
 1

2

3

4

5

6

7

8

9

Document Number: DSP0004

Date: 2009-05-01

Version: 2.5.0

Common Information Model (CIM) Infrastructure

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

Common Information Model (CIM) Infrastructure DSP0004

Copyright notice 10

Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 31

32

2 DMTF Standard Version 2.5.0

http://www.dmtf.org/about/policies/disclosures.php

DSP0004 Common Information Model (CIM) Infrastructure

CONTENTS 33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Foreword ... 5
Introduction ... 6
1 Scope .. 9
2 Normative References... 9

2.1 Approved References ... 10
2.2 Other References.. 11

3 Terms and Definitions ... 11
3.1 Keywords .. 11
3.2 Terms.. 11

4 Symbols and Abbreviated Terms .. 15
5 Meta Schema .. 16

5.1 Definition of the Meta Schema.. 17
5.2 Data Types.. 22
5.3 Supported Schema Modifications ... 28
5.4 Class Names... 29
5.5 Qualifiers... 30

6 Managed Object Format.. 55
6.1 MOF Usage... 56
6.2 Class Declarations.. 56
6.3 Instance Declarations ... 56

7 MOF Components ... 56
7.1 Keywords .. 56
7.2 Comments... 56
7.3 Validation Context... 57
7.4 Naming of Schema Elements ... 57
7.5 Class Declarations.. 57
7.6 Association Declarations .. 62
7.7 Qualifier Declarations.. 64
7.8 Instance Declarations ... 65
7.9 Method Declarations... 68
7.10 Compiler Directives... 69
7.11 Value Constants.. 69
7.12 Initializers .. 71

8 Naming .. 72
8.1 Background... 73
8.2 Weak Associations: Supporting Key Propagation .. 76
8.3 Naming CIM Objects... 77

9 Mapping Existing Models into CIM.. 81
9.1 Technique Mapping .. 81
9.2 Recast Mapping .. 82
9.3 Domain Mapping... 84
9.4 Mapping Scratch Pads.. 85

10 Repository Perspective ... 85
10.1 DMTF MIF Mapping Strategies... 86
10.2 Recording Mapping Decisions .. 87

ANNEX A (normative) MOF Syntax Grammar Description.. 90
ANNEX B (informative) CIM Meta Schema ... 95
ANNEX C (normative) Units... 102

C.1 Programmatic Units .. 102
C.2 Value for Units Qualifier .. 106

ANNEX D (informative) UML Notation ... 108

Version 2.5.0 DMTF Standard 3

Common Information Model (CIM) Infrastructure DSP0004

ANNEX E (normative) Unicode Usage .. 111 85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131

E.1 MOF Text .. 111
E.2 Quoted Strings .. 111

ANNEX F (informative) Guidelines .. 112
F.1 Mapping of Octet Strings .. 112
F.2 SQL Reserved Words ... 113

ANNEX G (normative) EmbeddedObject and EmbeddedInstance Qualifiers ... 115
G.1 Encoding for MOF... 115
G.2 Encoding for CIM-XML.. 116

ANNEX H (informative) Schema Errata ... 117
ANNEX I (informative) Ambiguous Property and Method Names ... 119
ANNEX J (informative) OCL Considerations ... 122
ANNEX K (informative) Change Log.. 124
Bibliography .. 125

Figures
Figure 1 – Four Ways to Use CIM .. 7
Figure 2 – Meta Schema Structure ... 19
Figure 3 – Reference Naming... 20
Figure 4 – References, Ranges, and Domains... 21
Figure 5 – References, Ranges, Domains, and Inheritance... 21
Figure 6 – Example for Mapping a String Format Based on the General Mapping String Format............. 54
Figure 7 – Definitions of Instances and Classes... 73
Figure 8 – Exporting to MOF... 74
Figure 9 – Information Exchange.. 75
Figure 10 – Example of Weak Association ... 76
Figure 11 – Object Naming ... 78
Figure 12 – Namespaces.. 79
Figure 13 – Technique Mapping Example .. 81
Figure 14 – MIF Technique Mapping Example... 82
Figure 15 – Recast Mapping... 82
Figure 16 – Repository Partitions.. 85
Figure 17 – Homogeneous and Heterogeneous Export ... 87
Figure 18 – Scratch Pads and Mapping.. 88

