production has datetime type and will produce an interval 521
value. 522
If term has datetime type and evaluates to an interval, and factor has a 523
numeric type, then the production has datetime type and will produce an 524
interval value. The rules for operations with datetime type operands are 525
defined in Appendix E.1: Datetime Operations. 526
If term or factor is NULL, then the production evaluates to NULL. 527
No other type combinations are allowed. 528

| term "/" factor 529
If term and factor both have numeric types, the production has numeric type. 530
If term has a datetime type and evaluates to an interval, and factor has a 531
numeric type, the production has datetime type and will produce an interval 532
value. The rules for operations with datetime type operands are defined in 533
Appendix E.1: Datetime Operations. 534
If term or factor is NULL, then the production evaluates to NULL. 535
No other type combinations are allowed. 536

arith = term 537
The type of the term is taken as the type of this production. 538

| arith ("+" | "-") term 539
If arith and term both have numeric type, the result has numeric type. 540

CIM Query Language Specification

Version 1.0.0 Second Preliminary

If arith and term have datetime types, then refer to Appendix E.1: Datetime 541
Operations for a definition of the operation. 542
No other type combinations are allowed. 543
If arith contains multiple occurences of arithmetic operators, normal 544
mathematical precedence rules apply. 545
If arith or term is NULL, then this production evaluates to NULL. 546

value-symbol = "#" literal-string 547
This is a degenerate syntax for symbolic constants, used only for direct 548
comparison; type is determined by context. See productions for comp. 549

arith-or-value-symbol = arith | value-symbol 550
 551
comp-op = "=" | "<>" | "<" | "<=" | ">" | ">=" 552
 553

CIM Query Language Specification

Version 1.0.0 Second Preliminary

20

comp = arith 554
The type of the arith is taken as the type of this production. 555

| arith IS [NOT] NULL 556
This production has type Boolean. 557

| arith comp-op arith 558
This production has type Boolean for all cases in which it applies. See 5.5.6 559
Comparisons for more detailed description of comparisons. 560
If either arith is NULL, then the production evaluates to NULL. 561

| chain comp-op value-symbol 562
The left-hand-side MUST be a property reference, and that property is used 563
as the context for the value-symbol, see 5.5.4 Symbolic Constants below. 564
This production has type Boolean for all cases in which it applies. See 5.5.6 565
Comparisons for more detailed description of comparisons. 566
If chain or the value-symbol is NULL, then the production evaluates to 567
NULL. 568

| value-symbol comp-op chain 569
The right-hand-side MUST be a property reference and that property is used 570
as the context for the value-symbol, see 5.5.4 Symbolic Constants below. 571
This production has type Boolean for all cases in which it applies. See 5.5.6 572
Comparisons for more detailed description of comparisons. 573
If chain or the value-symbol is NULL, then the production evaluates to 574
NULL. 575

| arith ISA identifier 576
The left-hand-side MUST be either an instance, or a property containing an 577
EMBEDDEDOBJECT or EMBEDDEDINSTANCE. The right-hand-side 578
MUST be the name of a class or a class-alias. 579
The ISA tests whether the left-hand-side is of the class or a subclass of the 580
class named by the right-hand-side identifier. 581
If arith is NULL, then the production evaluates to NULL. 582
The production has Boolean type. 583

| arith LIKE literal-string 584
arith MUST have string or char16 type; the result has Boolean type. 585
If arith is NULL, then the production evaluates to NULL. 586
The Basic Query feature only includes the Like features described in: 587
Appendix D.1: Basic Like Regular Expressions. 588

| arith LIKE arith 589
Both sides of the LIKE comparison must have string or char16 type; the 590
result has Boolean type. The LIKE comparison allows a string or char16 to 591
be tested by pattern-matching, using special characters in the pattern on the 592
right-hand-side. See Appendix D.2: Full Like Extended Regular Expressions 593

CIM Query Language Specification

Version 1.0.0 Second Preliminary

If either arith is NULL, then the production evaluates to NULL. 594

| array-comp 595
 596
expr-factor = comp 597

The type of the comp is taken as the type for this production. 598

| NOT comp 599
comp MUST have Boolean type; this production has Boolean type. 600
The following table defines the result of the NOT expression: 601
comp NOT comp

TRUE FALSE

FALSE TRUE

NULL NULL

expr-term = expr-factor 602
The type of the expr-factor is taken as the type for this production. 603

| expr-term AND expr-factor 604
expr-term and expr-factor must both have Boolean type; the production has 605
Boolean type. 606
The following table defines the result of the AND expression: 607
expr-term expr-factor expr-term AND expr-factor

TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE FALSE

FALSE FALSE FALSE

FALSE NULL FALSE

expr = expr-term 608
The type of the expr-term is taken as the type for this production. 609

CIM Query Language Specification

Version 1.0.0 Second Preliminary

22

| expr OR expr-term 610
expr and expr-term must both have Boolean type; the production has Boolean 611
type. 612
The following table defines the result of the OR expression: 613
expr-term expr-factor expr-term OR expr-factor

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

 614

array-index = expr 615
expr MUST have unsigned integer type. 616
Array indices are zero-relative. Note that arrays defined with the qualifier 617
'ArrayType ("Bag")' SHOULD NOT be referenced using specific indices 618
since these may vary across retrievals and time. 619

| expr ".." [expr] 620
Both exprs MUST have unsigned integer type. The ".." notation is used to 621
specify ranges of indices within an array. 622

| ".." expr 623
expr MUST have unsigned integer type. 624

array-index-list = array-index *("," array-index) 625
The array-index-list specifies one or more elements of an array. 626

| "*" 627
This array-index-list refers to all the elements of the array. 628

| "" 629
This array-index-list refers to none of the array elements. x[] is an empty 630
array with the same type as x, for any x with array type. 631

 632

CIM Query Language Specification

Version 1.0.0 Second Preliminary

array-comp = (ANY | EVERY) arith 633
 comp-op arith-or-value-symbol 634

arith MUST have type array of T. Each element of arith's value will be 635
compared to the value of the arith-or-value-symbol. If ANY is specified, the 636
results of these comparisons are combined as if by OR; if EVERY is 637
specified, the results are combined as if by AND. 638

| arith-or-value-symbol comp-op (ANY | EVERY) arith 639
This production acts like the preceding one, except that the array value 640
appears on the right-hand side. 641

| (ANY | EVERY) identifier IN expr 642
 SATISFIES "(" comp ")" 643

The SATISFIES construct makes identifier available as a name whose scope 644
is the included comp. expr MUST have type array of T, in which case 645
identifier will have type T within comp. Identifier MUST NOT be the same 646
as any name established by the from-criteria, and MUST NOT be the same as 647
any name established by any surrounding SATISFIES clauses. 648

5.4.8. Sort Specification 649

sort-spec = expr (ASC | DESC) 650
The specified expr MUST be defined in the SELECT clause. Note that 651
properties resulting from the specification of a star-expr as the selected-entry 652
can be subject to sorting. NULL values are considered "higher" than all 653
other values. If the ORDER BY clause does not completely order the 654
instances of the resbult set, instances with duplicate values in sorting 655
properties will be displayed in an arbitrary order. 656

sort-spec-list = sort-spec *("," sort-spec) 657

CIM Query Language Specification

Version 1.0.0 Second Preliminary

24

5.4.9. Select List 658

star-expr = "*" 659
This production refers to all the properties exposed by all classes defined in 660
the from-criteria. This includes uncovered properties of superclasses of the 661
from-criteria classes. Properties of subclasses of the from-criteria classes are 662
NOT included. 663
Covered properties (i.e. properties of the same name that are not overridden 664
MAY be explicitly referenced by using the scoping operator “::” in the expr 665
of the selected-entry production. 666
As a consequence of these rules, the property list produced does NOT vary 667
over the query. For example, if referencing a CIM 2.8 schema and the from-668
criteria includes CIM_ManagedSystemElement, then the properties 669
‘Caption’, ‘Description’, ‘ElementName’, ‘InstallDate’, ‘Name’, 670
‘OperationalStatus’, ‘StatusDescriptions’, and ‘Status’ would be included. 671

| chain "." [property-scope] "*" 672
chain MUST have type object of C for some class C. If property scope is not 673
present, this production refers to all the properties exposed by C, including 674
those of C's superclasses. Properties of subclasses of C are NOT included in 675
the set. If property-scope is present and identifies some class S, it must be the 676
same class as, or be a superclass of, class C; this production refers to all the 677
properties exposed by S, including those of S’s superclasses. Properties of 678
subclasses of S are NOT included in the set. The property list produced does 679
NOT vary over the query. 680

selected-entry = expr [AS identifier] 681
expr may have any primitive, reference, or array type, and defines the type of 682
the column defined by this production. If the type of the expression is an 683
object type, then the corresponding result column MUST have string type, 684
and be populated with string representations of the values. 685
The set of column names in the query result MUST NOT contain duplicates. 686
To avoid duplicated column names in the query result, the "AS identifier" 687
clause is used to explicitly specify a name. If the “AS identifier” clause is not 688
present, then the selected entry MUST be a property reference, and the expr 689
itself (minus any white space) is taken as the name of the corresponding 690
result column. Note that this means that Basic Query allows only properties 691
in the select-list. 692
If there is more than one entry in the FROM list, then each selected entry that 693
is a property reference MUST be a chain expression starting with either a 694
class name or an alias that is included in the FROM list. 695
 696

| star-expr 697
This generates a set of selected entries in the query result where the “*” is 698
enumerated to be a list of properties. The set of selected entries is taken as 699
the default names for a sub-set of the columns returned. 700

CIM Query Language Specification

Version 1.0.0 Second Preliminary

If there is more than one entry in the FROM list, then each star-expr MUST 701
be a chain expression starting with either a class name or an alias that is 702
included in the FROM list. 703

 704
select-list = selected-entry *("," selected-entry) 705

If the select-list contains any aggregating expressions, then all items in the 706
select-list MUST be aggregating expressions. 707

5.4.10. From Criteria 708

subquery = select-statement 709
 710
from-specifier = class-path [[AS] identifier] 711

Each from-specifier using this production identifies a CIM class which will 712
participate in the query, along with a name by which instances of that class 713
will be referenced in the query. If the explicit identifier is present, it is the 714
name that will be used; otherwise, the name of the class will be used as the 715
name. 716
Even if the explicit identifier is present, the name of the class may also be 717
used as an alternative name for instances of the class, provided such use 718
would not conflict with a name established by any other from-specifier. 719
Additionally, each property of the class identified by class-path can be 720
accessed by its name alone, provided that name doesn’t conflict with any 721
other property or class name in the from-criteria. 722

| "(" subquery ")" identifier 723
This production defines identifier as a name by which the rows returned by 724
the subquery are identified. The subquery is self-defined. There is no 725
correlation between identifiers used within the select-statement of the 726
subquery and those used within the select-statement containing the subquery. 727

 728
from-criteria = from-specifier *("," from-specifier) 729

CIM Query Language Specification

Version 1.0.0 Second Preliminary

26

5.4.11. The Select Statement 730

search-condition = expr 731
expr MUST have Boolean type. 732

select-statement = SELECT [FIRST unsigned-integer] [DISTINCT] 733
 select-list 734
 FROM from-criteria 735
 [WHERE search-condition] 736
 [ORDER BY sort-spec-list] 737

