
CIM Database Model White Paper Version 1.5

November 21, 2005 1

CIM Database Model White Paper

CIM Version 2.10

Document Version 1.5 October 04, 2005

Abstract
The DMTF Common Information Model (CIM) is a conceptual information model for
describing computing and business entities in enterprise and Internet environments. It provides a
consistent definition and structure of data, using object-oriented techniques. The CIM Schema
establishes a common conceptual framework that describes the managed environment.
The CIM database model describes the common management characteristics of a database
environment. The model includes the common classes and properties that are independent of
database organization or vendor implementation. The classes include the database system, which
represents the application software aspects of a database environment; the common database,
which represents a logical unit of inter-related data; and the database service, which represents
the entity that performs tasks for a database.
This paper describes the background and motivation for defining the CIM database model, the
contents of the model, and how it relates to other CIM schemas and database management
standards. A use case is included that describes how the database model can be used for
management purposes.

CIM Database Model White Paper Version 1.5

November 21, 2005 2

Notices

DSP0133 Status: Informational
Copyright © 2002-2005 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and
interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent with this
purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version
and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party patent rights, including
provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to the existence of
such rights, and is not responsible to recognize, disclose, or identify any or all such third-party patent rights, owners or claimants,
nor for any incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or identify any such
third-party patent rights, or for such party’s reliance on the standard or incorporation thereof in its product, protocols or testing
procedures. DMTF shall have no liability to any party implementing such standard, whether such implementation is foreseeable or
not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the standard from
any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third parties that have notified the DMTF that, in their opinion, such patent may relate to or
impact implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

CIM Database Model White Paper Version 1.5

November 21, 2005 3

Table of Contents

1 INTRODUCTION ...4
1.1 Overview ...4
1.2 Terminology ..5

2 DATABASE MODEL ...6
2.1 Background and Assumptions...6

2.1.1 Motivation for Developing a Database Model .. 6
2.1.2 Assumptions ... 7

2.2 Conceptual Areas Addressed by the Model ...7
2.3 Database System ...7
2.4 Common Database: CIM_CommonDatabase..9

2.4.1 Database Storage .. 13
2.5 Database Service: CIM_DatabaseService ...18
2.6 Database Parameters: CIM_DatabaseParameter ...22

2.6.1 SNMP Database and Service Parameter Mapping ... 24
2.7 Software and Statistics ..24

2.7.1 Database Resource Statistics ... 25
2.7.2 Common Database Statistics .. 26
2.7.3 Database Service Statistics ... 26

2.8 Services and Service Access Points ..30
2.8.1 CIM_DatabaseService ... 30

3 RELATIONSHIPS TO OTHER STANDARDS AND SPECIFICATIONS...................................31
3.1 Overlapping Standards and Specifications ..31

3.1.1 SNMP RDBMS MIB Specification ... 31
3.1.2 CWM Metamodel.. 31

3.2 Mapping of the SNMP RDBMS MIB to the Database Model ..31
3.2.1 Differences Between SNMP RDBMS MIB and CIM Database Models............................ 31
3.2.2 SNMP RDBMS MIB to CIM Database Model Data Mapping .. 32
3.2.3 SNMP to CIM Database Model Event Mapping ... 37

4 DATABASE MODEL USE CASE ...39
4.1 Creating CIM Class Instances During the MyDB Installation..39
4.2 Creating CIM Class Instances at Database Creation ..40
4.3 Using the Database Schema Content for Management..44

5 FUTURE WORK..45
APPENDIX A – CHANGE HISTORY..46
APPENDIX B – REFERENCES..47
APPENDIX C – EXTENDING THE MODEL ..48
APPENDIX D – CONSIDERATIONS FOR IMPLEMENTATION..49
ACKNOWLEDGEMENTS ...50

CIM Database Model White Paper Version 1.5

November 21, 2005 4

1 Introduction
The Common Information Model (CIM) provides consistent information models with well-
defined associations that capture management content for applications, systems, networks,
devices, and other technology-focused management domains. CIM models establish a common
conceptual framework that enables both hardware and software providers to consistently
represent management information across vendor boundaries.

The benefits of CIM and the motivation behind extending the CIM information models into
additional technology and vendor-agnostic domains are described in the CIM Core Model White
Paper. The same motivations apply for the database management domain. When management
data is unified across the enterprise, there is significant value to both the customer and the
solution provider.

1.1 Overview
The database model that is described in this white paper extends the scope of CIM to include the
database management domain. Three primary components are used to model a database
environment:

1. The database system software
2. The common database entity
3. The database services

The concepts and associations defined by the database model are intended to be independent of
any particular database type or vendor implementation. Future versions of the model may extend
these classes to include additional entities and associations for specific types of environments,
such as relational databases. Database software vendors may extend the database model to
include vendor-specific content.

The primary focus of the DMTF Database Working Group in CIM version 2.7 was to model the
database management entities and properties that are defined in the SNMP RDBMS MIB as
specified in RFC 1679. In CIM version 2.8, the database model has been extended to model an
initial set of classes that represent database storage.

CIM Database Model White Paper Version 1.5

November 21, 2005 5

1.2 Terminology
Table 1 shows the terminology that is used in this paper and database model. Readers of this
document should be familiar with CIM, the existing models, and database technology.

Table 1. Terminology

Term Definition

Database A collection of interrelated data, treated as a unit, which is organized into one
or more schemas.

Database Environment A database system, one or more databases, and the services that control the
administration, usage, monitoring, and maintenance of a database.

Database Server The SNMP RDBMS term for the entity that provides access to the database. In
CIM database model terminology, this entity is referred to as the database
service.

Database Service The entity that performs tasks for a database, such as providing user access to
the information within the database. Database services may be implemented as
one or more processes.

Database System The entity that represents the application software aspects of a database
environment.

Relational Database A database in which the schemas are organized based on the relational model.
Schema A collection of related database objects that reside in a database.
Storage Area A logical container in which database information is stored.

CIM Database Model White Paper Version 1.5

November 21, 2005 6

2 Database Model
This section describes the classes and associations that are defined for the database model, and
the relationships between the database model and other CIM models.

2.1 Background and Assumptions
The CIM Database Working Group was formed in 1997 to model the general management
characteristics of a relational database environment. The initial model included the relational
database software system, storage management, catalogs and schemas, users, transactions, and
security. The result was a complex database model that was never completely specified.
The working group was reinstated in January of 2002. The goals and scope of the new working
group were modified to include the content of RFC 1697, the SNMP RDBMS MIB specification.
In addition, the working group agreed that the common database model content must be
independent of any particular database organization. The database model supports hierarchical,
relational, object-oriented, mixed, and other database implementations.

The initial model and white paper provided an excellent starting point for discussing how
database entities could be represented in a model and database vendor-agnostic way. The RFC
1697 specification provided boundaries for the modeling effort. This specification identifies
database entities and properties that are common across relational databases. The Database
Working Group mapped these entities and properties to the CIM schema and abstracted the
concepts to include any type of database.

2.1.1 Motivation for Developing a Database Model
A number of key factors contributed to the reinstatement of the Database Working Group. These
factors are discussed in this section. The most important motivator is that CIM end users want a
comprehensive model for all relevant management information. A common database model has
been missing from CIM. The database model brings CIM a step closer to modeling end-to-end
manageability from an enduser perspective. In addition, consistent management content that
crosses vendor and platform boundaries enables more advanced management capabilities, such
as cross-vendor diagnostics.

Management solution providers also benefit from the development of a common database model.
The common model content provides a blueprint of database entities and properties that span
vendor implementations. Solution providers can write management applications that have a
consistent look-and-feel using the common content. Vendor-specific model extensions can also
be integrated as needed.
Database vendors benefit from the development of a common database model. The CIM model
allows the relationships between the database as a component of other systems, or the
components required for a database environment, to be formally defined. This relationship
benefits database users and helps to build a common platform for database manageability.
Because CIM is object-oriented, database vendors can extend the model to include vendor-
specific content by extending from the common aspects of the database model. From an end-user
perspective, database vendor extensions are an integrated part of the complete model, rather than
a separate, proprietary interface that requires special handling. As a result, database vendors can

CIM Database Model White Paper Version 1.5

November 21, 2005 7

write a single API that uses a consistent management information model across the complete
software and hardware stack.

2.1.2 Assumptions
In CIM version 2.7, the database model focuses on the database entities and properties that have
been defined in RFC 1697, as mapped to the CIM schema. The working group assumes that the
content of this specification defines common database management content that spans database
vendor implementations.
The Database Working Group has defined an initial set of common classes and associations in
CIM 2.8 that model database storage. These classes use the work that was done in the Systems
and Devices Working Group to map storage entities at the system level. The working group
assumes that this lower level of mapping provides a common base for all users of the database
model.

2.2 Conceptual Areas Addressed by the Model
The CIM database model defines management components for a database environment. Three
major entities are modeled:

1. The database system represents the software application aspects of the database
environment

2. The common database is a logical entity that represents the unit of inter-related,
organized data

3. The database service represents the process or processes that perform tasks for the
database, such as providing user access

In addition, a number of supportive classes represent configuration parameters, resources, and
statistics. Figure 1 provides a conceptual representation of a database environment.

The database model is described in more detail in the following sections.

2.3 Database System
The database system represents the software application deployment aspects of the database
environment. Database system software controls the organization, retrieval, storage, security, and
maintenance of a database. It includes the software inventory information for the database
environment, the software features that are meaningful from a user's perspective, and the
software elements that are part of the database software. For background material on the
concepts and schema details for application modeling, see the Understanding the Application
Management Model white paper.
In Figure 2, a system administrator installs the database software onto the host operating system.
The information associated with the installation process—the files and programs installed, how
the files and programs are associated with the database system, the user features that are supplied
by the database software, product and component versioning details—have all been defined as
part of the application model. A CIM_DatabaseSystem is the logical entity that represents a
manageable instance of the software aspects of a database environment in the database model.