Tables
Table 1 – Standards Bodies.. 9
Table 2 – Intrinsic Data Types .. 22
Table 3 – Changes that Increment the CIM Schema Major Version Number .. 29
Table 4 – Meta Qualifiers .. 30
Table 5 – Recognized Flavor Types ... 61
Table 6 – UML Cardinality Notations .. 64
Table 7 – Standard Compiler Directives ... 69
Table 8 – Domain Mapping Example.. 84
Table C-1 – Base Units for Programmatic Units ... 104
Table D-1 – Diagramming Notation and Interpretation Summary... 108

4 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Foreword 132

133
134

135
136

The Common Information Model (CIM) Infrastructure (DSP0004) was prepared by the DMTF Architecture
Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Throughout this document, elements of formal syntax are described in the notation defined in RFC 4234,
with these deviations:

137
138

139
140

141

• Each token may be separated by an arbitrary number of white space characters unless
otherwise stated (at least one tab, carriage return, line feed, form feed, or space).

• The vertical bar (" | ") character is used to express alternation rather than the virgule (" / ")
specified in RFC 4234. 142

143

144

145

146

147
148
149
150
151
152

The DMTF acknowledges the following people.

Editor:

• Lawrence Lamers – VMware

Contributors:

• Jeff Piazza – HP
• Andreas Maier – IBM
• George Ericson – EMC
• Jim Davis – WBEM Solutions
• Karl Schopmeyer – Inova Development
• Steve Hand – Symantec

Version 2.5.0 DMTF Standard 5

Common Information Model (CIM) Infrastructure DSP0004

Introduction 153

154
155
156
157
158
159
160
161

162

163
164
165

166
167
168
169

170

171

172
173
174
175

176

177
178
179
180
181
182

183
184
185
186
187
188

189

190
191
192

The Common Information Model (CIM) can be used in many ways. Ideally, information for performing
tasks is organized so that disparate groups of people can use it. This can be accomplished through an
information model that represents the details required by people working within a particular domain. An
information model requires a set of legal statement types or syntax to capture the representation and a
collection of expressions to manage common aspects of the domain (in this case, complex computer
systems). Because of the focus on common aspects, the Distributed Management Task Force (DMTF)
refers to this information model as CIM, the Common Information Model. For information on the current
core and common schemas developed using this meta model, contact the DMTF.

CIM Management Schema

Management schemas are the building-blocks for management platforms and management applications,
such as device configuration, performance management, and change management. CIM structures the
managed environment as a collection of interrelated systems, each composed of discrete elements.

CIM supplies a set of classes with properties and associations that provide a well-understood conceptual
framework to organize the information about the managed environment. We assume a thorough
knowledge of CIM by any programmer writing code to operate against the object schema or by any
schema designer intending to put new information into the managed environment.

CIM is structured into these distinct layers: core model, common model, extension schemas.

Core Model

The core model is an information model that applies to all areas of management. The core model is a
small set of classes, associations, and properties for analyzing and describing managed systems. It is a
starting point for analyzing how to extend the common schema. While classes can be added to the core
model over time, major reinterpretations of the core model classes are not anticipated.

Common Model

The common model is a basic set of classes that define various technology-independent areas, such as
systems, applications, networks, and devices. The classes, properties, associations, and methods in the
common model are detailed enough to use as a basis for program design and, in some cases,
implementation. Extensions are added below the common model in platform-specific additions that supply
concrete classes and implementations of the common model classes. As the common model is extended,
it offers a broader range of information.

The common model is an information model common to particular management areas but independent of
a particular technology or implementation. The common areas are systems, applications, networks, and
devices. The information model is specific enough to provide a basis for developing management
applications. This schema provides a set of base classes for extension into the area of technology-
specific schemas. The core and common models together are referred to in this document as the CIM
schema.

Extension Schema

The extension schemas are technology-specific extensions to the common model. Operating systems
(such as Microsoft Windows® or UNIX®) are examples of extension schemas. The common model is
expected to evolve as objects are promoted and properties are defined in the extension schemas.