This clause produces information that represents the rows returned by the 738
query. Each row has an entry for each selected-entry. 739
The FROM clause produces a candidate set of rows from instances identified 740
by the from-criteria. 741
When present, the WHERE clause rejects all rows of the candidate set 742
produced by the FROM clause except those for which the search-condition is 743
evaluates to true. (Evaluation to NULL is NOT the same as true.) 744
The select-list selects particular columns of the rows of the candidate set and 745
also MAY introduce additional derived columns. 746
If DISTINCT is used, all but one of each set of duplicate rows will be 747
eliminated from the result set. Two instances are considered duplicates of 748
one another if and only if the values of all of the properties, (including those 749
of embedded instances), are equal after the projection operation has been 750
executed. When determining duplicates, two NULL values are considered 751
equal. 752
If FIRST is used, the result set will only contain the first N rows. Typically, 753
this clause is used with ORDER BY to define a specific and repeatable sort 754
order of the results, and then define the number of instances to return. Note 755
that the sort order for string or char16 is defined by the rules for operator 756
“=”, operator “<”, and operator “>” in the Comparison section. Note that if 757
DISTINCT is also specified, the duplicate entries are eliminated before the 758
FIRST N instances are determined. If N instances do not exist, then all the 759
available instances are returned and the query completes normally. 760

start = select-statement 761

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.5. Considerations of the Constructs in the BNF 762

The CIM Query Language does not currently define "data change" operations (INSERT, 763
DELETE or UPDATE). These may be added at a later time, but are not currently required. 764
Today, these operations are supported by invoking individual operations defined in the CIM 765
Operations over HTTP Specification [11]. 766

CQL queries only operate against instances and their properties. They do not have the 767
ability to query the supported schema, or invoke methods of instances. Query does support 768
the ability to determine if an instance is a member of a CLASS via the ISA operator. 769

Several of the constructs in the BNF require usage information and/or additional explanation, 770
as described below. 771

5.5.1. Property Identification 772

A CIM class may expose more than one property with a given name, but it is not permitted to 773
define more than one property with a particular name. This can happen if a base class defines 774
a property with the same name as a property defined in a derived class without overriding the 775
base class property. The scoping operator, "::", is used to provide an explicit context for 776
resolving identifiers to properties. 777
 778
The general syntax by which a property is identified is: 779
 [chain "."]] [property-scope] identifier, where chain MUST have type object of C. 780
 781
Property names identify properties relative to a class context. Given a class context C, the 782
search for the property begins at C and selects a property defined on C whose name matches 783
the identifier, if there is one; if C does not define a property with this name, then the search 784
continues with C's direct superclass, and so on. If no property is located with this search, 785
then the property reference is invalid. 786
 787

CIM Query Language Specification

Version 1.0.0 Second Preliminary

28

The class context is determined according to the following rules: 788
• If property-scope is present, then it declares the class context C. 789

o If the scoped identifier does NOT name a property exposed by C, then the query 790
is invalid. 791

o If chain is NOT present, C MUST be the same as, a superclass of, or a subclass 792
of, exactly one entry in the FROM list. In this case, chain is inferred to refer to 793
instances produced by that FROM list entry. 794

o If chain is present, and it has type object of D, for some D, then C MUST be the 795
same as, or a superclass of, or a subclass of D. 796

o If chain is present, and it does NOT have type object of D for some D, then chain 797
MUST have type object. 798

o If the value of the chain expression is NOT of class C, (or subclasses of C), then 799
the application of the property produces NULL. 800

• Otherwise, if chain "." is present, then chain MUST be of type object of C, and C is the 801
class context. 802

• Finally if neither are present, then the identifier must be declared in at most one of the 803
classes named in the FROM list. 804

• Otherwise the context cannot be determined, and the query is invalid. 805
 806

5.5.2. Arrays 807

For properties of type Array, [*] is implicitly used if no specific array-index-list is given, so 808
e.g. “OperationalStatus” has the same semantical meaning as “OperationalStatus[*]”. For 809
more details on Arrays, please refer to the CIM specification (DSP0004). 810

5.5.3. Embedded Objects 811

An embedded object is conveyed as a property of type string annotated only with the 812
EMBEDDEDOBJECT qualifier. This qualifier indicates that the property's value is to be 813
interpreted as an embedded object, but identifies neither whether the embedded object will be 814
a class or an instance, nor the class to which the embedded instances belong. For this reason, 815
expressions in CQL which refer to string properties with the EMBEDDEDOBJECT qualifier are 816
assigned type object. Reference to the embedded properties of that property have their native 817
type unless they too are qualified with EMBEDDEDOBJECT. 818
 819
The actual type of an EMBEDDEDOBJECT is not known until an instance is selected. This can 820
lead to situations in which the type of a projected result cannot be determined in advance of 821
the query's execution, and, indeed, may vary even within the execution of a single query. 822
This affects the resolution of properties of the embedded object. To remove ambiguity, 823
queries that concern themselves with properties of embedded objects MUST use the scoping 824
operator ("::") to scope those properties. A CQL implementation MUST reject any query 825
which involves expressions whose type cannot be determined. 826
 827

CIM Query Language Specification

Version 1.0.0 Second Preliminary

For example, the following would be permitted since both properties of SourceInstance were 828
provided a scope. The DeviceID property would be returned as NULL when SourceInstance 829
is a CIM_PhysicalElement. 830
 831
 SELECT SourceInstance. CIM_LogicalDevice::DeviceID, 832
 SourceInstance. CIM_ManagedSystemElement::OperationalStatus 833
 FROM CIM_InstIndication 834
 WHERE SourceInstance ISA CIM_LogicalDevice 835
 OR SourceInstance ISA CIM_PhysicalElement 836

5.5.4. Symbolic Constants 837

The "#" syntax uses the VALUES and VALUEMAP qualifiers of a property to look up an 838
enumerated value that a particular property may take. The property MUST expose a 839
VALUES qualifier, and the accompanying literal-string MUST match one of the strings in 840
the VALUES qualifier's value. 841
 842
If the property does not also expose a VALUEMAP qualifier, then the property MUST have 843
integer type, and the index of the literal-string among the VALUES qualifier's value is taken 844
as the value of this production. If, conversely, the property does also expose a VALUEMAP 845
qualifier, then the value for this production will be based on the value in the VALUEMAP 846
array corresponding to the selected value of the VALUES array, as follows: (1) if the 847
property has type string, then the VALUEMAP entry itself is the value of the production; 848
otherwise, (2) the property MUST have integer type, the VALUEMAP entry MUST NOT 849
include the sequence "..", and the VALUEMAP entry is converted into an integer of the 850
appropriate type. E.g., CIM_FCPort.OperationalStatus#'OK' is equivalent to the constant 2, 851
and CIM_FCPort.OperationalStatus#'Predictive Failure' is equivalent to 5. 852
 853
If the expression on one side of a comparison identifies exactly one property,then the # 854
syntax MAY be used in a standalone form on the opposite side of the comparison. The 855
identified property becomes the defining context of the symbolic constant. For example: 856
 CIM_FCPort.OperationalStatus[3] > #'OK' 857
is equivalient to 858

CIM_FCPort.OperationalStatus[3] > CIM_FCPort.OperationalStatus #'OK' 859
 860
If a class name is used to qualify a symbolic constant, that class does not need to be related to 861
any class in the query. For example the following query is valid even though 862
CIM_LogicalDevice has nothing to do with the query: 863

SELECT * FROM CIM_AlertIndication WHERE AlertType > 864
CIM_LogicalDevice.OperationalStatus#’OK’ 865

5.5.5. Computation and Types 866

The use of arithmetic operators causes numeric types to be "widened" as necessary to 867
minimize the loss of precision. Unless both operands are unsigned, addition, subtraction, and 868
multiplication among integer types results in sint64. If both operands are unsigned, then the 869

CIM Query Language Specification

Version 1.0.0 Second Preliminary

30

result is uint64. Otherwise (i.e., all cases of division, as well as addition, subtraction, or 870
multiplication involving at least one non-integer type), all arithmetic operations produce 871
real64 type. If an overflow or underflow occurs, an error is returned. 872
Arithmetic and comparisons on datetime types are defined in Appendix E: Datetime 873
Operations and BNF 874

5.5.6. Comparisons 875

Comparison is supported between all numeric types. When comparisons are made between 876
different numeric types, comparison is performed using the type with the greater precision. 877
 878
Comparison between strings and between char16 values is supported, and is done case-879
sensitively on a unicode character basis. A comparison between a string and a char16 is 880
accomplished by treating the char16 value as a single-character string. For string and char16 881
comparison and sort operations, the Default Collation Algorithm as defined in ISO/IEC 882
14651 [21] and Unicode Technical Report #10 [20] MUST be applied. Unicode character 883
based comparison is done as follows: 884
 885
The "=" and '<>" operators MUST use the string identity matching rules defined in W3C 886
"Character Model for the World Wide Web 1.0: Normalization" [7], section 4 "String 887
Identity Matching". 888
 889
The following rules apply to comparison between strings and char16 values using the "<", 890
and ">" operators: 891
 892
1) For Basic Query, these operators MUST behave as if the normalization defined in 893
"Character Model for the World Wide Web 1.0: Normalization" [7], section 4 "String 894
Identity Matching", was applied and then the comparison was performed on the resulting 895
strings. The strings are compared from the beginning, on a Unicode character basis. Each 896
character is compared based on its Unicode codepoint order. The first character found to be 897
different determines the result of the comparison. If the strings are of different lengths, but 898
are otherwise equal, then the longer string is greater than the shorter string. Note: for 899
implementations that use the UTF-8 or UTF-32 as the encoding, the binary order of the 900
encoded characters matches the Unicode codepoint order. For UTF-16, the binary order of 901
the supplementary characters does not match their Unicode codepoint order. For more 902
information, refer to section 2.5 of "The Unicode Standard" [5]. 903
 904
2) For the Full Unicode feature, these operators MUST behave as if the normalization 905
defined in [7], section 4 "String Identity Matching", was applied and then the default 906
collation order defined in the Unicode Collation Algorithm [8] was used on the resulting 907
strings. Note that this collation order accomodates most languages, without having to take 908
any locales into account. 909
 910
 911
 912

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Comparison between datetime types is supported and is defined in Appendix E: Datetime 913
Operations and BNF. 914
 915
Comparison between Boolean values, complete Arrays and References is supported, but is 916
limited to the "=" and "<>" operators. 917
 918
Reference comparison is performed via a process of comparing certain components of the 919
references. The components to be compared are the namespace type, namespace handle, and 920
model path, as defined by the CIM Infrastructure Specification [1]. Two references are 921
considered to be equal if all of the following conditions are true: 922

• For the model path, all of the following conditions must be true: There must be the 923
same number of key property name/value pairs. For each key property name/value 924
pair in one reference, exactly one matching key property name/value pair must be 925
found in the other reference. The order of the key property name/value pairs does not 926
affect the comparison. Comparison is done case-insensitively for key property 927
names. Key property values are compared according to their type, as defined in 928
section 5.4.6, Comparisons. 929

• For all components except the model path, the comparison is done case-insensitively. 930
 931
Note: the implementation MAY perform reference comparisons using alternative, but 932
equivalent, paths or representations. 933
 934
Comparison of classes REQUIRES that the ClassName is the same and that the properties 935
and property types defined by this class and by each superclass in the classes hierarchy 936
compare equal. The comparison of class names, property names and property types is done 937
case-insensitively. The set of qualifiers defined on each class MUST be the same and 938
evaluate to the same values. 939
 940
Comparison of instances REQUIRES that the instances be of the same class, and that all 941
property values either compare equal or are both null. The comparison of the property values 942
is done case-sensitively. 943
 944
For comparison between an array property and a non-array property, please refer to section 945
5.5.7 (Comparisons of Array and Scalar). Note that this type of comparison shall be 946
supported if query feature "Array Range" is supported. 947
 948
For comparison between arrays, comparison of complete arrays shall be supported in Basic 949
Query. Comparison of parts of arrays shall be supported in query feature Array Range. The 950
ArrayType governs how matches are made. There are three types: Bag, Ordered, and 951
Indexed. If one of the arrays is a Bag, then comparison rules for Bags are used. As defined 952
in DSP0004 [1], a bag is an unordered multiset. Two arrays of ArrayType “Bag” are equal if 953
and only if the number of elements is equal and if it is possible to find a permutation for one 954
of the arrays so that for an element-by-element comparison, all elements of the compared 955
arrays are equal. Equality for Bag-type arrays MAY be tested by sorting both arrays and then 956
doing an element-by-element comparison. For comparison of Ordered and Indexed, an 957