CIM Database Model White Paper Version 1.5

November 21, 2005 8

Figure 1. Conceptual Representation of the Database Model

System

(See Core Model)

DatabaseSystem

ApplicationSystem

(See Application Model)

(See Core Model)

EnabledLogicalElement

Figure 2. CIM_DatabaseSystem Class

CIM Database Model White Paper Version 1.5

November 21, 2005 9

From a modeling perspective, CIM_DatabaseSystem is a subclass of CIM_ApplicationSystem.
In CIM 2.8, the Applications Working Group began modeling the runtime aspects of an
application system using the CIM_RuntimeApplicationSystem subclass of
CIM_ApplicationSystem. The database model does not directly use this subclass and its
associations at this point in time. We expect that a future version of the database model will
leverage relevant aspects of this portion of the application model.

One instance of CIM_DatabaseSystem is created for each database system installation that needs
to be individually managed. For example, assume that a system administrator installs a database
system into DB_HOME1. If the administrator installs another database product into
DB_HOME1, a second instance of CIM_DatabaseSystem does not need to be created. Because
the instance represents the existence of the database system as a manageable entity, the addition
or removal of individual database products does not have an impact on the instances in the
CIM_DatabaseSystem class.
If the system administrator installs a new database system into DB_HOME2, an instance needs
to be created in CIM_DatabaseSystem to represent this new database system. Because the new
database system is an individually named manageable entity, it would require its own
CIM_DatabaseSystem instance.
The properties and associations for the CIM_DatabaseSystem class are inherited from its parents
in the CIM schema hierarchy. The database model does not define additional properties that are
specific to a database system. Having a separate class that represents a database system within
the model has two important advantages.

1. The CIM_DatabaseSystem class groups the application systems that are database
systems

2. Associations that are specific to database systems can be modeled

Table 2 describes the properties of CIM_DatabaseSystem. For more information, see the MOF
and white papers for the class from which the property was inherited.

2.4 Common Database: CIM_CommonDatabase
The common database describes the vendor and database organization-agnostic properties of a
database. It is a logical entity that names a specific, manageable organized body of related
information. The SNMP RFC 1697 specification defines a database as an inter-related unit of
data that is organized into a schema. The working group did not create a specific definition that
mapped across vendor implementations.
The DMTF Database Working Group chose the class name CIM_CommonDatabase to represent
the logical database entity. At this level of the database schema, instances of
CIM_CommonDatabase span database organizations. The class supports hierarchical, relational,
object-oriented, mixed, and other database model implementations. Each separately manageable
database, whether it was created through a SQL command, vendor database creation utility, or
was preexisting on the operating system, should have an instance in the CIM_CommonDatabase
class.

CIM Database Model White Paper Version 1.5

November 21, 2005 10

Table 2. CIM_DatabaseSystem Properties

Property Name Inherited From Class Description

CreationClassName CIM_System The name of the class or subclass used
when the instance was created. In this case,
the value is CIM_DatabaseSystem. This
property is used in conjunction with name
to uniquely identify instances within the
class.

Name CIM_System The name of the database system.

NameFormat CIM_System A string that identifies how the database
system name was generated.

PrimaryOwnerContact CIM_System A string that identifies how the database
system owner can be contacted (for
example, email address, phone number,
pager, and so on).

PrimaryOwnerName CIM_System The name of the primary owner of the
system.

Roles CIM_System An array of strings that specifies the roles
that the database system plays in the IT
environment.

OperationalStatus CIM_ManagedSystemElement The status of the database system.

InstallDate CIM_ManagedSystemElement The date and time when the database
system was first installed.

Description CIM_ManagedElement A longer textual description of the database
system.

Caption CIM_ManagedElement A short textual description of the database
system.

ElementName CIM_ManagedElement A user-friendly name for the database
system.

EnabledStatus CIM_EnabledLogicalElement A status indicating whether the database
system is enabled or in a disabled state.

Several properties are defined for a database at this level of the schema. A number of other
properties are inherited. The following properties are defined for this class:

• InstanceID
The InstanceID property opaquely identifies a specific instance of
CIM_CommonDatabase. It must be unique within a namespace. Without this property,
unique database naming would need to be managed by provider writers who extend from
CIM_CommonDatabase.

Because the contents of InstanceID are opaque, clients that reference this property should
not require the contents to be written in a specific format.

• SizeAllocated
The SizeAllocated property contains the estimated amount of disk space, in SizeUnits,
that has been reserved for database use. The value of this property is not expected to

CIM Database Model White Paper Version 1.5

November 21, 2005 11

change frequently. The SizeAllocated property maps to the rdbmsDbInfoSizeAllocated
variable in the SNMP RDBMS MIB.SizeUnits
The SizeUnits property identifies the units for the SizeAllocated property and for the
SizeUsed property that are defined in the CIM_CommonDatabaseStatistics class. The
mapping for the units is:

1. Bytes
2. Kilobytes
3. Megabytes
4. Gigabytes
5. Terabytes

The SizeUnits property maps to the rdbmsDbInfoSizeUnits variable in the SNMP
RDBMS MIB.

• LastBackup
The LastBackup property identifies the date and time when the latest complete or partial
backup of the database was performed. If the database has never been backed up, then
this property has no meaning. The value of this property should be set to all zeros in
interval format if a backup operation has never been performed for the database. The
LastBackup property maps to the rdbmsDbInfoLastBackup variable in the SNMP
RDBMS MIB.

• DatabaseVersion
The DatabaseVersion property identifies the version number for the database. If the
version is not relevant for a specific vendor implementation, the value for this property
must be set to NULL. The database version property maps to the rdbmsDbInfoVersion
variable in the SNMP RDBMS MIB.

Table 3 provides a brief summary of the inherited properties. For more information, see the MOF
where the referenced class is defined.

Table 3. Inherited Properties for CIM_CommonDatabase

Property Name Inherited From Class Description

Name CIM_ManagedSystemElement The database name.
OperationalStatus CIM_ManagedSystemElement The status of the database.
InstallDate CIM_ManagedSystemElement The date and time when the database was

created.
Description CIM_ManagedElement A longer textual description of the database.
Caption CIM_ManagedElement A short textual description of the database.
ElementName CIM_ManagedElement A user-friendly name for the database.
EnabledStatus CIM_EnabledLogicalElement A status indicating whether the database is

enabled or in a disabled state.

Figure 3 illustrates the CIM_AssociatedDatabaseSystem association, which represents the
relationship between a database system where the database software has been deployed and the
databases it controls.

CIM Database Model White Paper Version 1.5

November 21, 2005 12

InstanceID: string [key]

DatabaseVersion: String

SizeAllocated: uint32

SizeUnits: enum

LastBackup: datetime

CommonDatabase

1 *
AssociatedDatabaseSystem

DatabaseSystem

Figure 3. CIM_AssociatedDatabaseSystem Association

A single database system can be associated to zero or more databases. An instance of the
database system class must exist for this association to be valid.
This association can be used to identify the database home for a specific common database
instance. It also relates a specific common database instance to the database system that controls
it. As a result, it is possible to list the common database instances that are controlled by a specific
database system.
CIM_CommonDatabase relates a database to the user entity that administers the database. A
database does not require an administrator. A database may have multiple administrators.
Figure 4 illustrates the UML for the CIM_DatabaseAdministrator association.

(See User-Security Model)

UserEntity CommonDatabase

InstanceId: string {key}

DatabaseVersion: string

SizeAllocated: uint32

SizeUnits: uint16 {enum}

LastBackup: datetime

*

DatabaseAdministrator

*

(See User-Security Model)

UserContact

Figure 4. CIM_DatabaseAdministrator Association

CIM 2.8 introduces the CIM_UserContact concrete class. This class contains the detailed user
contact information needed for a database administrator. This class was not defined in the CIM
2.7 model, so the Database Working Group could not use it for the DatabaseAdministrator
association. In CIM2.8, the working group cannot change the reference in the database
administrator association to use the CIM_UserContact class because it might break existing
vendor implementations if the vendor has created its own concrete class.

To transition to the next major release of CIM, when CIM_UserEntity will become concrete and
include the properties defined in CIM_UserContact, the Database Working Group suggests that

CIM Database Model White Paper Version 1.5

November 21, 2005 13

the CIM_UserContact class be used to create a vendor-specific concrete class in order to define
database administrator contact information.

The CIM_DatabaseAdministrator association maps to the rdbmsDbContact variable in the
SNMP RDBMS MIB.

2.4.1 Database Storage
The Database model in CIM 2.8 includes an initial model for database storage. The Database and
SYSDEV working groups discussed the aspects of database storage that are specific to a
database and the aspects that are applicable to file systems. General classes and associations
were added to the System or Device model and the database-specific content was included in the
Database model.

The goal for the initial model for database storage was to include the primary management
entities that are common across database vendors that represent database storage, and to map the
database specific entities down to the lower level system and device information. The database-
specific content that is modeled includes both user storage content and any files that are created
for use by the database.
A database storage area is a container for logically organizing and storing database information.
A database may have multiple storage areas. A database storage area is a type of file system that
is created and controlled by the database system. Figure 5 illustrates a number of the more
important file system properties.
Many file system properties and associations are relevant to a database storage area.

(See Core Model)

EnabledLogicalElement

CommonDatabase

(See System Model)

PersistenceType : enum

OtherPersistenceType : string
NumberOfFiles : uint32

FileSystem

DatabaseStorageArea

IsSystemArea : boolean

LastBackup : datetime

1

DatabaseStorage

*

Figure 5. Database Storage

Table 4 provides a brief summary of the inherited file system properties. See the system and
device models for more information on these properties and associations and the core model for
information on the properties and associations inherited from higher-level classes.