6 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

CIM Implementations 193

194
195
196

Because CIM is not bound to a particular implementation, it can be used to exchange management
information in a variety of ways; four of these ways are illustrated in Figure 1. These ways of exchanging
information can be used in combination within a management application.

CIM Meta Model

–
Store meta model
information for
program access.

Has Instances Realization

Class

Objects (instances of classes)

Core Schema
Common Schema
Extension Schemas

–
Transform conceptual
definition into a physical
schema for particular
database technology (for
example, relational).

–
Define a set of data-
oriented application objects
to instantiate and extend
the targeted technology.

–
Use content of CIM to
structure instances passed
between applications.

Content of CIM Realization of CIM

 197

198

199
200
201
202
203
204

205
206
207
208

209
210

211
212
213
214

Figure 1 – Four Ways to Use CIM

The constructs defined in the model are stored in a database repository. These constructs are not
instances of the object, relationship, and so on. Rather, they are definitions to establish objects and
relationships. The meta model used by CIM is stored in a repository that becomes a representation of the
meta model. The constructs of the meta-model are mapped into the physical schema of the targeted
repository. Then the repository is populated with the classes and properties expressed in the core model,
common model, and extension schemas.

For an application database management system (DBMS), the CIM is mapped into the physical schema
of a targeted DBMS (for example, relational). The information stored in the database consists of actual
instances of the constructs. Applications can exchange information when they have access to a common
DBMS and the mapping is predictable.

For application objects, the CIM is used to create a set of application objects in a particular language.
Applications can exchange information when they can bind to the application objects.

For exchange parameters, the CIM — expressed in some agreed syntax — is a neutral form to exchange
management information through a standard set of object APIs. The exchange occurs through a direct set
of API calls or through exchange-oriented APIs that can create the appropriate object in the local
implementation technology.

Version 2.5.0 DMTF Standard 7

Common Information Model (CIM) Infrastructure DSP0004

CIM Implementation Conformance 215

216
217
218
219
220
221

222
223

224

225

226

227

The ability to exchange information between management applications is fundamental to CIM. The
current exchange mechanism is the Managed Object Format (MOF). As of now,1 no programming
interfaces or protocols are defined by (and thus cannot be considered as) an exchange mechanism.
Therefore, a CIM-capable system must be able to import and export properly formed MOF constructs.
How the import and export operations are performed is an implementation detail for the CIM-capable
system.

Objects instantiated in the MOF must, at a minimum, include all key properties and all required properties.
Required properties have the Required qualifier present and are set to TRUE.

Trademarks

• Microsoft is a registered trademark of Microsoft Corporation.

• UNIX is registered trademark of The Open Group.

1 The standard CIM application programming interface and/or communication protocol will be defined in a future

version of the CIM Infrastructure specification.

8 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Common Information Model (CIM) Infrastructure 228

229

230
231
232
233
234

235
236
237

238
239

240

241
242
243

244

245

246

247

248

1 Scope
The DMTF Common Information Model (CIM) Infrastructure is an approach to the management of
systems and networks that applies the basic structuring and conceptualization techniques of the object-
oriented paradigm. The approach uses a uniform modeling formalism that together with the basic
repertoire of object-oriented constructs supports the cooperative development of an object-oriented
schema across multiple organizations.

This document describes an object-oriented meta model based on the Unified Modeling Language (UML).
This model includes expressions for common elements that must be clearly presented to management
applications (for example, object classes, properties, methods and associations).

This document does not describe specific CIM implementations, application programming interfaces
(APIs), or communication protocols.

2 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

Copies of the following documents may be obtained from ANSI:

a) approved ANSI standards;

b) approved and draft international and regional standards (e.g., ISO, IEC); and

c) approved and draft foreign standards (e.g., JIS and DIN).

For further information, contact ANSI Customer Service Department at 212-642-4900 (phone), 212-302-
1286 (fax) or via the World Wide Web at http://www.ansi.org. 249

250

251

252

Additional availability contact information is provided below as needed.

Table 1 shows standards bodies and their web sites.