CIM Query Language Specification

Version 1.0.0 Second Preliminary

32

element-by-element comparison is performed. Arrays which have different numbers of 958
elements do not compare equal. 959
 960
Other than the cases described in this section, comparisons among disparate types are not 961
part of CQL. 962

5.5.7. Comparisons of Array and Scalar 963

This section only applies to comparison operations between array properties and non-array 964
properties, as part of query features “Array Range” and “Satisfies Array”. A comparison 965
between an array property and a non-array property is illegal if neither “EVERY” nor 966
“ANY” keyword is used. If multiple elements of an array property are compared, the 967
operation evaluates to TRUE if and only if the specified comparison is TRUE for all the 968
indicated Array Range. Here are a few examples of the use of array processing: 969
 970

• "EVERY CIM_LogicalDevice.OperationalStatus[*] <> 2" is TRUE if and only if 971
every value of the OperationalStatus array is not 2 972

• "EVERY CIM_LogicalDevice.OperationalStatus[*] = 2" is TRUE if and only if all of 973
the values of OperationalStatus are 2 974

• "EVERY CIM_LogicalDevice.OperationalStatus[*] < 2" is TRUE if and only if all of 975
the values of OperationalStatus are less than 2 976

• "ANY CIM_LogicalDevice.OperationalStatus[*] > 2" is TRUE if and only if any the 977
values of the OperationalStatus array are greater than 2 978

• "ANY CIM_LogicalDevice.OperationalStatus[*] <> 2" is TRUE if and only if any of 979
the values of the OperationalStatus array are NOT 2 980

• "NOT EVERY CIM_LogicalDevice.OperationalStatus[*] = 2" is TRUE if and only if 981
any of the values of the OperationalStatus array are <> 2 982

• "CIM_LogicalDevice.OperationalStatus[0] = 2" is TRUE if the first value of the array 983
is set to 2 984

• "EVERY CIM_LogicalDevice.OperationalStatus[0..3] > 2" is TRUE if the first 4 985
values of the OperationalStatus array are each greater than 2 986

• "ANY stat IN CIM_LogicalDevice.OperationalStatus[*] SATISFIES (stat=3 OR stat 987
> 5)" is TRUE if any value of the OperationalStatus array is equal to 3 or greater than 988
5 989

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.6. Query Language Functions 990

This section describes the functions available for CIM Query Language. 991
 992
If the arguments of these functions do not conform to the defined constraints, then the query 993
will be in error. 994

5.6.1. Aggregation Functions 995

These functions are only valid within the select-list. If the select-list contains any 996
aggregating expressions, then all items in the select-list MUST be aggregating expressions. 997
In this case, the result set contains one row and the aggregating expressions operate on the 998
rows determined by the WHERE clause. An aggregating expression is an expression with at 999
least one aggregation function, where any properties are used only in the expression 1000
representing the argument of an aggregation function. 1001
 1002
COUNT([DISTINCT] expr): Counts the number of rows for which the argument is non-1003
NULL. If DISTINCT is specified, then COUNT counts the number of different non-NULL 1004
values the argument assumes. The set of rows which COUNT considers is affected by 1005
FIRST or DISTINCT on the select-statement. The result type is uint64. 1006
 1007
COUNT(*): COUNT(*) is a special function returning the number of rows the query selects. 1008
The value returned by COUNT is affected by FIRST or DISTINCT on the select-statement. 1009
The result type is uint64. 1010
 1011
MIN(expr) 1012
MAX(expr) 1013
SUM(expr): These functions all act analogously to the like-named SQL functions. The 1014
argument to each function must have numeric type; the result is of the same type as the 1015
argument. The result type is the same as the type of expr. 1016
 1017
MEAN(expr) 1018
MEDIAN(expr): These functions compute the mean and median, respectively, of the 1019
distribution represented by the non-NULL values the arguments assumes. The result type for 1020
MEAN is real64. The result type for MEDIAN is the type of expr. 1021

5.6.2. Numeric Functions 1022

DATETIMETOMICROSECOND(expr): The argument MUST have datetime type, and 1023
the result has type uint64. If the argument is a timestamp, it is converted to the number of 1024
microseconds since 00:00:00.000000UTC on 1/1/0000; otherwise (i.e., if the argument is an 1025
interval), it is converted to microseconds. 1026
If expr computes to a time before 00:00:00.000000UTC on 1/1/0000 the result is an 1027
arithmetic underflow error. If expr computes to a time after 23:59:59.999999 UTC on 1028

CIM Query Language Specification

Version 1.0.0 Second Preliminary

34

12/31/9999, the result is an arithmetic overflow error. In either case, the query will result in 1029
an error. 1030
 1031
STRINGTOUINT(expr): The argument MUST have string or char16 type and must be a 1032
binary-value, hex-digit-value, decimal-value, or real-value in the range of 0 to 264-1. The 1033
result has type uint64. The fractional portion of any real-value is discarded. 1034
 1035
STRINGTOSINT(expr): The argument MUST have string or char16 type and must be a 1036
binary-value, hex-digit-value, decimal-value, or real-value in the range of -263 to 263-1. The 1037
result has type sint64. The fractional portion of any real-value is discarded. 1038
 1039
STRINGTOREAL(expr): The argument MUST have string type and must be a binary-1040
value, hex-digit-value, decimal-value, or real-value. The result has type real64. 1041

5.6.3. String Functions 1042

UPPERCASE(expr): The argument MUST have string or char16 type, and the result has 1043
string type. This function canonicalizes its argument by converting all lowercase characters 1044
to uppercase. For Basic Query, this function converts lowercase characters in the US-ASCII 1045
range (U+0000...U+007F) to uppercase. Characters outside of the US-ASCII range are not 1046
changed. For the Full Unicode feature, this function performs Case Mapping, as defined in 1047
the Unicode standard [5], on all characters. 1048
 1049
NUMERICTOSTRING(expr): The argument MUST have numeric type, and the result has 1050
string type. This function constructs a string representation of its argument, using the 1051
following rules: 1052

• If the argument is of one of the integer types, it is represented using decimal radix. 1053
Positive numbers do not have a plus sign, and negative numbers have a preceding 1054
minus sign. 1055

• If the argument is of one of the real types, it is represented using decimal mantissa. If 1056
an exponent is needed, it uses decimal radix and follows after an upper case "E", and 1057
does not have any leading zeros. If the mantissa has more than one digit, the decimal 1058
point is always after the first digit. Positive mantissas and exponents do not have a 1059
plus sign, and negative mantissas and exponents have a preceding minus sign. 1060

• If the argument has a value of zero, it is represented as the single character “0”. 1061
 1062
REFERENCETOSTRING(expr): The argument MUST have reference type, and the 1063
result has string type. This function returns an object path string based exclusively on the 1064
information in the input reference. Canonicalization MAY be accomplished by using the 1065
Path Functions. 1066

5.6.4. Instance Functions 1067

These functions operate on objects, references or strings whose contents is a WBEM-URI, as 1068
defined in the WBEM URI Mapping Specification, DSP0207 [2]. 1069
 1070

CIM Query Language Specification

Version 1.0.0 Second Preliminary

 INSTANCEOF([expr]): The argument MUST be an instance, an embedded instance, an 1071
embedded object, a reference to an instance, or a string containing a WBEM-URI to an 1072
instance. If the argument is of type embedded object, it MUST represent an instance and 1073
MUST be scoped using the property-scope syntax. In all cases using valid input, if the 1074
instance is of type C, the result of this function is an embedded instance of type C. In all 1075
other cases, the query is invalid 1076

 1077

5.6.5. Path Functions 1078

These functions operate on objects, references or strings whose contents is a WBEM-URI, as 1079
defined in the WBEM URI Mapping Specification, DSP0207 [2]. 1080
 1081
CLASSPATH([expr]): The argument MUST be an object, a reference, or a string 1082
containing a WBEM-URI. The result of this function is of type reference. If the argument is 1083
of type reference or string and it refers to a class, the result of this function refers to that 1084
class. If the argument is of type reference or string and it refers to an instance, the result of 1085
this function refers to the creation class of that instance. If the argument is of type object, it 1086
MUST be an instance value that is NOT an Indication or an embedded instance and the result 1087
of this function refers to the creation class of that instance. In all other cases, the query is 1088
invalid. Whether or not the class or instance referenced by the argument exists, does not 1089
matter for the successful execution of the function. The function does not add any missing 1090
components to the namespace path of the resulting reference. 1091
 1092
OBJECTPATH([expr]): The argument MUST be an object, a reference, or a string 1093
containing a WBEM-URI. The result of this function is of type reference. If the argument is 1094
of type reference or string and it refers to a class, the result of this function refers to that 1095
class. If the argument is of type reference or string and it refers to an instance, the result of 1096
this function refers to that instance. If the argument is of type object, it MUST be an instance 1097
value that is NOT an Indication or an embedded instance and the result of this function refers 1098
to that instance. In all other cases, the query is invalid. Whether or not the class or instance 1099
referenced by the argument exists, does not matter for the successful execution of the 1100
function. The function does not add any missing components to the namespace path of the 1101
resulting reference. 1102
 1103

5.6.6. Datetime Functions 1104

CURRENTDATETIME(): Returns the "current" datetime as determined by the 1105
implementation. 1106
 1107
DATETIME(expr): The argument MUST be of type string, and at runtime MUST take on a 1108
25-character value conformant with a datetime specification (either timestamp or interval). 1109
The result has datetime type. 1110
 1111

CIM Query Language Specification

Version 1.0.0 Second Preliminary

36

MICROSECONDTOTIMESTAMP(expr): The argument MUST be of an integer type, 1112
and the result has datetime type. The argument will be interpreted as a number of 1113
microseconds since 00:00:00.000000UTC on 1/1/0000, and the result will be a timestamp. 1114
 1115
MICROSECONDTOINTERVAL(expr): The argument MUST be of an integer type, and 1116
the result has interval (datetime) type. The argument will be interpreted as a number of 1117
microseconds, and the result will be an interval. 1118
 1119

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.7. Query Considerations 1120

The result of a query is a table that contains a set of zero or more rows that contain the 1121
columns defined in the select-list.. This table is not stored beyond the execution of a 1122
particular invocation of the query.These instances have the following additional 1123
characteristics: 1124

• Each column has a type and a distinct name. 1125

• Each classname in the FROM list is considered by query as a table that has one row 1126
for each class instance and where the properties of the class are mapped to columns of 1127
the table. 1128

• Subqueries are considered by query to produce tables. 1129

• On the relation to classes, instances, and properties. 1130
1. Each table MAY be considered as a class. However, it is NOT required to 1131

conform to the definition a CIM class. 1132
2. Each row MAY be considered as an instance. However, it is NOT required to 1133

conform to the definition a CIM instance. 1134
3. Each column MAY be considered a property that conforms to the definition of 1135

a CIM Property. 1136

• A query may be specified as part of a class definition, (such as CIM_IndicationFilter, 1137
CIM_QueryCondition, and CIM_MethodAction.) The implementation of the class is 1138
responsible for processing query specified in instances of that class For example, 1139
CIM_IndicationFilter subclasses constrain the select-list to produce entries that 1140
conform to the CIM_Indication subclass that is used in the FROM clause. The results 1141
are then typically delivered by the CIM_ListenerDestination subclass as instances of 1142
the named CIM_Indication subclass. 1143