CIM Database Model White Paper Version 1.5

November 21, 2005 14

Table 4. Inherited File System Properties

Property Name Inherited From Class Description

PersistenceType CIM_FileSystem An enumerated value representing the persistence
characteristics of the information contained in the
file system. Values include persistent, temporary,
external, unknown, or 'Other'.

OtherPersistenceType CIM_FileSystem A string containing the value of the persistence
type when the persistence type enumeration is
'Other'.

NumberOfFiles CIM_FileSystem The number of files contained in the file system.

In addition to the inherited properties, the following properties, which are specific to a database,
are defined in the CIM_DatabaseStorageArea class:

• IsSystemArea
The IsSystemArea property is a Boolean value that indicates whether the storage area is a
system storage area. Some database systems may designate a storage area as a system
storage area. A system storage area contains information that is owned by the database
system, such as the data dictionary for the database. It is recommended that system and
user storage areas should not be combined.

• LastBackup
The LastBackup property is a timestamp that contains the date and time when the last
backup of the DatabaseStorageArea successfully completed. Some database systems
allow database storage areas to be individually backed up.

The CIM_DatabaseStorage association can be used to identify the storage areas that
belong to a particular database. A storage area cannot belong to more than one database.

Two levels of storage-related settings are defined in the Database model. The database-level
settings that are defined in the CIM_CommonDatabaseSettingData class control aspects of
database configuration, such as recovery. The CIM_DatabaseSegmentSettingData class defines
settings that control how a database segment is created or extended. Instances within this class
can also be associated to a storage area through the ScopedSetting association to specify the
default settings for a database storage area. Figure 6 illustrates these two levels of storage area
settings.

CIM Database Model White Paper Version 1.5

November 21, 2005 15

Figure 6. Database Storage Area Settings

Settings can be inherited from the file system level or can be database-system specific. The
database-specific settings allow the following recoverability options for a storage area to be
specified:

• RecoverabilityOption
The RecoverabilityOption setting determines the level of recoverability for the database.

• OtherRecoverabilityOption
The OtherRecoverabilityOption is a string that contains the value representing the
recoverability option when the setting has been set to 'Other'.

The setting class has a related capability class that defines which settings are applicable for a
given database.

Database systems may create special purpose files for recovery, transaction control, or to
maintain state information for the database. These files may contain information that is relevant
from a management perspective. They may require backup, special placement, or specific
administration for routine database operation. From a file-system perspective, these database
files are logical files, just like any other file that is created. The Database working group has not
defined any properties that are specific to a database file at this time, so a subclass was not
needed. Figure 7 illustrates these database files.

CIM Database Model White Paper Version 1.5

November 21, 2005 16

(See Core Model)

LogicalElement

(See Core Model)

EnabledLogicalElement

CommonDatabase

(See System Model)

LogicalFile

1 *
DatabaseFile

1

DatabaseControlFile

*

Figure 7. Database Files

The CIM_DatabaseFile association can be used to identify the database files that belong to a
particular database, such as redo log files. A database file cannot belong to more than one
database.

The CIM_DatabaseControlFile association can be used to identify the control files for the
database. The CIM_DatabaseSegment class is the area of database storage that is modeled in
CIM 2.8. Figure 8 illustrates the database segment.

(See Core Model)

LogicalElement

(See Core Model)

EnabledLogicalElement

(See Core Model)

LogicalDevice

(See Core Model)

StorageExtent

DatabaseSegment

Purpose : string
OtherPurpose : string

ResidesOnExtent

*

*

Figure 8. Database Segment

CIM Database Model White Paper Version 1.5

November 21, 2005 17

A database segment is a logical storage entity composed of one or more storage extents, each of
which may have one or more database blocks. Database segments have various types depending
on their purpose. Because a database segment is a type of storage extent, the working group
extended from the CIM_StorageExtent class and overrode the purpose property to describe the
database-specific extent usage detail.
This level of storage within the database model uses the existing classes and associations from
the system model.
Note: The order of extents within a DatabaseSegment should be represented in the BasedOn
dependency of CIM_StorageExtent using the BasedOn.OrderIndex attribute.
The following properties within the CIM_DatabaseSegment class override the inherited
properties from CIM_StorageExtent:

• Purpose
This property identifies how the segment is used by the database. For example, the
database segment may contain user data information, index information, or temporary
information.

• OtherPurpose
This property contains the value representing the purpose when the purpose is set to
'Other'.

In addition to these properties, the working group modeled a number of properties as settings.
They are used to configure the database segment. The properties would be redundant if included
in the database segment class, because the current values are already reflected in the properties
inherited from the storage extent level.

• InitialExtentSize
This setting represents the size, in bytes, of the first extent to be allocated when a
database segment is created.

• NextExtentSize
This setting represents the size, in bytes, that is used for the next incremental extent for
the database segment. A value of 0 indicates that the value for the next extent will be
determined through the PercentIncrease setting.

• PercentIncrease
This setting specifies the percentage by which the next incremental extent will increase
over the previously allocated size of all extents for the database segment. A
PercentIncrease value of 0 indicates that all incremental extents will be the same size, as
specified by the NextExtentSize setting. This value is ignored and should be set to 0 if the
NextExtentSize setting has a value other than 0.

• MinimumExtentSize
This setting determines the total number of extents that are allocated when the database
segment is created. It is used to create a large initial segment allocation at creation time.
This makes it more likely that the space will be contiguous.

CIM Database Model White Paper Version 1.5

November 21, 2005 18

• MaximumExtentSize
This setting places an upper limit on the number of extents that can be allocated for a
database segment.

• NumberOfFreeLists

This setting identifies the number of freelists that are defined for the database segment.
This value is typically set to the expected number of concurrent inserts for the segment.

A freelist is a list of the free blocks that are associated with a database segment. The
freelist is used to determine which segments are eligible for accepting data when a new
insert or update request is processed.

2.5 Database Service: CIM_DatabaseService
The database service describes the process or set of processes that performs tasks for the
database. The database service is referred to as a database server in the RFC 1697 specification.
By either name, this class defines the process or processes that coordinate user access to the
database. Some database services perform other tasks, such as user authentication, authorization,
concurrency control, data manipulation, integrity verification and data recovery.
Figure 9 illustrates the CIM_DatabaseService class.

StartupTime: datetime
OperationalStatus: enum

LastStatusChangeTime: datetime

ConnectionLimit: uint32

DatabaseService

Service

(See Core Model)

(See Core Model)

EnabledLogicalElement

Figure 9. CIM_DatabaseService Class

The CIM_DatabaseService class contains instances of the manageable database service entities.
Several properties are defined for a database at this level of the schema. A number of other
properties are inherited. The properties defined for this class include:

• StartupTime
The StartupTime property contains the date and time when the database service was last
started. A value of all zeros indicates that the database service has never been started.
This property maps to the rdbmsSrvInfoStartupTime variable in the SNMP RDBMS
MIB.

CIM Database Model White Paper Version 1.5

November 21, 2005 19

• OperationalStatus
The OperationalStatus property overrides the description that was inherited from
CIM_ManagedSystemElement. The values and value map for the property are inherited
from CIM_ManagedSystemElement.

This property contains the operational status of the database service. These status values
are:

▪ “OK” means that the database service is operational and available for general use.
▪ “Stopped” means that the service is unavailable and cannot be used.

▪ “In Service” implies an administrative state of unavailability.
▪ “Stressed” means that the database service is operating at a less than optimal level.

▪ “Starting” means that the database service is in the process of becoming operational.
Table 5 provides the status values that map to the RFC 1697 rdbmsSrvInfoOperStatus
values.

Table 5. CIM Operational Status and RFC 1697 OperStatus Value Mapping

CIM OperationalStatus Value RFC 1697 OperStatus Value

OK UP

Stopped DOWN

In Service HALTED
Stressed CONGESTED

Starting RESTARTING

Additional values are CIM OperationalStatus specific. See the definition of
OperationalStatus in the CIM_ManagedSystemElement class for more information on the
additional values.

• LastStatusChangeTime
The LastStatusChangeTime property contains the date and time when the operational
status of the database service last changed. This property maps to the
rdbmsSrvInfoLastChange variable in the SNMP RDBMS MIB.

• ConnectionLimit
This property contains the maximum number of active inbound connections that can be
concurrently open for the database service. This property maps to the
rdbmsSrvInfoMaxInboundAssociations variable in the SNMP RDBMS MIB.

Table 6 provides a brief summary of the inherited properties. See the MOF where the referenced
class is defined for more information.

Table 6. Inherited Properties for DatabaseService

Property Name Inherited From Class Description
SystemCreationClassName CIM_Service The creation class name for the

CIM Database Model White Paper Version 1.5

November 21, 2005 20

Property Name Inherited From Class Description
system where the database
service is running.

SystemName CIM_Service The name of the system where
the database service is running.

CreationClassName CIM_Service The name of the class or
subclass used when the instance
was created. In this case, the
value is CIM_DatabaseService.
This property is used in
conjunction with name to
uniquely identify instances
within the class.

Name CIM_Service The name of the service.
StartMode CIM_Service This property indicates whether

the database service startup is
manual or automatic.

Started CIM_Service A Boolean value that indicates
whether the database service is
started or stopped.

PrimaryOwnerName CIM_Service The name of the primary owner
of the database service. This
name maps to the owner name
content found in the
rdbmsSrvContact property in the
RDBMS SNMP MIB.