Table 1 – Standards Bodies

Abbreviation Standards Body Web Site

ANSI American National Standards Institute http://www.ansi.org

DMTF Distributed Management Task Force http://www.dmtf.org

EIA Electronic Industries Alliance http://www.eia.org

IEC International Engineering Consortium http://www.iec.ch

IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org

INCITS International Committee for Information Technology Standards http://www.incits.org

ISO International Standards Organization http://www.iso.ch

ITU International Telecommunications Union http://www.itu.int

Version 2.5.0 DMTF Standard 9

http://www.ansi.org/
http://www.ansi.org/
http://www.dmtf.org/
http://www.eia.org/
http://www.iec.ch/
http://www.ieee.org/
http://www.incits.org/
http://www.iso.ch/
http://www.itu.int/

Common Information Model (CIM) Infrastructure DSP0004

2.1 Approved References 253

254
255

ANSI/IEEE Standard 754-1985, IEEE® Standard for Binary Floating-Point Arithmetic, Institute of
Electrical and Electronics Engineers, August 1985.

CCITT X.680 (07/02) Information technology – Abstract Syntax Notation One (ASN.1): Specification of
basic notation

256
257

DMTF DSP0200, CIM Operations over HTTP, Version 1.3 258

DMTF DSP4004, DMTF Release Process, Version 2.1 259

DMTF DSP0201, Specification for the Representation of CIM in XML, Version 2.3 260

261

262

263

264
265

266

267
268

269
270

271
272

273
274

275
276

277
278

279

280
281

EIA-310 Cabinets, Racks, Panels, and Associated Equipment

ISO 639-1:2002 Codes for the representation of names of languages – Part 1: Alpha-2 code

ISO 639-2:1998 Codes for the representation of names of languages – Part 2: Alpha-3 code

ISO 639-3:2007 Codes for the representation of names of languages – Part 3: Alpha-3 code for
comprehensive coverage of languages

ISO 1000:1992 SI units and recommendations for the use of their multiples and of certain other units

ISO 3166-1:2006 Codes for the representation of names of countries and their subdivisions – Part 1:
Country codes

ISO 3166-2:2007 Codes for the representation of names of countries and their subdivisions – Part 2:
Country subdivision code

ISO 3166-3:1999 Codes for the representation of names of countries and their subdivisions – Part 3:
Code for formerly used names of countries

ISO 8601:2004 (E), Data elements and interchange formats – Information interchange – Representation
of dates and times

ISO/IEC 9075-10:2003 Information technology – Database languages – SQL – Part 10: Object Language
Bindings (SQL/OLB)

ISO/IEC 10165-4:1992 Information technology – Open Systems Interconnection – Structure of
management information – Part 4: Guidelines for the definition of managed objects (GDMO)

ISO/IEC 10646:2003 Information technology – Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC 14750:1999 Information technology – Open Distributed Processing – Interface Definition
Language

ITU X.501: Information Technology – Open Systems Interconnection – The Directory: Models 282

283 OMG, Object Constraint Language Version 2.0

OMG, UML Superstructure Specification, Version 2.1.1284

OMG, UML Infrastructure Specification, Version 2.1.1285

OMG, UML OCL Specification, Version 2.0286

10 DMTF Standard Version 2.5.0

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.0.pdf
http://www.dmtf.org/standards/published_documents/DSP4004_2.1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.0.pdf
http://electronics.ihs.com/collections/abstracts/eia-310.htm
http://www.itu.int/rec/T-REC-X.501/en
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.omg.org/cgi-bin/doc?formal/07-02-06
http://www.omg.org/cgi-bin/doc?formal/06-05-01

DSP0004 Common Information Model (CIM) Infrastructure

2.2 Other References 287

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards288

289 IETF, RFC 2068, Hypertext Transfer Protocol – HTTP/1.1

IETF, RFC 1155, Structure and Identification of Management Information for TCP/IP-based Internets 290

IETF, RFC 2253, Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names

291
292

IETF, RFC 2279, UTF-8, a transformation format of ISO 10646 293

IETF, RFC 4234, Augmented BNF for Syntax Specifications: ABNF, 2005 294

295

296

297

3 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

The keywords can, cannot, shall, shall not, should, should not, may, and may not in this document are to
be interpreted as described in ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards.