CIM Query Language Specification

Version 1.0.0 Second Preliminary

38

5.8. Query Errors 1144

When processing a query (either by a CIM Server or a provider), it is legitimate to reject the 1145
query. The following errors are defined in the CIM Operations Specification for Exec 1146
Query: 1147

• CIM_ERR_ACCESS_DENIED 1148
• CIM_ERR_NOT_SUPPORTED 1149
• CIM_ERR_INVALID_NAMESPACE 1150
• CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or 1151

otherwise incorrect parameters) 1152
• CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (the requested query 1153

language is not recognized) 1154
• CIM_ERR_INVALID_QUERY (the query is not a valid query in the specified query 1155

language; i.e., a syntax or semantic error occurred. For CQL, this error is also 1156
returned if the language is correct, but the query features used by the query are not 1157
supported) 1158

• CIM_ERR_FAILED (some other unspecified error occurred) 1159

If a Query is implemented as part of a Class, then the Provider of the class is responsible for 1160
error handling and for appropriately passing errors back to the client of the class or its 1161
instances. For instance, if the class supports a string property named Query and the string is 1162
a constant, then the implementation must assure that the string is correct. Note that in this 1163
case, the implementation may be completely hard-coded. If the property is set by a CIM 1164
Client, then the implementation is responsible for checking the validity of the query when the 1165
property is set. If invalid, the CIM operation used to set the property MUST return 1166
CIM_ERR_INVALID_QUERY if an ExecuteQuery or CIM_ERR_FAILED for all others. 1167

In the future, the CIM_Error class will be used to expand on the errors defined above. 1168

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5.9. Query Functional Description 1169

CIM environments vary greatly in terms of processing capabilities, and required 1170
functionality. The CIM Query Language can be segmented based on functionality, with the 1171
assumption that a reduction in functionality is equivalent to reduced processing requirements. 1172

The following table defines the "Basic Features" required for CQL support and a set of 1173
optional CQL processing features that MAY be provided by a component. Discovery of 1174
these features is enabled via the CQLFeatures enumeration property of the QueryCapabilities 1175
class. Each optional feature MUST be fully supported before it is advertised as being 1176
supported. 1177

The table also tracks the status of each feature. A status of "Final" means that the feature 1178
has at least two independent implementations and that all issues have been resolved in a 1179
manner consistent with DMTF policy. Otherwise, the status will be marked as 1180
"Experimental". 1181

Query
Feature Description Prerequisite

Feature(s)
Feature
Status

Basic Query
=2

The query MUST support the syntax and
processing rules designated as Basic Query in
Section 5.4, “Query Language BNF”.

None Experimental

Simple Join
=3

The FROM clause has the following constraints:
• MUST support at least two from-specifiers.
• Support for more than two from-specifiers IS

NOT part of Simple Join.

Basic Query Experimental

CIM Query Language Specification

Version 1.0.0 Second Preliminary

40

Query
Feature Description Prerequisite

Feature(s)
Feature
Status

Complex Join
=4

The FROM clause MUST support more than two
from-specifiers

Simple Join Experimental

Subquery
=5

The FROM clause MUST support subqueries Basic Query Experimental

Result Set
Operations
=6

The query MUST support the DISTINCT and
FIRST operators

The ORDER BY clause MUST be supported

Basic Query Experimental

Extended
Select List
=7

The select-list
• MUST support functions
• MUST support CLASSQUALIFIER and

PROPERTYQUALIFIER
• MUST support the AS construct for property

aliasing

Basic Query Experimental

Embedded
Properties
=8

The query MUST support the ability to reference
the properties of the embedded instance.

Basic Query Experimental

Aggregations
=9

The query MUST support aggregation functions. Extended
Select List

Experimental

Regular
Expression
Like
=10

The WHERE clause MUST support for the like-
predicate with the capabilities defined in
Appendix D.2: Full Like Extended Regular
Expressions

Basic Query Experimental

Array Range
=11

The query MUST support the full range of array-
index-list productions in order to compare Array
properties with Non-Array properties as described
in section 5.6 or in order to compare parts of
arrays.

The WHERE clause MUST support the array-
comp production

Basic Query Experimental

Satisfies Array
=12

• The WHERE clause MUST support the
satisfies clause

Array Range Experimental

Foreign
Namespace
Support
=13

The query MUST support references to
namespaces other than the one in which the query
is executed.

Basic Query Experimental

Arithmetic
Expression
=14

The query must support arithmetic expressions
using +, -, *, and /.

Basic Query Experimental

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Query
Feature Description Prerequisite

Feature(s)
Feature
Status

Full Unicode
=15

The query must support the Unicode string
processing algorithms described in this
specification.

Basic Query Experimental

Table 1: Query Features 1182
If a query includes clauses or constructs not supported by the infrastructure, the error 1183
CIM_ERR_INVALID_QUERY MUST be returned on a request made via ExecuteQuery or 1184
CIM_ERR_FAILED for all other CIM operations. 1185

CIM Query Language Specification

Version 1.0.0 Second Preliminary

42

6 CIM Query Template Language 1186

This section defines a separate and optional pre-processing facility that supports the 1187
conversion of CQL template strings into CQL strings. 1188

The pre-processing facility parses the input string from left to right for pre-processor tokens. 1189
Each pre-processor token represents a pre-processor variable named by identifier. 1190

• The pre-processor recognizes a backslash, (\) as an escape character when the next 1191
character is a single-quote (') (U+0027) 1192

Note: The escaping of double quotes is not necessary within a literal string, 1193
since only single quotes can be used to delimit string literals. If the entire pre-1194
processor string is put into an environment that uses double quotes to delimit 1195
that string (e.g. as a default value for properties in the MOF), then that 1196
environment must define the escape rules for double quotes. 1197

• If a non-escaped single-quote is encountered, detection of pre-processor tokens is 1198
disabled until the first character after a corresponding non-escaped single-quote. 1199

• While detection is enabled, the sequence "$"identifier"$" is recognized as a pre-1200
processor token. 1201

• For each pre-processor token encountered, the pre-processor makes a string 1202
substitution for that token and resumes parsing with the first character after the 1203
replaced token. 1204

The string substitution replaces the token with the value of the pre-processor variable as 1205
defined to the pre-processing facility. The value of the pre-processor variable must be a 1206
string value. Note that any occurrences of the sequence "$"identifier"$" in that string value 1207
will not be replaced. The mapping of a pre-processor variable to a value is not specified here 1208
and must be specified where this facility is used. 1209

Pre-processor tokens are semantically unrelated to the identifiers of the CQL query itself. 1210

Unquoted $'s may not appear in the query template except as part of pre-processing tokens. 1211

Following the convention detailed in section 5.2 on identifying a query language, the string 1212
“DMTF:CQLT” will identify the CIM Query Template language to represent the use of this 1213
pre-processing capability for CQL. 1214

CIM Query Language Specification

Version 1.0.0 Second Preliminary

6.1. Pre-processor Examples 1215

1.) Define a template for retrieving instances of the class identified by the variable 1216
targetClassName. 1217

Assuming the value of targetClassName is "CIM_StorageExtent", the CQL pre-processor 1218
would translate the string 1219

SELECT * 1220

FROM $targetClassName$ 1221

into 1222

SELECT * 1223

FROM CIM_StorageExtent 1224

2.) Define a template for requesting account information about the entity identified by the 1225
variable UserID. 1226

Assuming the value of UserID is "guest", the CQL pre-processor would translate the string 1227

SELECT * 1228

FROM CIM_Account 1229

 WHERE UserID = $UserID$ 1230

into 1231

SELECT * 1232

FROM UserID = 'guest' 1233

3.) Define a template that allows the filter condition to be restricted based on the value of the 1234
variable whereClause. 1235

Assuming the value of whereClause is "WHERE UPSttyPath = '/dev/ttyOp1' AND 1236
MonitorEventID = 20", the CQL pre-processor would translate the string 1237

SELECT DetectionTime, 1238

 SystemIPAddress, 1239

CIM Query Language Specification

Version 1.0.0 Second Preliminary

44

 PerceivedSeverity, 1240

 MonitorEventID, 1241

 UPSttyPath 1242

FROM Acme_UPSAlertIndication

1243

$whereClause$ 1244

into 1245

SELECT DetectionTime, 1246

 SystemIPAddress, 1247

 PerceivedSeverity, 1248

 MonitorEventID, 1249

 UPSttyPath 1250

FROM Acme_UPSAlertIndication 1251

WHERE UPSttyPath = '/dev/ttyOp1' AND MonitorEventID = 20 1252

CIM Query Language Specification

Version 1.0.0 Second Preliminary

7 Examples 1253

This section provides a number of sample queries to illustrate the use of the Query language. 1254

7.1. Discovery examples 1255

 1256
1. Get the object path, ElementName and Caption for all StorageExtents 1257

Required Features: Basic Query, Extended Select List 1258
 1259
SELECT OBJECTPATH(CIM_StorageExtent) AS Path, 1260
 ElementName, Caption 1261
FROM CIM_StorageExtent 1262

A set of instances would be returned with three properties: the object path of the 1263
instance, as well as the ElementName and Caption properties. 1264

2. Select all LogicalDevices on a particular ComputerSystem that have an 1265
OperationalStatus not equal to “OK” (value = 2), and return their object paths 1266
and OperationalStatus. 1267

Required Features: Basic Query, Extended Select List, Complex Join, 1268
 Array Range 1269
 1270
SELECT OBJECTPATH(CIM_LogicalDevice) AS Path, 1271
 CIM_LogicalDevice.OperationalStatus[*] 1272
FROM CIM_LogicalDevice, 1273
 CIM_ComputerSystem, 1274
 CIM_SystemDevice 1275
WHERE CIM_ComputerSystem.ElementName = 'MySystemName' 1276
 AND CIM_SystemDevice.GroupComponent = 1277
 OBJECTPATH(CIM_ComputerSystem) 1278
 AND CIM_ SystemDevice.PartComponent = 1279
 OBJECTPATH(CIM_LogicalDevice) 1280
 AND ANY CIM_LogicalDevice.OperationalStatus[*] <> 2) 1281

A set of instances would be returned, each with the following properties: a string 1282
containing the object path of the instance of CIM_LogicalDevice and the 1283
OperationalStatus array property. 1284

CIM Query Language Specification

Version 1.0.0 Second Preliminary

46

3. Get all StorageExtent and MediaAccessDevice instances. Note that the 1285
projection is limited to instances that are either CIM_StorageExtent or 1286
CIM_MediaAccessDevice, however only properties of CIM_LogicalDevice 1287
and its superclasses are returned. 1288

Required Features: Basic Query 1289

SELECT * 1290
FROM CIM_LogicalDevice 1291
WHERE CIM_LogicalDevice ISA CIM_StorageExtent OR 1292
CIM_LogicalDevice ISA CIM_MediaAccessDevice 1293

A set of instances would be returned with a complete select-list as defined by 1294
CIM_LogicalDevice. 1295

4. List all ComputerSystems and the object paths of any instances dependent on 1296
the system as described by the Dependency association. 1297

Required Features: Basic Query, Extended Select List, Complex Join 1298
 1299
SELECT CIM_ComputerSystem.*, 1300
 OBJECTPATH(CIM_ManagedElement) AS MEObjectName 1301
FROM CIM_ComputerSystem, 1302
 CIM_ManagedElement, 1303
 CIM_Dependency 1304
WHERE CIM_Dependency.Antecedent = 1305
 OBJECTPATH(CIM_ComputerSystem) 1306
 AND CIM_Dependency.Dependent = 1307
 OBJECTPATH(CIM_ManagedElement) 1308