PrimaryOwnerContact CIM_Service The contact information for the
primary owner of the database
service. This information maps
to the owner contact content
found in the rdbmsSrvContact
property in the RDBMS SNMP
MIB.

InstallDate CIM_ManagedSystemElement The date and time when the
database service was created.

Description CIM_ManagedElement A longer textual description of
the database service.

Caption CIM_ManagedElement A short textual description of the
database service.

ElementName CIM_ManagedElement A user-friendly name for the
database service. In some cases,
this may be the same value as
the name property.

EnabledStatus CIM_EnabledLogicalElement A status indicating whether the
database service is enabled or in
a disabled state.

The CIM_ServiceAvailableToDatabase association relates database services to databases. A
database can have zero or more database services that are available to service it. A database
service can serve zero or more databases.

CIM Database Model White Paper Version 1.5

November 21, 2005 21

The relationship between a database and its database services is determined by the architecture of
the vendor implementation. Because the model supports the case where a single database service
can be used with multiple databases, properties are placed on the association to represent the
relationship between a service and its availability to a specific database. Figure 10 illustrates the
CIM_ServiceAvailableToDatabase association.

StartupTime: datetime

OperationalStatus: enum

LastStatusChangeTime: datetime
ConnectionLimit: uint32

DatabaseService

InstanceID: string [key]

DatabaseVersion: String

SizeAllocated: uint32

SizeUnits: enum

LastBackup: datetime

CommonDatabase

ServiceAvailableToDatabase

*

*

AvailableState: enum

OtherAvailableState: string
ActiveTime: datetime

ServiceAvailableToDatabase

Figure 10. CIM_ServiceAvailableToDatabase Association

This relationship can be used to identify the number of database services that provide access to a
specific database, the status of the service, and other useful information, such as the host where
the service is running.

When a database service is actively serving a database, the following properties are defined:
• AvailableState

The AvailableState property indicates the current state of a database service regarding its
ability to access a specific database. The mapping from the numeric state representations
is:
1. Other – See OtherAvailableState for more details.

2. Active – The service is actively using the database.
3. Available – The service is waiting for a task to perform.

4. Restricted – The service is less than completely available for use by the database.
5. Unavailable – The service is not available for use by the database.

The AvailableState property maps to the rdbmsRelState variable in the SNMP RDBMS
MIB.

• OtherAvailableState
The OtherAvailableState property contains information that describes the ability of the
server to access the database when the AvailableState is 'Other'.

CIM Database Model White Paper Version 1.5

November 21, 2005 22

• ActiveTime
The ActiveTime property contains the time when the database was made active by this
service. If the AvailableState property is not 'Active', then the ActiveTime property must
be set to 0. The ActiveTime property maps to the rdbmsRelActiveTime variable in the
SNMP RDBMS MIB.

2.6 Database Parameters: CIM_DatabaseParameter
The database parameter class is an abstract class that represents the database and service
configuration parameter settings. Configuration settings are name-value pairs that allocate
specific resources, such as the number of database buffers for a database or service. These
settings are collected into a profile that identifies the parameters for a specific database or
service.
 Vendor implementations can associate configuration settings with the database or the database
service, and allow configuration settings for both the database and the services. The CIM
database model is flexible enough to support all these scenarios.

In CIM version 2.7, the initial focus of the CIM Database Working Group was to map the
contents from the SNMP RDBMS MIB. The RDBMS MIB defines database and service
parameters as generic name/value pairs. The CIM convention is to define specific named
properties within the class, rather than to create a generic parameter class.
To accommodate SNMP mapping, the CIM_DatabaseParameter class was created as an abstract
class. A CIM_SNMPDatabaseParameter class was created as a subclass to provide the explicit
SNMP mapping. In the future, the Database Working Group will investigate whether common
database parameter properties can be specified at this level of the model. If parameters can be
identified, a new subclass will be created that extends from CIM_DatabaseParameter to include
the common properties.
Another advantage of making CIM_DatabaseParameter an abstract class is that it provides a
class from which vendors can extend to provide vendor-specific named parameter classes. This is
recommended, because vendor implementations from this class will help the working group
refine the common properties that span vendor and database organizations in a future release of
the schema. Figure 11 illustrates the CIM_DatabaseParameter class and associations.

CIM Database Model White Paper Version 1.5

November 21, 2005 23

StartupTime : datetime
OperationalStatus : enum

LastStatusChangeTime : datetime

ConnectionLimit : uint 32

DatabaseService

Service

(See Core Model)

(See Core Model)

LogicalElement

ManagedSystemElement

(See Core Model)

(See Core Model)

ManagedElement

Profile

(See System Model)

ScopedSettingData

(See Core Model)

DatabaseParameter

*
Component

*

Dependency*
*

InstanceID : string [key]

DatabaseVersion : String

SizeAllocated : uint 32
SizeUnits : enum

LastBackup : datetime

CommonDatabase

SNMPDatabaseParameter

ParameterValue : string(See Core Model)

EnabledLogicalElement

1

*

1

*

ElementProfile

ScopedSetting

Figure 11. CIM_DatabaseParameter Class and Associations

The CIM_CommonDatabase and CIM_DatabaseService parameter settings are grouped using
the CIM_ElementProfile association that is defined in the Core schema. This association can be
used to identify the specific set of database parameter settings for a given database, or the set of
database service parameter settings for a specific database service.
CIM_ScopedSetting is an inherited association that is used to relate a specific setting data
instance to its managed element. In this case, the association relates settings to the appropriate
database or service.

The CIM_DatabaseParameter class does not define any common database parameter properties
at this time. A number of properties are inherited from its parent classes in the CIM schema.
Table 7 provides a brief description of these properties. See the MOF where these properties are
defined for more information.

CIM Database Model White Paper Version 1.5

November 21, 2005 24

Table 7. Inherited Properties for the CIM_DatabaseParameter Class

Property Name Inherited From Class Description

InstanceID CIM_SettingData An opaque ID that identifies a specific database
parameter instance.

Name CIM_SettingData A u-friendly name for the database parameter.

Description CIM_ManagedElement A longer textual description of the database
parameter.

Caption CIM_ManagedElement A short textual description of the database
parameter.

ElementName CIM_ManagedElement A user-friendly name for the database parameter.
In some cases, this may be the same value as the
name property.

2.6.1 SNMP Database and Service Parameter Mapping
The CIM_SNMPDatabaseParameter class extends from CIM_DatabaseParameter. This class was
created in the database schema to provide a mapping to the rdbmsDbParamTable and the
rdbmsSrvParamTable entities in the SNMP RDBMS MIB.
In addition to the properties that are inherited from CIM_DatabaseParameter, the
CIM_SNMPDatabaseParameter class defines the following property:

• ParameterValue
The ParameterValue property is a string representation of the value of the database or
service parameter. The ParameterValue property maps to the rdbmsDbParamCurrValue
variable in the SNMP RDBMS MIB.

2.7 Software and Statistics
The software and statistics portion of the database model focuses primarily on the statistics that
have been defined in RFC 1697. No additional classes or associations have been added for
database software modeling. Model extensions to support specific database software capabilities
may be included in a future database model release.
Three primary classes of statistics are defined in the database model. These classes include 1)
Database Resource Statistics (CIM_DatabaseResourceStatistics), 2) Common Database Statistics
(CIM_CommonDatabaseStatistics), and 3) Database Service Statistics
(CIM_DatabaseServiceStatistics). This section describes these classes, along with their
properties and associations.

Each class inherits properties through the CIM_StatisticalData class. Table 8 provides a brief
summary of the inherited properties. See the MOF where these properties are defined for more
information.
Each class of database statistics that is defined in the schema uses the
CIM_ElementStatisticalData association from the Core schema to relate an instance of statistical
information to its associated managed entity.

CIM Database Model White Paper Version 1.5

November 21, 2005 25

Table 8. Inherited Properties for the CIM_DatabaseServiceStatistics Class

Property Name Inherited From Class Description

InstanceID CIM_StatisticalData An opaque ID that identifies a specific statistics
instance.

Name CIM_StatisticalData A user-friendly name for the database statistic.

Description CIM_ManagedElement A longer textual description of the database
statistic.

Caption CIM_ManagedElement A short textual description of the database statistic.

ElementName CIM_ManagedElement A user-friendly name for the database statistic. In
some cases, this may be the same value as the
name property.

2.7.1 Database Resource Statistics
The CIM_DatabaseResourceStatistics class contains statistics on resources that have limits that
are enforced by either the database or a database service. One instance exists in this class for
each database or database service resource that has a resource limit. For example, the database
may impose a limit on the number of locks, or the amount of disk space that can be allocated for
a database partition. This class maps to the rdbmsLimitedResourceTable and the
rdbmsSrvLimitedResourceTable that are defined in the SNMP RDBMS MIB.
The following properties are defined in this class:

• Current
The Current property contains the current value of the limited resource. This property
maps to the rdbmsDbLimitedResourceCurrent variable and to the
rdbmsSrvLimitedResourceCurrent variable in the SNMP RDBMS MIB.

• Limit
The Limit property contains the maximum value that the database resource can attain. For
example, if a resource is defined to limit the number of database locks, the limit might be
set to 10,000 locks. As a result, no more than 10,000 locks could be held at any one time
for database usage. This property maps to the rdbmsDbLimitedResourceLimit variable
and to the rdbmsSrvLimitedResourceLimit variable in the SNMP RDBMS MIB.

• Highwater
The Highwater property contains the maximum value for the database resource measured
from the time when the first database service was started for the database. This property
maps to the rdbmsDbLimitedResourceHighwater variable and to the
rdbmsSrvLimitedResourceHighwater variable in the SNMP RDBMS MIB.