298
299

300

301
302
303
304

305
306
307
308

309
310
311

312
313
314

315

316
317
318

3.1 Keywords

3.1.1
conditional
indicates requirements to be followed strictly in order to conform to the document when the specified
conditions are met

3.1.2
mandatory
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.1.3
optional
indicates a course of action permissible within the limits of the document

3.1.4
unspecified
indicates that this profile does not define any constraints for the referenced CIM element or operation

3.2 Terms

3.2.1
aggregation
A strong form of an association. For example, the containment relationship between a system and its
components can be called an aggregation. An aggregation is expressed as a qualifier on the association
class. Aggregation often implies, but does not require, the aggregated objects to have mutual
dependencies.

319
320
321

Version 2.5.0 DMTF Standard 11

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc1155.txt
http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc4234.txt

Common Information Model (CIM) Infrastructure DSP0004

3.2.2 322
323 association

A class that expresses the relationship between two other classes. The relationship is established by two
or more

324
references in the association class pointing to the related classes. 325

326
327
328
329

330
331
332

3.2.3
cardinality
A relationship between two classes that allows more than one object to be related to a single object. For
example, Microsoft Office* is made up of the software elements Word, Excel, Access, and PowerPoint.

3.2.4
Common Information Model
CIM
Common Information Model is the schema of the overall managed environment. It is divided into a core 333

334

335
336

model, common model, and extended schemas.

3.2.5
CIM schema
The schema representing the core and common models. The DMTF releases versions of this schema
over time as the schema evolves.

337
338

339
340

3.2.6
class
A collection of instances that all support a common type; that is, a set of properties and methods. The
common properties and methods are defined as

341
features of the class. For example, the class called

Modem represents all the modems present in a system.
342
343

344
345

3.2.7
common model
A collection of models specific to a particular area and derived from the core model. Included are the
system model, the application model, the network model, and the device model.

346
347

348
349

3.2.8
core model
A subset of CIM that is not specific to any platform. The core model is set of classes and associations that
establish a conceptual framework for the

350
schema of the rest of the managed environment. Systems,

applications, networks, and related information are modeled as extensions to the core model.
351
352

353
354
355

356
357

3.2.9
domain
A virtual room for object names that establishes the range in which the names of objects are unique.

3.2.10
explicit qualifier
A qualifier defined separately from the definition of a class, property, or other schema element (see 358
implicit qualifier). Explicit qualifier names shall be unique across the entire schema. Implicit qualifier
names shall be unique within the defining schema element; that is, a given schema element shall not
have two qualifiers with the same name.

359
360
361

362
363

3.2.11
extended schema
A platform-specific schema derived from the common model. An example is the Win32 schema. 364

12 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3.2.12 365
366 feature

A property or method belonging to a class. 367

368
369

3.2.13
flavor
Part of a qualifier specification indicating overriding and inheritance rules. For example, the qualifier KEY
has Flavor(DisableOverride ToSubclass), meaning that every subclass must inherit it and cannot override
it.

370
371
372

373
374

3.2.14
implicit qualifier
A qualifier that is a part of the definition of a class, property, or other schema element (see explicit 375

376

377
378

qualifier).

3.2.15
indication
A type of class usually created as a result of a trigger. 379

380
381

3.2.16
inheritance
A relationship between two classes in which all members of the subclass are required to be members of
the superclass. Any member of the subclass must also support any method or property supported by the
superclass. For example, Modem is a subclass of Device.

382
383
384

385
386

3.2.17
instance
A unit of data. An instance is a set of property values that can be uniquely identified by a key. 387

388
389
390
391

392
393

3.2.18
key
One or more qualified class properties that can be used to construct a name.
One or more qualified object properties that uniquely identify instances of this object in a namespace.

3.2.19
managed object
The actual item in the system environment that is accessed by the provider — for example, a network
interface card.

394
395

396
397

3.2.20
meta model
A set of classes, associations, and properties that expresses the types of things that can be defined in a
Schema. For example, the meta model includes a class called property that defines the properties known
to the system, a class called method that defines the methods known to the system, and a class called
class that defines the classes known to the system.