This query returns a set of instances defined by the references of the Dependency 1309
association's instances. The instances that are created contain all the properties of 1310
CIM_ComputerSystem and a string representing the related/associated 1311
ManagedElement's object path. 1312

 1313

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5. Traverse from a resource (CIM_ComputerSystem) to the 1314
CIM_BaseMetricValue instances associated through the CIM_MetricForME 1315
association. The resource instance is known by its keys, and there are many 1316
BaseMetricValue objects associated with it (>10000), and the selection criteria 1317
is such that only a handful of them matches. 1318

Required Features: Basic Query, Extended Select List, Complex Join 1319
 1320
SELECT OBJECTPATH(CIM_ComputerSystem) AS CSOBJECTPATH, 1321
 CIM_BaseMetricValue.* 1322
FROM CIM_ComputerSystem, 1323
 CIM_BaseMetricValue, 1324
 CIM_MetricForME 1325
WHERE CIM_ComputerSystem.Name = 'MySystem1' 1326
 AND CIM_BaseMetricValue.TimeStamp > 1327
DATETIME('200407101000********+300') 1328
 AND CIM_BaseMetricValue.TimeStamp < 1329
DATETIME('200407101030********+300') 1330
 AND CIM_BaseMetricValue.Duration = 1331
DATETIME('000000000005********:000') 1332
 AND CIM_MetricForME.Antecedent = 1333
 OBJECTPATH(CIM_ComputerSystem) 1334
 AND CIM_MetricForME.Dependent = 1335
 OBJECTPATH(CIM_BaseMetricValue) 1336

As in #4, this query returns a set of instances defined by the query's join. The 1337
instances that are returned contain all properties of CIM_BaseMetricValue and 1338
the associated ComputerSystem's object path. 1339

The query in this example is very selective: Only 6 instances are returned, where 1340
the combined number of instances in the classes selected from can be in the tens 1341
of thousands. This shows that it is essential that these instances never be 1342
enumerated or "walked" in the implementation of the query engine, since this 1343
would likely result in huge computational penalties. It is critical to appropriately 1344
break down the query to the different providers involved. 1345

CIM Query Language Specification

Version 1.0.0 Second Preliminary

48

6. Display all the Settings for a particular CIM_ManagedSystemElement in a 1346
Composite Setting that is associated with the MSE. 1347

Required Features: Basic Query, Complex Join 1348
 1349
SELECT SD.* 1350
FROM CIM_SettingData CSD, 1351
 CIM_SettingData SD, 1352
 CIM_ManagedSystemElement MSE, 1353
 CIM_ElementSettingData ESD, 1354
 CIM_ConcreteComponent CC 1355
WHERE OBJECTPATH(MSE) = 'some desired key' 1356
 AND ESD.ManagedElement = OBJECTPATH(MSE) 1357
 AND ESD.SettingData = OBJECTPATH(CSD) 1358
 AND CC.GroupComponent = OBJECTPATH(CSD) 1359

AND CC.PartComponent = OBJECTPATH(SD) 1360

A set of instances would be returned (which meet the association criteria) with 1361
properties as specified by CIM_SettingData. 1362

CIM Query Language Specification

Version 1.0.0 Second Preliminary

7. Get a storage array's LUN masking and mapping for a failed FCPort. This 1363
query uses aliasing in the FROM clause and a series of sub-queries. The use of 1364
nested subqueries guides the query engine through a step-wise process that is 1365
similar to one that would be used by a client executing a series of CIM intrinsic 1366
operations. Use of subqueries is recommended to limit the complexity of 1367
otherwise very large joins. The principle advantage over the series of intrinsic 1368
operations is that the query is a single operation that only returns the final 1369
results. 1370

Required Features: Basic Query, Extended Select List, Complex Join, 1371
 Subquery, Array Element 1372
 1373
SELECT OBJECTPATH(pms) AS PrivilegeMgmtServiceInst, 1374
 Oh AS StorageHardwareIDInst, Op AS AuthorizedPrivilegeInst, 1375
 Ov AS StorageVolumeInst 1376
FROM CIM_HostedService hs, 1377
 CIM_PrivilegeManagementService pms, 1378
 (SELECT OBJECTPATH(cs) AS Oc, O.Op, O.Oh, O.Ov 1379
 FROM CIM_ComputerSystem cs, CIM_SystemDevice sd, 1380

 (SELECT OBJECTPATH(v) AS Ov, P.Op, P.Oh 1381
 FROM CIM_AuthorizedTarget t, 1382
 CIM_StorageVolume v, 1383

 (SELECT OBJECTPATH(p) AS Op, 1384
 OBJECTPATH(hi) AS Oh 1385
 FROM CIM_StorageHardwareID hi, CIM_AuthorizedPrivilege p, 1386
 CIM_AuthorizedSubject s, 1387
 (SELECT SourceInstance. 1388

CIM_FCPort ::PermanentAddress 1389
 FROM CIM_InstModification 1390
 WHERE SourceInstance ISA CIM_FCPort 1391
 AND ANY 1392
 SourceInstance.CIM_FCPort::OperationalStatus[*] 1393
 <> #’OK’ 1394
) fc 1395
 WHERE fc.PermanentAddress = hi.StorageID 1396
 AND s.PrivilegedElement = OBJECTPATH(hi) 1397
 AND s.Privilege = OBJECTPATH(p) 1398
) P 1399

 WHERE t.Privilege = P.Op AND t.TargetElement = OBJECTPATH(v) 1400
) O 1401

 WHERE sd.PartComponent = Ov 1402
 AND sd.GroupComponent = OBJECTPATH(cs) 1403
) C 1404
 WHERE hs.Antecedent = Oc AND hs.Dependent = OBJECTPATH(pms) 1405
 1406

CIM Query Language Specification

Version 1.0.0 Second Preliminary

50

Without the use of subqueries, but keeping the same color codes to relate to the 1407
subqueries of the above query, an equivalent query can be expressed as: 1408
 1409
SELECT OBJECTPATH(pms) AS PrivilegeMgmtServiceInst, 1410
 OBJECTPATH(hi) AS StorageHardwareIDInst, 1411
 OBJECTPATH(p) AS AuthorizedPrivilegeInst, 1412
 OBJECTPATH(v) AS StorageVolumeInst 1413
FROM CIM_InstModification im, 1414
 CIM_StorageHardwareID hi, 1415
 CIM_AuthorizedSubject s, 1416
 CIM_AuthorizedPrivilege p, 1417
 CIM_AuthorizedTarget t, 1418
 CIM_StorageVolume v, 1419
 CIM_SystemDevice sd, 1420
 CIM_ComputerSystem cs, 1421
 CIM_HostedService hs, 1422
 CIM_PrivilegeManagementService pms 1423
WHERE im.SourceInstance ISA CIM_FCPort 1424
 AND ANY im.SourceInstance.CIM_FCPort::OperationalStatus[*] <> #'OK' 1425
 AND im.SourceInstance.CIM_FCPort::PermanentAddress = hi.StorageID 1426
 AND s.PrivilegedElement = OBJECTPATH(hi) 1427
 AND s.Privilege = OBJECTPATH(p) 1428
 AND t.Privilege = OBJECTPATH(p) 1429
 AND t.TargetElement = OBJECTPATH(v) 1430
 AND sd.PartComponent = OBJECTPATH(v) 1431
 AND sd.GroupComponent = OBJECTPATH(cs) 1432
 AND hs.Antecedent = OBJECTPATH(cs) 1433
 AND hs.Dependent = OBJECTPATH(pms) 1434
 1435
The primary difference is that without the use of subqueries, the query 1436
implementation would have to determine how to optimize this query to avoid an 1437
uncorrelated join across all of the instances belonging to the 10 classes named in 1438
the 'FROM' clause. This level of analysis is beyond the capability of most 1439
expected implementations. 1440
 1441

8. Example of mathematical aggregation function 1442

Required Features: Basic Query, Extended Select List, Aggregation, Result Set 1443
Operations, Subquery 1444

 1445
SELECT DISTINCT OBJECTPATH(sv) AS VolumePath, 1446
 (sv.BlockSize * sv.NumberOfBlocks) AS Size 1447
FROM CIM_StorageVolume sv, 1448
 (SELECT MAX(v.BlockSize*v.NumberOfBlocks) AS Maxbytes 1449
 FROM CIM_StorageVolume v) mv 1450
WHERE (sv.BlockSize * sv.NumberOfBlocks) = mv.Maxbytes 1451

CIM Query Language Specification

Version 1.0.0 Second Preliminary

7.2. Event detection examples 1452

 1453
1. As regards query in Indication processing, the following examples are taken 1454

from storage management requirements. 1455

 1456
Required Features: Basic Query 1457
 1458
SELECT * 1459
FROM CIM_InstCreation 1460
WHERE SourceInstance ISA CIM_FCPort 1461

Using the lifecycle indication classes, this query would be stored in the Query string 1462
property of an instance of IndicationFilter and its delivery defined by an 1463
IndicationSubscription association to a ListenerDestination (please see the CIM Event 1464
Model [14]). An InstCreation notification would be delivered any time that an 1465
FCPort was created. The notification would consist of a single instance with a select-1466
list as defined by the CIM_InstCreation class. 1467

2. As above, this query would be stored in the Query string property of an 1468
instance of IndicationFilter, and its delivery defined by an 1469
IndicationSubscription association. An InstModification notification would be 1470
delivered any time that an FCPort was modified and its first array property had 1471
changed. The notification would consist of a single instance with a select-list 1472
as defined by the CIM_InstModification class. 1473

Required Features: Basic Query, Embedded Properties 1474
 1475
SELECT * 1476
FROM CIM_InstModification 1477
WHERE SourceInstance ISA CIM_FCPort 1478
 AND PreviousInstance ISA CIM_FCPort 1479
 AND SourceInstance.CIM_FCPort::OperationalStatus[0] <> 1480
 PreviousInstance.CIM_FCPort::OperationalStatus[0] 1481

CIM Query Language Specification

Version 1.0.0 Second Preliminary

52

 1482
3. Send an Indication consisting of DetectionTime, SystemIPAddress, 1483

PerceivedSeverity, MonitorEventID and UPSttyPath properties, whenever 1484
MonitorEventID = 20 occurs on device /dev/ttyOp1. 1485

 Required Features: Basic Query 1486
 1487

SELECT DetectionTime, 1488
 SystemIPAddress, 1489
 PerceivedSeverity, 1490
 MonitorEventID, 1491
 UPSttyPath 1492
FROM Acme_UPSAlertIndication 1493
WHERE UPSttyPath = '/dev/tty0p1' 1494
 AND MonitorEventID = 20 1495

 1496
4. Building on the previous example, in order to facilitate auditing and 1497

maintenance, the IT department requires that all Indications are "tagged" with 1498
an ID that identifies the filter condition that the Indication satisfied. 1499

 1500
Required Features: Basic Query, Extended Select List 1501
 1502
SELECT DetectionTime, 1503
 SystemIPAddress, 1504
 PerceivedSeverity, 1505
 MonitorEventID, 1506
 UPSttyPath, 1507
 'HP12345' AS FilterID 1508
FROM Acme_UPSAlertIndication 1509
WHERE UPSttyPath = '/dev/tty0p1' 1510
 AND MonitorEventID = 20 1511

 1512

CIM Query Language Specification

Version 1.0.0 Second Preliminary

5. Continuing the example above, to ensure prompt processing of this type of 1513
Indication, define a CustomSeverity and set it to "Critical". 1514