• Failures
The Failures property contains a count of the number of times that the database resource
limit would have been exceeded if the resource were allowed to be consumed beyond the
limit. This property maps to the rdbmsDbLimitedResourceFailures variable and to the
rdbmsSrvLimitedResourceFailures variable in the SNMP RDBMS MIB.

CIM Database Model White Paper Version 1.5

November 21, 2005 26

Figure 12 illustrates the CIM_Database ResourceStatistics class.

(See Core Model)

ManagedElement Dependency

*

*

(See Core Model)

StatisticalData
RelatedStatistics
*

*

DatabaseResourceStatistics

Current: uint64

Limit: uint64

Highwater: uinit64

Failures: uint32

*
1

ElementStatisticalData

Figure 12. CIM_DatabaseResourceStatistics Class

2.7.2 Common Database Statistics
The CIM_CommonDatabaseStatistics class contains the statistics for a database that span model
organization and vendor implementation. This class contains the following property:

• SizeUsed
The SizeUsed property contains the estimated amount of disk space that is currently used
by the database. The unit of this property is specified in the SizeUnits property from the
CIM_CommonDatabase class. The same units must be used for this property and the
SizeAllocated property that is defined in the CIM_CommonDatabase class.The SizeUsed
property maps to the rdbmsDbInfoSizeUsed variable in the SNMP RDBMS MIB

Figure 13Error! Reference source not found. illustrates the CIM_CommonDatabaseStatistics
class.

2.7.3 Database Service Statistics
The CIM_DatabaseServiceStatistics class contains the database service statistics that span model
organization and vendor implementation. The UML representation of this class is illustrated in
Error! Reference source not found. at the end of this section. The class contains the following
properties:

• LastActivity
The LastActivity property contains the date and time when the most recent inbound
activity was started for the database service. A value of all zeros indicates that no
inbound activity has taken place since the service was started. This property maps to the
rdbmsSrvInfoLastInboundActivity variable in the SNMP RDBMS MIB.

CIM Database Model White Paper Version 1.5

November 21, 2005 27

(See Core Model)

LogicalElement

ManagedSystemElement

(See Core Model)

(See Core Model)

ManagedElement

*
Component

*

Dependency

*

*

(See Core Model)

StatisticalData

RelatedStatisticsElementStatisticalData *

*

(See Database Model)

DatabaseService

Service

(See Core Model)

LastActivity: datetime
ActiveConnections: uint64

CumulativeConnections: uint64

RejectedConnections: uint64

CompletedTransactions: uint64

DiskReads: uint64
DiskWrites: uint64

LogicalReads: uint64

LogicalWrites: uint64

PageReads: uint64

PageWrites: unit64
DiskSpaceUnavailable: uint64

RequestsHandled: uint64

RequestsReceived: uint64

RequestsSent: uint64

HighwaterConnections: uint64

DatabaseService

Statistics

*
1

(See Core Model)

EnabledLogicalElement

Figure 13. CIM_CommonDatabaseStatistics Class

• ActiveConnections
The ActiveConnections property is a counter of the number of active inbound
connections that are using the database service. This property maps to the
rdbmsSrvInfoapplInboundAssociation variable in the SNMP RDBMS MIB.

• CumulativeConnections
The CumulativeConnections property is a counter of the total number of inbound
connections to the service from the time that the service was started. This property maps
to the rdbmsSrvInfoapplAccumulatedInboundAssociations variable in the SNMP
RDBMS MIB.

• RejectedConnections
The RejectedConnections property is a counter of the total number of inbound
connections that were rejected by the service from the time that the service was started.
This property maps to the rdbmsSrvInfoapplRejectededInboundAssociations variable in
the SNMP RDBMS MIB.

• CompletedTransactions
The CompletedTransactions property is a counter of the total number of transactions that
have been completed by a commit or abort. Some database operations, such as read-only
queries, may not create a transaction. This property maps to the
rdbmsSrvInfoFinishedTransactions variable in the SNMP RDBMS MIB.

CIM Database Model White Paper Version 1.5

November 21, 2005 28

• DiskReads
The DiskReads property is a counter of the total number of database file reads that were
issued by the service since it was started. This property maps to the
rdbmsSrvInfoDiskReads variable in the SNMP RDBMS MIB.

• DiskWrites
The DiskWrites property is a counter of the total number of database file writes that were
issued by the service since it was started. This property maps to the
rdbmsSrvInfoDiskWrites variable in the SNMP RDBMS MIB.

• LogicalReads
The LogicalReads property is a counter of the total number of logical database file reads
that were issued by the service since it was started. Database implementations cache
information in memory. By comparing the DiskReads and the LogicalReads properties,
the client can determine how many of the reads were satisfied through a cache in contrast
with the more expensive “read from file.” This property maps to the
rdbmsSrvInfoLogicalReads variable in the SNMP RDBMS MIB.

• LogicalWrites
The LogicalWrites property is a counter of the total number of database file writes that
were issued by the service since it was started. A logical write is a count of the number of
times that parts of database files have been marked “dirty” to indicate that they need to be
written to disk. This property maps to the rdbmsSrvInfoLogicalWrites variable in the
SNMP RDBMS MIB.

• PageReads
The PageReads property is a counter of the total number of database pages that have been
read by the service since it was started. This property maps to the
rdbmsSrvInfoPageReads variable in the SNMP RDBMS MIB.

• PageWrites
The PageWrites property is a counter of the total number of database pages that have
been written by the service since it was started. This property maps to the
rdbmsSrvInfoPageWrites variable in the SNMP RDBMS MIB.

• DiskSpaceUnavailable
The DiskSpaceUnavailable property is a counter of the total number of times that the
service requested disk space that was not available since the service was started. This
property maps to the rdbmsSrvInfoDiskOutOfSpaces variable in the SNMP RDBMS
MIB.

• RequestsHandled
The RequestsHandled property is a counter of the total number of requests that have been
received from the service since it was started. This property maps to the
rdbmsSrvInfoHandledRequests variable in SNMP RDBMS MIB.

CIM Database Model White Paper Version 1.5

November 21, 2005 29

• RequestsReceived
The RequestsReceived property is a counter of the total number of receive operations that
occurred while processing requests on inbound associations since the service was started.
This property maps to the rdbmsSrvInfoRequestRecvs variable in SNMP RDBMS MIB.

• RequestsSent
The RequestsSent property is a counter of the total number of send operations that
occurred while processing requests on inbound associations since the service was started.
For example, this may correspond to the number of rows returned to the client by a select
operation. This property maps to the rdbmsSrvInfoRequestSends variable in SNMP
RDBMS MIB.

• HighwaterConnections
The HighwaterConnections property is a counter of the maximum number of concurrent
inbound connections to the service since it was started. This property maps to the
rdbmsSrvInfoHighwaterInboundAssociations variable in SNMP RDBMS MIB.

Error! Reference source not found.Error! Reference source not found. shows the
CIM_DatabaseServiceStatistics class.

(See Core Model)

LogicalElement

ManagedSystemElement

(See Core Model)

(See Core Model)

ManagedElement

*
Component

*

Dependency

*

*

(See Core Model)

StatisticalData

RelatedStatisticsElementStatisticalData
*

*

SizeUsed: uint32

CommonDatabase

Statistics

*

(See Database Model)

CommonDatabase

1

(See Core Model)

EnabledLogicalElement

Figure 14. CIM_DatabaseServiceStatistics Class

CIM Database Model White Paper Version 1.5

November 21, 2005 30

2.8 Services and Service Access Points

2.8.1 CIM_DatabaseService
The CIM_DatabaseService class inherits from CIM_Service. As a result,, this class inherits all
the service-related associations from higher levels of the CIM schema. The database model does
not introduce any additional service-related associations. Future versions of the database model
may introduce additional associations if the Database Working Group determines that they are
specific to the database model and common across database organization and vendor
implementations.

CIM Database Model White Paper Version 1.5

November 21, 2005 31

3 Relationships to Other Standards and
Specifications

3.1 Overlapping Standards and Specifications
This section provides an overview of other standards and specifications that include some level
of support for the management of databases. One of the goals of the DMTF Database Working
Group is to model the database management content that has been specified in the SNMP
RDBMS MIB. As a result, users of management data who are currently using an SNMP-based
solution can obtain consistent content from a CIM database model implementation. In a future
version of the database model, the working group may investigate ways to incorporate the
management content that is defined through the Common Warehouse Metamodel (CWM)
specification that was developed by the Object Management Group (OMG).

3.1.1 SNMP RDBMS MIB Specification
The Simple Network Management Protocol (SNMP) RDBMS MIB is the management
standard that has the widest adoption rate for relational database implementations. The Internet
Engineering Task Force (IETF) released it in August 1994. The SNMP RDBMS MIB, as
specified in RFC 1697, contains information on installed databases, servers, configuration
parameters, and a small number of common statistics and events.

3.1.2 CWM Metamodel
The CWM is a specification that describes the metadata interchange for data warehouses. The
OMG released the CWM specification in February 2001. Although the primary focus of this
specification is to model warehouse metadata, CWM provides the information that is needed to
perform warehouse configuration maintenance operations.

3.2 Mapping of the SNMP RDBMS MIB to the Database Model
The SNMP RDBMS RFC 1697 specification defines a set of common management information
that spans relational database systems. The information provided in the common MIB includes a
subset of relational database and server properties. The majority of this information is specified
in a vendor-private MIB.

3.2.1 Differences Between SNMP RDBMS MIB and CIM Database Models
The CIM database model covers the same content as the SNMP MIB, but there are a number of
differences between the two approaches from a management perspective. These differences are:

• The CIM database model is not relational database model-specific.
• The CIM database model defines the relationships between the management entities that

are being modeled in addition to defining the common properties. These relationships
span the entire CIM model, so management applications can consistently reference
information at all levels of the enterprise.