398
399
400
401

402
403
404

405
406
407
408

3.2.21
meta schema
The schema of the meta model.

3.2.22
method
A declaration of a signature, which includes the method name, return type, and parameters. For a
concrete class, it may imply an implementation.

Version 2.5.0 DMTF Standard 13

Common Information Model (CIM) Infrastructure DSP0004

3.2.23 409
410 model

A set of classes, associations, and properties that allows the expression of information about a specific
domain. For example, a network may consist of network devices and logical networks. The network
devices may have attachment associations to each other, and they may have member associations to
logical networks.

411
412
413
414

415
416
417

418
419
420

421
422
423

424
425
426

427
428

3.2.24
model path
A reference to an object within a namespace.

3.2.25
namespace
An object that defines a scope within which object keys must be unique.

3.2.26
namespace path
A reference to a namespace within an implementation that can host CIM objects.

3.2.27
name
The combination of a namespace path and a model path that identifies a unique object.

3.2.28
polymorphism
A subclass may redefine the implementation of a method or property inherited from its superclass. The
property or method is therefore redefined, even if the superclass is used to access the object. For
example, Device may define availability as a string, and may return the values "powersave," "on," or "off."
The Modem subclass of Device may redefine (override) availability by returning "on" or "off," but not
"powersave". If all Devices are enumerated, any Device that happens to be a modem does not return the
value "powersave" for the availability property.

429
430
431
432
433
434

435
436

3.2.29
property
A value used to characterize an instance of a class. For example, a Device may have a property called
status.

437
438

439
440

3.2.30
provider
An executable that can return or set information about a given managed object. 441

442
443

3.2.31
qualifier
A value used to characterize a method, property, or class in the meta schema. For example, if a property
has the Key qualifier with the value TRUE, the property is a key for the class.

444
445

446
447
448

449
450
451
452

3.2.32
reference
Special property types that are references or pointers to other instances.

3.2.33
schema
A management schema is provided to establish a common conceptual framework at the level of a
fundamental topology both for classification and association and for a basic set of classes to establish a

14 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

453
454
455

456
457

common framework to describe the managed environment. A schema is a namespace and unit of
ownership for a set of classes. Schemas may take forms such as a text file, information in a repository, or
diagrams in a CASE tool.

3.2.34
scope
Part of a qualifier specification indicating the meta constructs with which the qualifier can be used. For
example, the Abstract qualifier has Scope(Class Association Indication), meaning that it can be used only
with

458
459

classes, associations, and indications. 460

461
462
463

464
465

3.2.35
scoping object
An object that represents a real-world managed element, which in turn propagates keys to other objects.

3.2.36
signature
The return type and parameters supported by a method. 466

467
468

3.2.37
subclass
See inheritance. 469

470
471

3.2.38
superclass
See inheritance. 472

473
474
475
476

477
478
479

3.2.39
top-level object
(TLO)
A class or object that has no scoping object.

3.2.40
trigger
The occurrence of some action such as the creation, modification, or deletion of an object, access to an
object, or modification or access to a property. Triggers may also be fired when a specified period of time
passes. A trigger typically results in an indication.

480
481

482

483

484
485
486

487
488
489

490
491
492

4 Symbols and Abbreviated Terms
The following symbols and abbreviations are used in this document.

4.1
API
application programming interface

4.2
CIM
Common Information Model

4.3
DBMS
Database Management System

Version 2.5.0 DMTF Standard 15

Common Information Model (CIM) Infrastructure DSP0004

4.4 493
494
495

496
497
498

499
500
501

502
503
504

505
506
507

508
509
510

511
512
513

514
515
516

517
518
519

520
521
522

523
524
525

526

527
528

529
530

DMI
Desktop Management Interface

4.5
GDMO
Guidelines for the Definition of Managed Objects

4.6
HTTP
Hypertext Transfer Protocol

4.7
MIB
Management Information Base

4.8
MIF
Management Information Format

4.9
MOF
Managed Object Format

4.10
OID
object identifier

4.11
SMI
Structure of Management Information

4.12
SNMP
Simple Network Management Protocol

4.13
TLO
top-level object

4.14
UML
Unified Modeling Language

5 Meta Schema
The Meta Schema is a formal definition of the model that defines the terms to express the model and its
usage and semantics (see ANNEX B).