 1515
Required Features: Basic Query, Extended Select List 1516
 1517
SELECT DetectionTime, 1518
 SystemIPAddress, 1519
 PerceivedSeverity, 1520
 'Critical' AS CustomSeverity, 1521
 MonitorEventID, 1522
 UPSttyPath, 1523
 'HP12345' AS FilterID 1524
FROM Acme_UPSAlertIndication 1525
WHERE UPSttyPath = '/dev/tty0p1' 1526
 AND MonitorEventID = 20 1527
 1528
 1529
6. Locate sick System/LogicalDevice combinations 1530

Required Features: Basic Query, Satisfies Array, Complex Join 1531
 1532
SELECT s.Name, d.Name 1533
FROM CIM_System s, CIM_SystemDevice sd, CIM_LogicalDevice d 1534
WHERE OBJECTPATH(s) = sd.GroupComponent 1535
 AND OBJECTPATH(d) = sd.PartComponent 1536
 AND ANY i IN s.OperationalStatus[*] SATISFIES 1537
 (i = #'Non-Recoverable Error' OR i=#'Degraded') 1538
 AND ANY j in d.OperationalStaus[*] SATISFIES (j =#'Degraded') 1539

 1540
7. Locate creation of an export relationship for a FileShare 1541

Required Features: Basic Query 1542
 1543

SELECT 1544
 InstanceOf(1545
 SourceInstance.CIM_SharedElement::SameElement) 1546
 AS FileShare 1547
FROM CIM_InstCreation 1548
WHERE SourceInstance ISA CIM_SharedElement 1549
 AND InstanceOf(SourceInstance.CIM_SharedElement::SameElement) 1550
 ISA CIM_FileShare 1551

 1552

CIM Query Language Specification

Version 1.0.0 Second Preliminary

54

7.3. Policy examples 1553

 1554
For policy, identify a StoragePool that is low on space and allocate more space to it. In this 1555
example, there are two underlying StoragePools to draw space from. The preferred one is a 1556
free pool. The other is only used if the free pool can not satisfy the need. 1557

 1558
1. This first query is used in a QueryCondition with QueryResultName set to 1559

"PR_Needy". The query selects a StoragePool that is low on space. 1560
Evaluation results in zero or more PR_Needy instances that are used by a 1561
related MethodAction. 1562

 1563
Required Features: Basic Query, Extended Select List, Complex Join, Embedded 1564
Properties 1565
 1566
SELECT OBJECTPATH(IM.SourceInstance) AS NeedySPPath 1567
FROM CIM_InstModification AS IM, 1568
 CIM_PolicyRule AS PR, 1569
 CIM_PolicySetAppliesToElement AS PSATE 1570
WHERE IM.SourceInstance ISA CIM_StoragePool 1571
 AND PR.Name = 'AllocateMoreSpace' 1572
 AND OBJECTPATH(PR) = PSATE.PolicySet 1573
 AND OBJECTPATH(IM.SourceInstance) = PSATE.ManagedElement 1574
 AND 100 * (IM.SourcInstance. CIM_StoragePool::RemainingManagedSpace / 1575
 IM.SourcInstance. CIM_StoragePool::TotalManagedSpace) < 10 1576
 AND IM.SourcInstance. CIM_StoragePool::RemainingManagedSpace <> 1577
 IM.PreviousInstance. CIM_StoragePool::RemainingManagedSpace 1578
 1579

CIM Query Language Specification

Version 1.0.0 Second Preliminary

2. This next query is used in MethodAction to invoke a 1580
CreateOrModifyStoragePool method. It uses PR_Needy instances produced by 1581
the previous QueryCondition. The InstMethodCall results of the call are 1582
named by the property InstMethodCallName set to "PR_ModifySP". 1583

Required Features: Basic Query, Extended Select List, Complex Join 1584
 1585
SELECT OBJECTPATH(SCS) || '.CreateOrModifyStoragePool' 1586
 AS MethodName, 1587
 QCR.NeedySPPath AS Pool, 1588
 QCR.NeedySPPath.Size + (QCR.TotalManagedSpace / 10) AS Size, 1589
 OBJECTPATH(SP) AS InPools 1590
FROM PR_Needy AS QCR, 1591
 CIM_ServiceAffectsElement AS SAE, 1592
 CIM_StorageConfigurationService AS SCS, 1593
 CIM_StoragePool AS SP, 1594
 CIM_AllocatedFromStoragePool AS AFSP 1595
WHERE QCR.NeedySPPath = SAE.AffectedElement 1596
 AND OBJECTPATH(SCS) = SAE.AffectingElement 1597
 AND SP.ElementName = 'FreePool' 1598
 AND QCR.NeedySPPath = AFSP.Antecedent 1599
 AND OBJECTPATH(SP) = AFSP.Dependent 1600
 1601
3. Use the results of the previous MethodActionResults as input to a second 1602

MethodAction to take action on an error. It also calls 1603
CreateOrModifyStoragePool. 1604

 1605
Required Features: Basic Query, Extended Select List, Complex Join, Array Range, 1606
Embedded Properties 1607
 1608
SELECT MAR.MethodName, 1609
 MAR.MethodParameters.Pool, 1610
 MAR.MethodParameters.Size, 1611
 OBJECTPATH(SP) AS InPools 1612
FROM PR_ModifySP MAR, 1613
 StoragePool SP, 1614
 AllocatedFromStoragePool AFSP 1615
WHERE MAR.ResultValue <> '0' 1616
 AND SP.ElementName = 'SafetyPool' 1617
 AND MAR.MethodParameters ISA __MethodParameters 1618
 AND MAR.MethodParameters.__MethodParameters::Pool = AFSP.Antecedent 1619
 AND OBJECTPATH(SP) = AFSP.Dependent 1620

CIM Query Language Specification

Version 1.0.0 Second Preliminary

56

Appendix A: Change History 1621

Version 0.1 – October 2002, Initial release of the CIM Query Language definition. Document is
based on work in the WBEM Interoperability Working Group and the original WBEM Query
Language proposed and documented in 2000.
Version 0.2 – November 2002, Corrected one example in Section 5 and acknowledged that more
examples/use cases need to be provided
Version 0.3 – January 2003, Updates to the CIM Query Language BNF based on email feedback from
Dan Nuffer; Completion of Section 3.2; Addition of information regarding what is returned by
specific query examples in Section 5
Version 0.4 – January 2003, Clarified requirement for ISA function as mechanism to query class
inheritance/hierarchy, and added check for a class' Version qualifier
Version 0.5 – September 2003, Updated much of the text previously missing, defined additional
examples, clarified the text of the examples to indicate that "query-specific" instances are returned,
clarified that _KEY is a complete instance path and that a property value of "*" indicates all
properties + _KEY, _CLASS and _VERSION, added a section on naming of the returned "query row
instances" (3.2), corrected the BNF rules, cleaned up many of the comments ("//") in the BNF, and
added many capabilities to the BNF and/or corrected BNF errors. The ability to specify aliases and
subqueries was also added at this time.
Version 0.6 – September 2003, Updated internal document version number, corrected example that
still included the BETWEEN construct, and defined requirement for properties to be returned in the
order specified in the SELECT clause.
Version 0.7 – October 2003, Updated internal document version number and made clarification
changes and minor corrections to the text and BNF. Specifically, the following changes were made:

- CIM_ERR_NOT_SUPPORTED is ambiguous, used CIM_Error instead
- Added ability to reference a specific-class-property-identifier in select-string-literal
- Added [("."property-identifier)*] to specific-class-property-identifier, deleted

embedded_object in the property-identifier definition, and deleted the embedded_object
definition – To allow arbitrary depth of embedding in class_property_identifier

- Moved "alias" from class-list in the from-criteria to the individual class-names in class-list
- Eliminated recursive definition of sort-spec-list, and defined a "sort-spec" entry

Version 0.8 and 0.9 – January 2004, Updated internal document version numbers and made many
changes simplifying and clarifying the text and BNF, based on Interop and DMTF member review
feedback. Also, added an Acknowledgements Section.
Version .10 – February 2004, Many updates to deal with member comments.
_KEY renamed to _OBJECTPATH.
_CLASS renamed to _CLASSPATH.
_VERSION eliminated.
Extended BNF to added support for Character and Arithmetic operations.
Added Symbolic constants.
Version .11 – March 2004, Updates to cover review comments
Clarified CQL Feature:
Remove 'MAY NOT' clauses
Isolate complex Array processing from Basic

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Do not include Array ANY/EVERY processing
Make consistent with ABNF: IETF RFC 2234, http://www.faqs.org/rfcs/rfc2234.html.
With several exceptions called out.
Isolated URI BNF to appendix. Expectation that this will move into WBEM URI spec and to reference
RFC2396, or equivalent.
Added ANY/EVERY/ SATISFIES syntax to clarify Array element references.
Add use case for CREATEARRAY. "For MethodAction…"
Clarified descriptions for DISTINCT and FIRST
Agreed to include LIKE Posix API as optional feature. Simple LIKE functionality is defined as a Posix subset,
described in chapter 3.3
Many editorial changes
Allow White Space between "." period operator. Added "," operator to BNF to make explicit when White
Space is not allowed.
Make clear that Query does NOT execute intrinsic methods
Agree to capitalize all keywords. However, note that these are not case sensitive.
Added production for parenthesization in arithmetic-expression.
Switched from properties for Path elements to using Path functions.
Removed all references to Qualifying Class.
Remove references to new errors. These can not be introduced with this revision.
Add language that covers comparison between arrays for

• Bag: set match
• Ordered: element by element match to maxsize of both arrays.
• Indexed: element by element match to maxsize of both arrays.

Added Scoping: The incorporating identifier MAY be named in an ISA comparison-predicate of the WHERE
clause. This serves to specify the class of the embedded object as used in the select-list and the containing
boolean-primary of the search-condition. A different class MAY be compared to in different boolean-primaries.
The outermost ISA class in a class-hierarchy that compares TRUE scopes the properties that MAY be
referenced in the select-list.
Add ISA back into the spec.
Implementation casts object paths to internal REFs and compare based on the internal form. The
implementation should know alternative, equivalent forms of NamespacePath and treat them all as equal.
Do not allow use of LIKE on result of OBJECTPATH(). Only support =, <>.
Add capability to make case in-sensitive comparisons. Add UpperCase function.
Created and added table of conversions.
Added arithmetic-expression
Added Scopingclass function
Added use-case examples.
Defined QueryResult subclass usage
A reference is represented as an Object Path. A property that is a reference MAY be named in the Select-
Critera.
Add semantics for ANY/EVERY/SATISFIES as proposed by Jeff.
Select classname.* returns only properties defined in named class or its superclasses

Version .12 – April 2004, Updates to cover review comments
Made Scopingclass be ScopingType function
Clarify that Path_functions are part of the basic functions
Clarified prerequiste column
Clarified errors
Clarified string definition
Removed Truth values from arithmetic expressions
Clarified Count
Clarified Regular Expression use by Basic and Regular Expression Like.