• The CIM database model takes advantage of object-oriented techniques to define
abstraction and dependency hierarchies. As a result, more specific management entities

CIM Database Model White Paper Version 1.5

November 21, 2005 32

can subclass from a general entity and inherit the properties and relationships of the
parent. For example, relational database entities would subclass from the common
database model classes. Relational database vendor-specific database entities would
subclass from the common relational model entities.

• The CIM database model provides a natural hierarchy that allows management
applications to view database information at various levels of detail.

3.2.2 SNMP RDBMS MIB to CIM Database Model Data Mapping
Table 9 describes how the SNMP RDBMS MIB maps to the CIM database model.

Table 9. Mapping of SNMP RDBMS MIB to CIM Database Model

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)

rdbmsDbVendorName 9 The name of the database
vendor.

Product class (Vendor)

rdbmsDbName 9 The name of the
database.

CommonDatabase class
(Caption), inherited from
ManagedSystemElement in
the Core schema

rdbmsDbContact 9 The contact person who
is responsible for
managing the database,
along with the
information on how to
contact the person.

DatabaseAdministrator
association

rdbmsDbInfoProductName 9 The product name of the
database software.

Product class (Name) in the
Core schema

rdbmsDbInfoVersion 9 The product version of
the database software.

Product class (Version) in
the Core schema

rdbmsDbInfoSizeAllocated 10 The estimated amount of
disk space (in units) that
has been reserved for
database use.

CommonDatabase class
(SizeAllocated)

rdbmsDbInfoSizeUnits 10 The units that are used
for the database allocated
and database size
information.

CommonDatabase class
(SizeUnits)

rdbmsDbInfoSizeUsed 11 The estimated amount of
disk space that is
currently used by the
database.

CommonDatabaseStatistics
class (SizeUsed)

rdbmsDbInfoLastBackup 11 The date and time that the
last complete or partial
backup operation was
performed on the
database.

CommonDatabase class
(LastBackup)

rdbmsDbParamName 12 The name that identifies a
database configuration

DatabaseParameter class
(Name), inherited from

CIM Database Model White Paper Version 1.5

November 21, 2005 33

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)
parameter for a database. ScopedSettingData in the

Core schema
rdbmsDbParamCurrValue 13 The current value of the

database configuration
parameter.

SNMPDatabaseParameter
class (ParameterValue)

rdbmsDbParamComment 14 A description that
explains the purpose of
the database
configuration parameter.

DatabaseParameter class
(Description), inherited from
ManagedElement in the
Core schema

rdbmsDbLimitedResourceName 15 The name of a resource
for which the database
enforces a maximum
usage limit.

DatabaseResourceStatistics
class (Name), inherited from
StatisticalData in the Core
schema

rdbmsDbLimitedResourceLimit 15 The value for the limit
imposed by the database
for a limited resource.

DatabaseResourceStatistics
class (Limit)

rdbmsDbLimitedResourceCurrent 16 The current value for a
limited database resource.

DatabaseResourceStatistics
class (Current)

rdbmsDbLimitedResourceHighwater 16 The maximum value for a
limited database resource
that has been viewed
since the database was
opened by a database
service.

DatabaseResourceStatistics
class (Highwater)

rdbmsDbLimitedResourceFailures 16 The number of times the
database wanted to
exceed the resource limit
since the database was
opened by a database
service.

DatabaseResourceStatistics
class (Failures)

rdbmsDbLimitedResourceDescription 16 A description of the
resource, along with the
meaning for the units for
the statistics associated
with the resource.

DatabaseResourceStatistics
class (Description), inherited
from ManagedElement in
the Core schema

rdbmsSrvVendorName 18 The name of the vendor
whose database software
provides access to the
database.

SoftwareIdentity
(Manufacturer), using the
ElementSoftwareIdentity
Association from the Core
schema

rdbmsSrvProductName 18 The vendor-specific
product name for the
database service.

SoftwareIdentity (Name),
using the
ElementSoftwareIdentity
Association from the Core
schema

rdbmsSrvContact 18 The contact person who
is responsible for
managing the database
service, along with the

PrimaryOwnerName,
PrimaryOwnerContact in the
DatabaseService class,

CIM Database Model White Paper Version 1.5

November 21, 2005 34

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)
information on how to
contact the person.

inherited from Service

rdbmsSrvInfoapplName 19 The product-specific
name for the database
service.

DatabaseService class
(Name), inherited from
Service in the Core schema

rdbmsSrvInfoapplVersion 19 The software version
number for the database
service, in product
specific format.

SoftwareIdentity
(VersionString), using the
ElementSoftwareIdentity
Association from the Core
schema

rdbmsSrvInfoapplOperStatus 19 The current state of the
database service _up or
down. “Down” means the
service is known but not
available.
Note: The CIM schema
supports additional status
values that are not
available through SNMP.

DatabaseService class
(OperationalStatus)

rdbmsSrvInfoapplLastChange 19 The date and time when
the database service
status last changed.

DatabaseService class
(LastStatusChangeTime)

rdbmsSrvInfoapplInboundAssociation 19 The number of active
inbound connections
using the database
service.

DatabaseServiceStatistics
class (ActiveConnections)

rdbmsSrvInfoapplAccumulated
InboundAssociations

19 The total number of
inbound connections
since the database service
was started.

DatabaseServiceStatistics
class
(CumulativeConnections)

rdbmsSrvInfoLastInboundActivity 19 The date and time of the
most recent inbound
connection to the
database service

DatabaseServiceStatistics
class (LastActivity)

rdbmsSrvInfoapplRejected
InboundAssociations

20 A count of the number of
inbound connections that
were rejected by the
database service.

DatabaseServiceStatistics
class (RejectedConnections)

rdbmsSrvInfoStartupTime 20 The date and time when
the database service was
started.

DatabaseService class
(StartupTime)

rdbmsSrvInfoFinishedTransactions 21 The number of
transactions that have
been completed by a
commit or abort. Some
database operations, such
as read-only queries, may
not create a transaction.

DatabaseServiceStatistics
class
(CompletedTransactions)

CIM Database Model White Paper Version 1.5

November 21, 2005 35

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)

rdbmsSrvInfoDiskReads 21 The total number of
database file reads issued
by the database service
since it was started.

DatabaseServiceStatistics
class (DiskReads)

rdbmsSrvInfoLogicalReads 21 The total number of
logical database file reads
issued by the database
service since it was
started.

DatabaseServiceStatistics
class (LogicalReads)

rdbmsSrvInfoDiskWrites 21 The total number of
database file writes
issued by the database
service since it was
started.

DatabaseServiceStatistics
class (DiskWrites)

rdbmsSrvInfoLogicalWrites 22 The total number of
logical database file
writes issued by the
database service since it
was started. A logical
write is a count of the
number of times parts of
database files have been
marked “dirty” to
indicate they need to be
written to disk.

DatabaseServiceStatistics
class (LogicalWrites)

rdbmsSrvInfoPageReads 22 The total number of
database pages read by
the database service since
startup.

DatabaseServiceStatistics
class (PageReads)

rdbmsSrvInfoPageWrites 22 The total number of
database pages written by
the database service since
startup.

DatabaseServiceStatistics
class (PageWrites)

rdbmsSrvInfoDiskOutOfSpaces 22 The total number of times
the server requested disk
space and it was not
available since database
service startup.

DatabaseServiceStatistics
class
(DiskSpaceUnavailable)

rdbmsSrvInfoHandledRequests 23 The number of request
that were received by the
server since database
service startup.

DatabaseServiceStatistics
class (RequestsHandled)

rdbmsSrvInfoRequestRecvs 23 The number of receive
operations made while
processing any requests
for the database service
since startup.

DatabaseServiceStatistics
class (RequestsReceived)

rdbmsSrvInfoRequestSends 23 The number of send
operations made while

DatabaseServiceStatistics
class (RequestsSent)

CIM Database Model White Paper Version 1.5

November 21, 2005 36

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)
processing any requests
for the database service
since startup.

rdbmsSrvInfoHighwaterInbound
Associations

24 The maximum number of
active inbound
connections that have
been concurrently opened
by the database service
since startup.

DatabaseServiceStatistics
class
(HighwaterConnections)

rdbmsSrvInfoMaxInboundAssociations 24 The greatest number of
active inbound
connections that can be
concurrently open by the
server.

DatabaseService class
(ConnectionLimit)

rdbmsSrvParamName 26 The name that identifies a
configuration parameter
for a database service.

DatabaseParameter class
(Name), inherited from
ScopedSettingData in the
Core schema

rdbmsSrvParamCurrValue 26 The current value of the
database service
configuration parameter.

SNMPDatabaseParameter
class (ParameterValue)

rdbmsSrvParamComment 27 A description that
explains the purpose of
the database service
configuration parameter.

DatabaseParameter class
(Description), inherited from
ManagedElement in the
Core schema

rdbmsSrvLimitedResourceName 28 The name of a resource
for which the database
service enforces a
maximum usage limit.

DatabaseResourceStatistics
class (Name), inherited from
StatisticalData in the Core
schema

rdbmsSrvLimitedResourceLimit 28 The value for the limit
imposed by the database
service for a limited
resource.

DatabaseResourceStatistics
class (Limit)

rdbmsSrvLimitedResourceCurrent 29 The current value for a
limited database service
resource.

DatabaseResourceStatistics
class (Current)

rdbmsSrvLimitedResourceHighwater 29 The maximum value for a
limited database service
resource that has been
seen since service startup.

DatabaseResourceStatistics
class (Highwater)

rdbmsSrvLimitedResourceFailures 29 The number of times the
database service wanted
to exceed a resource limit
since service startup.