Version .13 – May 2004, Updates to cover review comments
Simplify Basic Like

http://www.faqs.org/rfcs/rfc2234.html

CIM Query Language Specification

Version 1.0.0 Second Preliminary

58

Clarify conversion table
Many corrections

Version .14 Review resolutions
Version .15 More review resolutions. Accepted by Interop pending resolution of set of issues

Version .16 Resolution resulted in conversion to compilable BNF. This is a significant revision.
Version .17 Resolution of issues after conversion.
Version .18 (Company Review Version, Version 1.0.0 Prelim)
Clarify that Timestamp 0 is 1 BCE
Remove notes from text.
Draft 1.0.0f – December 15, 2005
Applied CRs WIPCR00251.001, WIPCR00231.009
Draft 1.0.0f (Prelim 2) – January 13, 2006
Applied CRs WIPCR00255.002, WIPCR00242.007, WIPCR00240.002
Draft 1.0.0f (Prelim 2) – February 2, 2006
Applied CRs WIPCR00270.000.htm
Draft 1.0.0f (Prelim 2) – February 8, 2006
Applied CRs WIPCR00272.002.htm, WIPCR00268.001.htm
Draft 1.0.0g (Prelim 2) – February 10, 2006
Applied CRs WIPCR00261.002.htm, WIPCR00247.006.htm
Draft 1.0.0g (Prelim 2) – February 15, 2006
Fixed typo wrt closing paranthesis after char-escape
Draft 1.0.0g (Prelim 2) – February 16, 2006
Applied CRs WIPCR00245.008.htm, WIPCR00269.001.htm, WIPCR00271.002.htm
Draft 1.0.0g (Prelim 2) – February 27, 2006
Applied CRs WIPCR00266.001.htm, WIPCR00268.001.htm, WIPCR00265.001.htm, WIPCR00264.000.htm,
WIPCR00263.000.htm, WIPCR00262.000.htm, WIPCR00254.003.htm, WIPCR00248.001.htm
Draft 1.0.0g (Prelim 2) – March 16, 2006
Applied CRs WIPCR00280.000.htm, WIPCR00282.000.htm
Updated reference numbers
Draft 1.0.0h (Prelim 2) – March 22, 2006
Ballot version of the spec

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Appendix B: Dependencies and References 1622

Appendix B.1: Dependencies 1623

[1] DMTF [2004] Distributed Management Task Force: CIM Infrastructure 1624
Specification, DSP0004.pdf, version 2.3, 1625
http://www.dmtf.org/standards/published_documents. 1626

[2] DMTF [2004] Distributed Management Task Force: WBEM URI Specification, 1627
DSP0207.pdf, version 1.0, 1628
http://www.dmtf.org/standards/published_documents. 1629

[3] Augmented BNF for Syntax Specifications: ABNF, RFC 2234, Nov 1997, 1630
http://www.faqs.org/rfcs/rfc2234.html. 1631

[4] In this document, the term Unicode refers to the Universal Character Set (UCS), 1632
defined jointly by the Unicode Standard [5] and ISO/IEC 10646 [6]. 1633

[5] The Unicode Consortium, "The Unicode Standard, Version 4.1", ISBN 0-321-1634
18578-1, as updated from time to time by the publication of new minor versions. 1635
See http://www.unicode.org/unicode/standard/versions for the latest version and 1636
additional information on versions of the standard and of the Unicode Character 1637
Database. 1638

[6] ISO/IEC 10646:2003, “Information technology – Universal Multiple-Octet Coded 1639
Character Set (UCS)” as, from time to time, amended replaced by a new edition or 1640
expanded by the addition of new parts. See http://www.iso.org for the latest version. 1641

[7] W3C Working Draft "Character Model for the World Wide Web 1.0: 1642
Normalization", February 24, 2004, http://www.w3.org/TR/charmod-norm/ 1643

[8] The Unicode Consortium, "Unicode Collation Algorithm (Unicode Technical 1644
Standard #10)". - as, from time to time, amended, replaced by a new edition or 1645
expanded by the addition of new parts. See http://www.unicode.org/reports/tr10 for 1646
the latest version. 1647

[9] The Unicode Consortium, "Unicode Regular Expressons (Unicode Technical 1648
Standard #18)". - as, from time to time, amended, replaced by a new edition or 1649
expanded by the addition of new parts. See http://www.unicode.org/reports/tr18 for 1650
the latest version. 1651

[10] See "XQuery 1.0 and XPath 2.0 Functions and Operators", section 7.6.1 Regular 1652
Expression Syntax. The latest version is at http://www.w3.org/TR/xpath-functions. 1653

Appendix B.2: References 1654

[11] DMTF [2003] Distributed Management Task Force: CIM Operations over HTTP 1655
Specification, DSP0200, version 1.2, 1656
http://www.dmtf.org/standards/documents/WBEM/DSP200.html. 1657

http://www.dmtf.org/standards/published_documents
http://www.dmtf.org/standards/published_documents
http://www.faqs.org/rfcs/rfc2234.html
http://www.unicode.org/unicode/standard/versions
http://www.iso.org
http://www.w3.org/TR/charmod-norm/
http://www.unicode.org/reports/tr10
http://www.unicode.org/reports/tr18
http://www.w3.org/TR/xpath-functions
http://www.dmtf.org/standards/documents/WBEM/DSP200.html

CIM Query Language Specification

Version 1.0.0 Second Preliminary

60

[12] ISO/IEC [1992] ISO/IEC 9075:1992, Database Language SQL- July 30, 1992. See 1658
http://www.iso.org for the latest version. 1659

[13] W3C [2001] World-Wide Web Consortium: XML-Query, 1660
http://www.w3.org/XML/Query. 1661

[14] DMTF [2002] Distributed Management Task Force: CIM Event Model V2.9 1662
(Final), http://www.dmtf.org/standards/cim/cim_schema_v29. 1663

[15] DMTF [2002] Distributed Management Task Force: CIM Policy Model V2.9 1664
(Final), http://www.dmtf.org/standards/cim/cim_schema_v29. 1665

[16] UTF-8, a transformation format of ISO 10646, 1666
http://www.ietf.org/rfc/rfc3629.txt?number=3629. 1667

[17] RFC 1034: DOMAIN NAMES - CONCEPTS AND FACILITIES, 1668
http://www.ietf.org/rfc/rfc1034.txt?number=1034. 1669

[18] RFC 1123: Requirements for Internet Hosts -- Application and Support, 1670
http://www.ietf.org/rfc/rfc1123.txt?number=1123. 1671

[19] DMTF [2002] Distributed Management Task Force: Specification for the 1672
Representation of CIM in XML, DSP0201, version 2.1 1673
http://www.dmtf.org/standards/documents/WBEM/DSP201.html. 1674

[20] UNICODE [2005] Unicode, Inc.: Unicode Technical Standard #10: Unicode 1675
Collation Algorithm, http://www.unicode.org/unicode/reports/tr10/ 1676

[21] ISO/IEC 14651[2000], Information technology – International string ordering and 1677
comparison – Method for comparing character strings and description of the 1678
common template tailorable ordering 1679

 1680

Appendix C: Acknowledgements 1681

The primary authors of this specification are George Ericson of EMC Corporation, Jeff 1682
Piazza of AppIQ, Inc. and Andrea Westerinen of Cisco Systems, Inc. The document is 1683
based on an original WBEM Query Language Specification submitted by Patrick 1684
Thompson of Microsoft. 1685

Significant editing contributions were made by Andreas Maier, Oliver Benke and others 1686
of IBM. 1687

http://www.iso.org
http://www.w3.org/XML/Query
http://www.dmtf.org/standards/cim/cim_schema_v29
http://www.dmtf.org/standards/cim/cim_schema_v29
http://www.ietf.org/rfc/rfc3629.txt?number=3629
http://www.ietf.org/rfc/rfc1034.txt?number=1034
http://www.ietf.org/rfc/rfc1123.txt?number=1123
http://www.dmtf.org/standards/documents/WBEM/DSP201.html
http://www.unicode.org/unicode/reports/tr10/

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Appendix D: Regular Expression BNF 1688

The Regular Expression grammar below uses Augmented BNF (ABNF) [3] with the 1689
following exceptions. 1690

1. Rules separated by a bar (|) represent choices. (Instead of using a slash (/) as 1691
defined in ABNF). 1692

2. Ranges of alphabetic characters or numeric values are specified using two 1693
periods (..) placed between the beginning and ending values of the range. 1694
(Instead of using the minus sign (-) as defined in ABNF). 1695

3. The rules defined in this syntax are meant to be assembled into a complete 1696
query by assuming whitespace characters between them, except where noted 1697
otherwise. (ABNF requires explicit specification of whitespace.) 1698

4. The comma (,) is used to explicitly designate concatenation of rules. 1699
(Instead of implicit concatenation of rules as specified by ABNF.) 1700

Note: 1701
1. ABNF is NOT case-sensitive. 1702
2. The rules above apply to the ABNF used here and NOT to the resultant Regular 1703

Expression used in Full or Basic Like. In particular, except where noted, white 1704
space is significant within the resultant Regular Expression. 1705

 1706
The grammar is defined in two sections. The first is used to construct Regular 1707
Expressions used by the Basic Like feature. The second, Extended Regular Expressions 1708
is used to create Regular Expressions used by the Regular Expression Like feature. Both 1709
are defined as follows: 1710
 1711

Appendix D.1: Basic Like Regular Expressions 1712

Basic Like Regular Expressions is a subset of the XQuery Regular Expression syntax as 1713
defined in Regular Expressions [10]. 1714
 1715
Note: Basic Like Regular Expressions complies with levels RL1.1 and RL 1.7 of 1716
Unicode Regular Expressions Level 1 [9], which is a subset of the XQuery Regular 1717
Expression [10] compliance to Unicode Regular Expressions Level 1 [9]. 1718

 1719
blre-ordinary-char= UNICODE-CHAR 1720

A character, other than a metacharacter excluded from the Char 1721
production of XQuery Regular Expressions [10]. 1722

CIM Query Language Specification

Version 1.0.0 Second Preliminary

62

 1723
blre-escaped-char = char-escape | SingleCharEsc 1724

An escaped character. The char-escape is defined in the String Literals 1725
section. The SingleCharEsc is defined in XQuery Regular Expressions 1726
[10]. The "/u" and "/U" syntax of char-escape replaces the character 1727
reference syntax defined in XQuery Regular Expressions [10]. 1728
 1729
Note: the char-escape includes escape sequences that may not be 1730
supported by XQuery. The CQL processor may need to convert these 1731
escape sequences to a form that is compatible with XQuery. 1732

 1733
blre-single-char = "." | blre-ordinary-char| blre-escaped-char 1734

Single character regular expression. The '.' meta-character matches any 1735
character except the newline character (\u000A). 1736

 1737
blre-multi-char = blre-single-char,"*" 1738

Matches multiple occurences of a single character 1739

 1740
blre-expression = *(blre-single-char | blre-multi-char) 1741

Basic Like regular expression 1742

Appendix D.2: Full Like Extended Regular 1743

Expressions 1744

Full Like Regular Expressions is conformant with the XQuery Regular Expression syntax 1745
as defined in Regular Expressions [10], with the following exceptions: 1746

1) The Unicode characters allowed in the expression are defined by UNICODE-1747
CHAR in the Query Language BNF section. 1748
 1749
2) The escape sequences of char-escape in the String Literals section may be used 1750
in addition to the escape sequences in SingleCharEsc in XQuery Regular 1751
Expressions [10]. The "/u" and "/U" syntax of char-escape replaces the character 1752
reference syntax defined in XQuery Regular Expressions [10]. Note: the char-1753
escape includes escape sequences that may not be supported by XQuery. The 1754
CQL processor may need to convert these escape sequences to a form that is 1755
compatible with XQuery. 1756
 1757
3) None of the flags defined in section 7.6.1.1 of XQuery Regular Expressions 1758
[10] are supported, and the expression matching behaves as if all the flags have 1759
the default values. 1760

CIM Query Language Specification

Version 1.0.0 Second Preliminary

Appendix E: Datetime Operations and BNF 1761

The operations on datetime and the datetime BNF described in this appendix will 1762
ultimately be incorporated into some other DMTF specification and references to this 1763
appendix should be updated to refer to the incorporating specification. 1764

Appendix E.1: Datetime Operations 1765

The following operations are defined on datetime types: 1766

1. Arithmetic operations: 1767
§ Adding or subtracting an interval to or from an interval results in an 1768

interval 1769
§ Adding or subtracting an interval to or from a timestamp results in a 1770

timestamp 1771
§ Subtracting a timestamp from a timestamp results in an interval 1772
§ Multiplying an interval with a numeric or vice versa results in an 1773

interval 1774
§ Dividing an interval by a numeric results in an interval 1775

Other arithmetic operations are NOT defined. 1776

2. Comparison operations: 1777
§ Testing for equality or unequality of two timestamps or two intervals 1778

results in a boolean 1779
§ Testing for the ordering relation (<, <=, >, >=) of two timestamps or 1780

two intervals results in a boolean 1781
Other comparison operations are NOT defined. 1782
 1783
Note that comparison between a timestamp and an interval, and vice versa, is not 1784
defined. 1785

 1786
Specifications using the definition of these operations (for instance, query languages) 1787
SHOULD define how undefined operations are handled. 1788
 1789
Any operations on datetime types in an expression MUST be handled as if the following 1790
sequential steps were performed: 1791
 1792

1. Each datetime value is converted into a range of microsecond values, as 1793
follows: 1794

• The lower bound of the range is calculated from the datetime 1795
value, with any asterisks replaced by their minimum value, 1796

CIM Query Language Specification

Version 1.0.0 Second Preliminary

64

• the upper bound of the range is calculated from the datetime 1797
value, with any asterisks replaced by their maximum value, 1798

• the basis value for timestamps is the oldest valid value (i.e. 0 1799
microseconds corresponds to 00:00.000000 in the timezone 1800
with datetime offset +720, on January 1st in the year 1 BCE, 1801
using the proleptic Gregorian calendar). Note that this 1802
definition implicitly performs timestamp normalization. Note 1803
that 1 BCE is the year before 1 CE. 1804

2. The expression is evaluated, using the following rules for any datetime 1805
ranges: 1806

 1807
Definitions: 1808

T(x, y) is the microsecond range for a timestamp with the 1809
lower bound x and the upper bound y 1810
I(x, y) is the microsecond range for an interval with the lower 1811
bound x and the upper bound y 1812
D(x, y) is the microsecond range for a datetime (timestamp or 1813
interval) with the lower bound x and the upper bound y 1814

 1815
Rules: 1816

I(a, b) + I(c, d) := I(a+c, b+d) 1817
I(a, b) - I(c, d) := I(a-d, b-c) 1818
T(a, b) + I(c, d) := T(a+c, b+d) 1819
T(a, b) - I(c, d) := T(a-d, b-c) 1820
T(a, b) - T(c, d) := I(a-d, b-c) 1821
I(a, b) * c := I(a*c, b*c) 1822
I(a, b) / c := I(a/c, b/c) 1823
 1824
D(a, b) < D(c, d) := true if b < c, false 1825
if a >= d, otherwise NULL (uncertain) 1826
D(a, b) <= D(c, d) := true if b <= c, 1827
false if a > d, otherwise NULL (uncertain) 1828
D(a, b) > D(c, d) := true if a > d, false 1829
if b <= c, otherwise NULL (uncertain) 1830
D(a, b) >= D(c, d) := true if a >= d, 1831
false if b < c, otherwise NULL (uncertain) 1832
D(a, b) = D(c, d) := true if a = b = c = 1833
d, false if b < c OR a > d, otherwise NULL 1834
(uncertain) 1835
D(a, b) <> D(c, d) := true if b < c OR a > 1836
d, false if a = b = c = d, otherwise NULL 1837
(uncertain) 1838

 1839
These rules follow the well known mathematical interval arithmetic. An 1840
informational link to a definition of mathematical interval arithmetic is 1841
http://en.wikipedia.org/wiki/Interval_arithmetic. 1842

http://en.wikipedia.org/wiki/Interval_arithmetic

CIM Query Language Specification

Version 1.0.0 Second Preliminary

 1843
Note that mathematical interval arithmetic is commutative and associative 1844
for addition and multiplication, like ordinary arithmetic. 1845
 1846
Note that mathematical interval arithmetic mandates the use of three-state 1847
logic for the result of comparison operations, using a special value called 1848
"uncertain" to represent that a decision cannot be made. The special value 1849
of "uncertain" is mapped to the NULL value in datetime comparison 1850
operations. 1851

3. Overflow and underflow condition checking is performed on the result of 1852
the expression, as follows: 1853

• For timestamp results: 1854
• A timestamp older than the oldest valid value in the timezone 1855

of the result produces an arithmetic underflow condition 1856
• A timestamp newer than the newest valid value in the timezone 1857

of the result produces an arithmetic overflow condition 1858
• For interval results: 1859

• A negative interval produces an arithmetic underflow condition 1860
• A positive interval greater than the largest valid value produces 1861

an arithmetic overflow condition 1862
 1863
Specifications using the definition of these operations (for instance, query languages) 1864
SHOULD define how these conditions are handled. 1865
 1866

4. If the result of the expression is again a datetime type, the microsecond 1867
range gets converted into a valid datetime value such that the set of 1868
asterisks (if any) determines a range that matches the actual result range, 1869
or encloses it as closely as possible. The GMT timezone MUST be used 1870
for any timestamp results. 1871

 1872
Note that for most fields, asterisks can be used only with the granularity of 1873
the entire field. 1874

 1875
Examples: 1876

 1877
"20051003110000.000000+000" + "00000000002233.000000:000" 1878
 evaluates to "20051003112233.000000+000" 1879
"20051003110000.******+000" + "00000000002233.000000:000" 1880
 evaluates to "20051003112233.******+000" 1881
"20051003110000.******+000" + "00000000002233.00000*:000" 1882
 evaluates to "200510031122**.******+000" 1883
"20051003110000.******+000" + "00000000002233.******:000" 1884
 evaluates to "200510031122**.******+000" 1885
"20051003110000.******+000" + "00000000005959.******:000" 1886
 evaluates to "20051003******.******+000" 1887
"20051003110000.******+000" + "000000000022**.******:000" 1888
 evaluates to "2005100311****.******+000" 1889
"20051003112233.000000+000" - "00000000002233.000000:000" 1890
 evaluates to "20051003110000.000000+000" 1891
"20051003112233.******+000" - "00000000002233.000000:000" 1892

CIM Query Language Specification

Version 1.0.0 Second Preliminary

66

 evaluates to "20051003110000.******+000" 1893
"20051003112233.******+000" - "00000000002233.00000*:000" 1894
 evaluates to "20051003110000.******+000" 1895
"20051003112233.******+000" - "00000000002232.******:000" 1896
 evaluates to "200510031100**.******+000" 1897
"20051003112233.******+000" - "00000000002233.******:000" 1898
 evaluates to "20051003******.******+000" 1899
"20051003060000.000000-300" + "00000000002233.000000:000" 1900
 evaluates to "20051003112233.000000+000" 1901
"20051003060000.******-300" + "00000000002233.000000:000" 1902
 evaluates to "20051003112233.******+000" 1903
"000000000011**.******:000" * 60 1904
 evaluates to "0000000011****.******:000" 1905
60 times adding up "000000000011**.******:000" 1906
 evaluates to "0000000011****.******:000" 1907
"20051003112233.000000+000" = "20051003112233.000000+000" 1908
 evaluates to true 1909
"20051003122233.000000+060" = "20051003112233.000000+000" 1910
 evaluates to true 1911
"20051003112233.******+000" = "20051003112233.******+000" 1912
 evaluates to NULL (uncertain) 1913
"20051003112233.******+000" = "200510031122**.******+000" 1914
 evaluates to NULL (uncertain) 1915
"20051003112233.******+000" = "20051003112234.******+000" 1916
 evaluates to false 1917
"20051003112233.******+000" < "20051003112234.******+000" 1918
 evaluates to true 1919
"20051003112233.5*****+000" < "20051003112233.******+000" 1920
 evaluates to NULL (uncertain) 1921

Appendix E.2: Datetime BNF 1922

The URI grammar below uses Augmented BNF (ABNF) [3] with the following 1923
exceptions. 1924

1. Rules separated by a bar (|) represent choices. (Instead of using a slash (/) as 1925
defined in ABNF). 1926

2. Ranges of alphabetic characters or numeric values are specified using two 1927
periods (..) placed between the beginning and ending values of the range. 1928
(Instead of using the minus sign (-) as defined in ABNF). 1929

3. The rules defined in this syntax are meant to be assembled into a complete 1930
query by assuming whitespace characters between them, except where noted 1931
otherwise. (ABNF requires explicit specification of whitespace.) 1932

4. The comma (,) is used to explicitly designate concatenation of rules. 1933
(Instead of implicit concatenation of rules as specified by ABNF.) 1934

Note: ABNF is NOT case-sensitive. 1935
 1936
The grammar is defined as follows: 1937
dt-decimal-digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" 1938
 1939

CIM Query Language Specification

Version 1.0.0 Second Preliminary

dt-single-quote = "'" 1940
 1941
dt-two-time-digits = (2*2(dt-decimal-digit)) | ("**") 1942
 1943
dt-microsecond-digits = 6*6(dt-decimal-digit) 1944
 | 5*5(dt-decimal-digit), ("*") 1945
 | 4*4(dt-decimal-digit), ("**") 1946
 | 3*3(dt-decimal-digit), ("***") 1947
 | 2*2(dt-decimal-digit), ("****") 1948
 | 1*1(dt-decimal-digit), ("*****") 1949
 | ("******") 1950

See the CIM Infrastructure Specification [1] for a detailed description of 1951
the use of interval-specification. 1952

dt-timestamp-specification = dt-single-quote, 1953
 (1954

 | ((4*4(dt-decimal-digits) | "****"), "**********", 1955
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit)) 1956

years: A timestamp with the year field set to 0000 is interpreted as the 1957
year 1 BCE. A year field set to 0001 is interpreted as the year 1 CE. 1958

 | (6*6(dt-decimal-digits), dt-two-time-digits, "******", 1959
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit)) 1960

months 1961

 | (8*8(dt-decimal-digits), dt-two-time-digits, "****", 1962
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit)) 1963

days 1964

 | (10*10(dt-decimal-digits), dt-two-time-digits,"**", 1965
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit)) 1966

minutes 1967

 | (12*12(dt-decimal-digits), dt-two-time-digits, 1968
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit)) 1969

seconds 1970

 | (14*14(dt-decimal-digits), 1971
 ".", (dt-microsecond-digits), ("+"|"-"), 3*3(dt-decimal-digit)) 1972

microseconds 1973

), dt-single-quote 1974
See the CIM Infrastructure Specification [11] for a detailed description 1975
of the use of interval-specification. 1976

CIM Query Language Specification

Version 1.0.0 Second Preliminary

68

dt-interval-specification = dt-single-quote, 1977
((14*14("*"), ".", ("******"), (":"), 3*3(dt-decimal-digit)) 1978

nothing 1979

 | (8*8(dt-decimal-digit) | ("********")), ("******"), 1980
 ".", ("******"), (":"), 3*3(dt-decimal-digit)) 1981

days 1982

 | (8*8(dt-decimal-digits), dt-two-time-digits, "****", 1983
 ".", ("******"), (":"), 3*3(dt-decimal-digit)) 1984

hours 1985

 | (10*10(dt-decimal-digits), dt-two-time-digits,"**", 1986
 ".", ("******"), (":"), 3*3(dt-decimal-digit)) 1987

minutes 1988

 | (12*12(dt-decimal-digits), dt-two-time-digits, 1989
 ".", ("******"), (":"), 3*3(dt-decimal-digit)) 1990

seconds 1991

 | (14*14(dt-decimal-digits), 1992
 ".", (dt-microsecond-digits), (":"), 3*3(dt-decimal-digit)) 1993

microseconds 1994

), dt-single-quote 1995
See the CIM Infrastructure Specification [11] for a detailed description 1996
of the use of interval-specification. 1997