DatabaseResourceStatistics
class (Failures)

rdbmsSrvLimitedResourceDescription 29 A description of the
resource, along with the
meaning for the units for
the statistics associated

DatabaseResourceStatistics
class (Description), inherited
from ManagedElement in
the Core schema

CIM Database Model White Paper Version 1.5

November 21, 2005 37

SNMP Variable Name Pg. Description
CIM Model Class

(parameter)
with the resource.

rdbmsRelState 30 The current state of the
database service's access
to the database:
• “Active” means the

service is actively
using the database.

• “Available” means the
service could use the
database if necessary.

• “Restricted” means the
service is available in a
less than complete
state.

• “Unavailable” means
the database is not
available through this
service.

• “Other” means the
database service is in
some other condition.

ServiceAvailableToDatabase
association (AvailableState)

rdbmsRelActiveTime 31 The date and time when
the database was made
active by the specific
server. If the server is not
in an active state, this
information is not
available.

ServiceAvailableToDatabase
association (ActiveTime)

3.2.3 SNMP to CIM Database Model Event Mapping
The SNMP RDBMS MIB currently defines the following traps:

• Database/Server state change

• Out of space
SNMP “traps” correspond to “indications” in CIM terminology. Indications can be enabled for
properties of managed entities that have been modeled in CIM. See the CIM Indications white
paper for more information.

3.2.3.1 State Change Event Mapping

The rdbmsStateChange trap as defined in RFC 1697 signifies that the rdbmsRelState of the
database server has changed in a way that makes the database less accessible for use. In CIM
database model terminology, this is indicated when the EnabledStatus of a database service,
which is providing access to the database, goes from a state of "Available" or "Active" to some
other state.

CIM Database Model White Paper Version 1.5

November 21, 2005 38

To directly map from the SNMP state change trap, a CIM client can write an indication filter
referencing the CIM_InstModification class using a “where” clause that references the
EnabledStatus property from the CIM_DatabaseService class. A simpler filter to use would be
the OperationalStatus property from the CIM_DatabaseService class with a value of "degraded".

3.2.3.2 Out of Space Event Mapping

The rdbmsOutOfSpace trap detects the condition where a database server was unable to allocate
space for the database it is serving. In CIM database model terminology, this corresponds to the
condition where a database service that is providing access to the database was unable to allocate
space.

To directly map from the SNMP out of space trap, a CIM client can write an indication filter
referencing the CIM_InstModification class, using a “where” clause that looks for an increase in
the value of the DiskSpaceUnavailable property in the CIM_DatabaseServiceStatistics class.

CIM Database Model White Paper Version 1.5

November 21, 2005 39

4 Database Model Use Case
This section provides a use case for the database model. The use case provides an example that
illustrates how the database model is used for management purposes.
To demonstrate how the database model can be used in a database organization and vendor-
agnostic way, the example is based upon a fictitious database vendor, MyDB Company, who has
a database product called MyDB that is organized using an object-relational scheme. The
example also assumes that providers have been written for the database schema classes. The use
case describes one possible scenario for how these classes can be populated and accessed for
enterprise management purposes.
At the beginning of the MyDB product development cycle, the management team at MyDB
Company recognized the importance of having consistent management content across the
enterprise that included information for the MyDB product. The development staff was
instructed to ensure that management content was available for the MyDB product for all aspects
of the product lifecycle. CIM was the logical choice to satisfy this directive.

4.1 Creating CIM Class Instances During the MyDB Installation
At install time, the developers at MyDB Company chose to discover and populate the CIM
schema used by the CIM Object Manager (CIMOM)–which was already managing the operating
system on the host–with content for the MyDB product.
A subset of the MyDB information is used in this example to demonstrate how CIM is used in a
database environment. In Table 10 and the other following tables, the Instance Value column
represents a class instance that is created at installation time for the MyDB product. Inherited
properties that are not explicitly mentioned use the default values.

Table 10. MyDB Product Information

CIM_DatabaseSystem
Property Name Instance Value

CreationClassName CIM_DatabaseSystem
Name MyDB_V10Software
ElementName MyDB Database Software
PrimaryOwnerName Cynthia Smith

PrimaryOwnerContact e-Mail: cynthia.smith@customer.com
Phone: (603) 123-4567; Pager: (603) 123-7654

OperationalStatus 3
InstallDate 28-May-2002 11:21.02
Caption The software for the MyDB database product

The instance added to CIM_DatabaseSystem during the MyDB product installation process is a
logical entity representing the MyDB database system. The owner of the software was identified
as the person who installed the software, Cynthia Smith. A name that identifies the software is
provided in the Name property. The ElementName gives a more user-friendly description.

CIM Database Model White Paper Version 1.5

November 21, 2005 40

Because the MyDB product does not have a preconfigured database at installation time, the
remaining CIM classes that are part of the common database schema will be populated when a
user of the MyDB database system creates a database.
Additional classes from the core, application, and other CIM schemas are populated at
installation time to provide complete management content. Most of these classes are not
mentioned in this use case.

Table 11 provides an example of instance creation for the CIM_Product class to demonstrate
instance population for the MyDB product for a class in the Core schema.

At this point, client applications that are CIM-aware can consistently reference the software
installation and product inventory content for MyDB in the same way as other CIM-compliant
products.

Table 11. MyDB Instance Population Information

CIM_Product
Property Name Instance Value

Name MyDB
IdentifyingNumber 1
Vendor MyDB Company
Version V1.0
SKUNumber 1
WarrantyStartDate 28-May-2002 11:21.02
WarrantyDuration 1
Caption MyDB Database Software Version 1.0

4.2 Creating CIM Class Instances at Database Creation
The MyDB product supports the SQL standard for database creation. At database creation time,
an instance is added to the CIM_CommonDatabase class to represent the logical database entity
that is created when the “create database” operation has finished. Table 12 provides examples of
class instances that are created.

Table 12. Examples of Class Instances Created After Database Creation

CIM_CommonDatabase
Property Name Instance Value

InstanceID MyDBGUID (GUID represents a unique ID.)
Name \\golem\usr\database\mydb\golem.bin
ElementName Golem
DatabaseVersion 1.0
SizeAllocated 10
SizeUnits 3
OperationalStatus 10
LastBackup 0
InstallDate 31-May-2002 10:16.22
Caption The Golem database contains Greek Mythology.

CIM Database Model White Paper Version 1.5

November 21, 2005 41

In a real-world implementation, the MyDB Company developers may extend from the
CIM_CommonDatabase class instead of using the class directly so that vendor-specific
properties could be added. This approach also allows clients to distinguish databases from
MyDB from those created by other vendors.

In this case, the instance created in CIM_CommonDatabase contains useful management content
for the Golem database. This information enables us to determine the following:

• The database is used to store information about Greek mythology.
• The database is version 1.0 .

• The database has an allocated size of 10MB.
• The database was not backed up.

• The database was created on the May 31.
• The database is not running.

The Instanced property uniquely identifies the database instance across the enterprise. The
contents of the instance ID include a vendor-specific identifier "MYDB" followed by a unique
value, the GUID.
The developers at MyDB Company chose a database name that represents the complete path
name to the primary database file. A more user-friendly form of the database name is provided in
the ElementName property.

After the CIM_CommonDatabase instance is created, an instance is created in the
CIM_AssociatedDatabaseSystem class to represent the relationship between the database that
was created and the database system that created and controls the database.
Because the MyDB product is targeted for small installations that only have a couple of users,
the developers did not allow users to control t database configuration.. The developers decided
on three database parameters for the MyDB product:

• Number of database buffers
• Database page size

• Maximum number of users
Only the number of database buffers parameter is configurable at the database service level.

The developers of the MyDB product needed to expose the parameters in CIM so that
management applications could modify the settings through the CIMOM. In the CIM 2.7
database schema, the developers for the MyDB product had two implementation choices:

• Add instances to the CIM_SNMPDatabaseParameter class to represent the database
parameters.

• Create a vendor-specific extension class from CIM_DatabaseParameter that contained
their database settings.

The developers at MyDB Company decided that extending from CIM_DatabaseParameter was a
more technically appropriate solution, because their parameters would be exposed through CIM
as named properties, rather than as name/value strings. The development cost required to create a

CIM Database Model White Paper Version 1.5

November 21, 2005 42

vendor-specific parameter class was worth the benefit of having strongly typed database
parameter definitions.

The developers created a class called MyDB_DatabaseParameters with three uint32 properties
called NumberBuffers, PageSize, and MaximumUsers that extended from
CIM_DatabaseParameter.
The MyDB_DatabaseServiceParameters extension class was created to represent that only the
number of buffers could be changed by a database service. This class only had one property,
called NumberBuffers.

At database creation time, instances are added to the CIM schema to represent the initial
database configuration. A combination of classes from the CIM core schema, the CIM database
schema, and the MyDB extension classes are populated to represent this information. The
following example explains how the instances are added to the CIM schema.

In Table 13, an instance is added to the MyDB_DatabaseParameter extension class to represent
the database parameter settings for the GOLEM database.

Table 13. Database Parameter Settings

MyDB_DatabaseParameter
Property Name Instance Value

InstanceID MyDBGUID (GUID represents a unique ID.)

Name \\golem\usr\database\mydb\golem.bin

ElementName Golem database parameter settings

Caption Database Parameter settings for the Golem Database
NumberBuffers 100

PageSize 4

MaximumUsers 1

Note: The Name selected for the instance by the MyDB developers is consistent with the Name
property used in CIM_CommonDatabase. This is not required, but it allows searches to be
constructed across the two classes in the same way.
In Table 14, the database service buffer setting is represented by adding an instance to the
MyDB_DatabaseServiceParameter extension class.

Table 14. Database Service Buffer Setting

MyDB_DatabaseServiceParameter
Property Name Instance Value

InstanceID MyDBGUID (GUID represents a unique ID.)
Name \\golem\usr\database\mydb\golem.bin

ElementName Golem database service parameter settings

Caption Database Service settings for the Golem Database

NumberBuffers 100

CIM Database Model White Paper Version 1.5

November 21, 2005 43

Next, two instances are created for the CIM_ScopedSetting association. The first instance
represents the association between the Golem database and its database parameters. The second
instance represents the association between the Golem database service and its service
parameters.

Instances are created in the CIM_ElementSettingData association to represent default and current
setting associations for the Golem database parameter settings and the Golem database service
parameter settings. In this example, it is a one-to-one relationship. Because this is the initial
database creation, the default parameter settings are also the current settings. The IsDefault
property in the association is set to 1. Because some of the parameters may be changed at a
future point in time, the IsCurrent property is set to 0.

In the future, if the administrator of the Golem database decides to change one of the database or
service parameter values, a new instance would be created in the appropriate
CIM_DatabaseParameter class or subclass, and a new association would be formed in
CIM_ElementSettingData with the IsCurrent property set to 1 and the IsDefault property set to 2.

Instances in the CIM_ElementProfile class are created to represent the relationship between the
Golem database and its database parameters and the Golem database service and its database
service parameters. Because the MyDB developers choose to create extension classes, this
association is similar to the CIM_ScopedSetting association. However, this association differs in
that separate profiles may be created to name and represent the default and current parameter
settings. The profile association instances are created to allow management clients to access the
Golem database and service parameter content consistently with parameter content that needs to
be collected through a profile, such as the instances added to CIM_SNMPDatabaseParameters.

In Table 15, the MyDB product architecture supports only a single service per database. At
database creation time, the database service content and the information representing how the
service is associated with the database is also populated into the CIM schema.

Table 15. CIM_DatabaseService Settings

CIM_DatabaseService
Property Name Instance Value

SystemCreationClassName CIM_System
SystemName GolemHost
CreationClassName CIM_DatabaseService
Name Golem
ElementName Golem
StartupTime 0
OperationalStatus 10
LastStatusChangeTime 0
ConnectionLimit 1
StartMode Manual
Started 0
InstallDate 31-May-2002 10:16.22
Caption The Golem database service

CIM Database Model White Paper Version 1.5

November 21, 2005 44

The Golem database service content informs the user that the database service executes on
GolemHost, that the service has never been started, that a maximum of one connection per
user is allowed, and the time when the database service was created. Because the Golem
database service is created as part of the database install, the InstallDate property is the same
value as the InstallDate for the Golem database instance in the CIM_CommonDatabase
class.

4.3 Using the Database Schema Content for Management
The common database schema contains a number of statistical classes with properties that are
useful for monitoring databases. This information can be used to answer management questions
about the database environment across the enterprise for configuration management, monitoring,
and administration.
This section poses a number of common database questions and explains how the content from
the database schema can be used to answer these questions.

• What database services are running on system GolemHost?
The CIM_DatabaseService class filters the instances in the class based on the
SystemName property.

• Which databases are open on system GolemHost?
The CIM_DatabaseService class filters the instances in the class based on the
SystemName property. From the set of instances returned, the
CIM_ServiceAvailableToDatabase association would be accessed, filtering the instances
by the property AvailableState with a value equal to 2 or 3. The reference to
CIM_CommonDatabase for the filtered set would be traversed, and the distinct set of
databases would be displayed using the Name or the Caption property.

• What are the configuration parameter settings for database X?
The CIM_CommonDatabase class is filtered by Name equals database X. The
CIM_ElementProfile association is then used to identify the database parameter instances
for database X. The corresponding instances from the database parameter class are then
displayed.

• How many connections are currently active on system X?
The CIM_DatabaseService is filtered by the SystemName property to include only the
database services that are on system X. Next, the CIM_ElementStatisticalData
association would be used to reference the CIM_DatabaseServiceStatistics instances that
are associated with the filtered list of services. The service name and the active
connections properties could then be displayed.

• What services provide access to database X?
CIM_CommonDatabase is filtered by name. The ServiceAvailableToDatabase
association would then be used to display the database service names and SystemName
properties that are associated with the database.

CIM Database Model White Paper Version 1.5

November 21, 2005 45

5 Future Work
The initial model developed by the Database Working Group was determined by the contents
specified in RFC 1697. The group focused on a small subset of database management content so
that an initial model could be delivered in a relatively short timeframe.

Future extensions to the database model may include the following areas:
• Adding additional common properties that have not been defined in RFC 1697

• Extending the model to cover relational database content
▪ SQL

▪ Relational schema objects
• Modeling advanced database configurations, such as clustered databases, distributed

databases, or standby databases
• Modeling other common database technology areas, such as resource management,

queuing, and replication
• Modeling additional common database entities, such as database users

• Modeling common database management workflows, such as backup operations
• Leveraging other modeling efforts, such as CWM meta-model for OMG in the database

warehouse domain
• Enabling management capabilities, such as database provisioning

The Database Working Group is also interested in how MOF can be translated to SQL. This
translation would allow the static content from a CIMOM to be stored in a relational database.

CIM Database Model White Paper Version 1.5

November 21, 2005 46

Appendix A – Change History

Version 1.0 <Initial release> Initial Draft

Version 1.1 6/25/2002 Changes to reflect member feedback

CIM Database Model White Paper Version 1.5

November 21, 2005 47

Appendix B – References

The following background reference material is available:

▪ “Common Information Model (CIM) Event Model White Paper,” at
http://www.dmtf.org/standards/published_documents.php

▪ “Common Information Model (CIM) Specification, V2.2,” June 14, 1999,
athttp://www.dmtf.org/spec/cims.html

▪ “Common Warehouse Metamodel (CWM) Specification, V1.0,” February 2, 2001, at
ftp://ftp.omg.org/pub/docs/ad/01-02-01.pdf.

▪ Relational Database Management System (RDBMS) Management Information Base (MIB)
using SMIv2,” Internet Engineering Task Force, August 1994, at http://www.ietf.org/rfc.html

▪ A Guide to the SQL Standard, 3rd Edition, C.J. Date with Hugh Darwen, Addison-Wesley,
October 1992

▪ “Common Information Model (CIM) Application Model White Paper,” at
http://www.dmtf.org/standards/published_documents.php

▪ “Unified Modeling Language (UML),” Open Management Group (OMG), at
http://www.omg.org/uml/

CIM Database Model White Paper Version 1.5

November 21, 2005 48

Appendix C – Extending the Model

The classes and associations that the Database Working Group has defined should be extended
by provider writers to include management-related database organization or vendor-specific
content. In future versions of the CIM database model, as the model is expanded to include
common classes for specific database organizations, the number of database organization-related
classes and associations that will need to be defined by provider writers will decrease.

For example, a future version of the CIM database model may include a
CIM_RelationalDatabase class that extends from CIM_CommonDatabase and that includes
properties that are specific to relational databases.
The current database model is designed so that provider writers can subclass from each of the
major classes to include additional vendor-specific content. For example, if additional database
properties are relevant for a vendor implementation, the provider writer should include a class
that extends from CIM_CommonDatabase to include the additional properties.

CIM Database Model White Paper Version 1.5

November 21, 2005 49

Appendix D – Considerations for Implementation

The Database Working Group discussed how to manage statistics that span the period of time
when they are collected and are intended to be used together as a group. The statistics in the
CIM_DatabaseServiceStatistics class fit this category. Provider writers need to consider the
issue that involves the time lapse across individual statistic snapshots.
Table 16 provides an example using CIM_DatabaseServiceStatistics to illustrate the time-lapse
impact.

Table 16. Example of Time-Lapse Impact

Time CompletedTransactions PageWrites

T1 10 100
T2 20 200

T1 is the time when we start collecting current statistics, T2 the time to complete the "current"
collection for the set of DatabaseServiceStatistics by the provider writer.

If the provider is implemented to collect CompletedTransactions at time T1, then time lapses to
time T2 before we collect Page Writes, a client trying to calculate PageWrites/Transaction would
get a value of 200/10 = 20 PageWrites/Transaction.
On the other hand, if the provider were implemented to collect PageWrites first at time T1, then
time lapses to time T2 before we collect CompletedTransactions, a client trying to calculate
PageWrites/Transaction would get a value of 100/20 = 5 PageWrites/Transaction.

When the delta between time T1 and time T2 is small, the impact is minimized.

CIM Database Model White Paper Version 1.5

November 21, 2005 50

Acknowledgements

The Database Working Group has benefited from the previous work that has been done to
identify common database management entities and properties that exist within the industry. The
previous work has helped the working group to focus its modeling effort in order to deliver a
common database model more quickly. We would like to recognize the members of the initial
Database Working Group for their ideas and initial model. We would also like to recognize the
members of the IETF Network Working Group who wrote the RFC 1697 standard.
DMTF Database Working Group members who contributed to 2.8 of the database model (listed
alphabetically) include:

• Kamesh Aiyer, EMC

• Carl Chan, Sun
• George Ericson, EMC

• Todd Guay, Oracle
• Randy Horman, IBM

• Andreas Koppel, SAP
• Tony Orling, VERITAS

• Darryl Presley, Oracle
• Julie Schott, Cisco

• Andrea Westerinen, Cisco
• Martin White, Oracle

The following members of the DMTF Database Working group that are not already mentioned
above (listed alphabetically) contributed to earlier releases of the database model:

• Linda Ball, BMC
• Daniel Forthman, Visionael

• Stefffen Hulegaard, OSA Technologies
• Namik Hrle, IBM

• Charly Jones, Vision Solutions
• Christina Shaw, Hewlett-Packard