The Unified Modeling Language (UML) defines the structure of the meta schema. In the discussion that
follows, italicized words refer to objects in Figure 2. We assume familiarity with UML notation (see
www.rational.com/uml) and with basic object-oriented concepts in the form of classes, properties,
methods, operations, inheritance, associations, objects, cardinality, and polymorphism.

531
532

16 DMTF Standard Version 2.5.0

http://www.rational.com/uml

DSP0004 Common Information Model (CIM) Infrastructure

5.1 Definition of the Meta Schema 533

534
535
536

537

538
539

540

541

542
543
544
545
546

547

548
549
550
551

552
553
554
555
556

557

558
559
560

561

562
563

564
565
566
567

568

569
570

The elements of the model are schemas, classes, properties, and methods. The model also supports
indications and associations as types of classes and references as types of properties. The elements of
the model are described in the following list:

• Schema

A group of classes with a single owner. Schemas are used for administration and class naming.
Class names must be unique within their schemas.

• Class

A collection of instances that support the same type (that is, the same properties and methods).

Classes can be arranged in a generalization hierarchy that represents subtype relationships
between classes. The generalization hierarchy is a rooted, directed graph and does not support
multiple inheritance. Classes can have methods, which represent their behavior. A class can
participate in associations as the target of a reference owned by the association. Classes also
have instances (not represented in Figure 2).

• Instance

Each instance provides values for the properties associated with its defining Class. An instance
does not carry values for any other properties or methods not defined in (or inherited by) its
defining class. An instance cannot redefine the properties or methods defined in (or inherited
by) its defining class.

Instances are not named elements and cannot have qualifiers associated with them. However,
qualifiers may be associated with the instance’s class, as well as with the properties and
methods defined in or inherited by that class. Instances cannot attach new qualifiers to
properties, methods, or parameters because the association between qualifier and named
element is not restricted to the context of a particular instance.

• Property

Assigns values to characterize instances of a class. A property can be thought of as a pair of
Get and Set functions that return state and set state, respectively, when they are applied to an
object.2

• Method

A declaration of a signature (that is, the method name, return type, and parameters). For a
concrete class, it may imply an implementation.

Properties and methods have reflexive associations that represent property and method
overriding. A method can override an inherited method so that any access to the inherited
method invokes the implementation of the overriding method. Properties are overridden in the
same way.

• Trigger

Recognition of a state change (such as create, delete, update, or access) of a class instance,
and update of or access to a property.

2 Note the equivocation between "object" as instance and "object" as class. This is common usage in object-oriented

literature and reflects the fact that, in many cases, operations and concepts may apply to or involve both classes
and instances.

Version 2.5.0 DMTF Standard 17

Common Information Model (CIM) Infrastructure DSP0004

• Indication 571

572
573

574

575
576
577
578
579
580

581

582
583
584

585

586
587
588
589
590
591
592
593

594
595

596

597
598

599

600
601

602
603
604

An object created as a result of a trigger. Because indications are subtypes of a class, they can
have properties and methods and they can be arranged in a type hierarchy.

• Association

A class that contains two or more references. An association represents a relationship between
two or more objects. A relationship can be established between classes without affecting any
related classes. That is, an added association does not affect the interface of the related
classes. Associations have no other significance. Only associations can have references. An
association cannot be a subclass of a non-association class. Any subclass of an association is
an association.

• Reference

Defines the role each object plays in an association. The reference represents the role name of
a class in the context of an association. A given object can have multiple relationship instances.
For example, a system can be related to many system components.

• Qualifier

Characterizes named elements. For example, qualifiers can define the characteristics of a
property or the key of a class. Specifically, qualifiers can characterize classes (including
associations and indications), properties (including references), methods, and method
parameters. Qualifiers do not characterize qualifier types and do not characterize other
qualifiers. Qualifiers make the meta schema extensible in a limited and controlled fashion. New
types of qualifiers can be added by introducing a new qualifier name, thereby providing new
types of meta data to processes that manage and manipulate classes, properties, and other
elements of the meta schema.

Figure 2 provides an overview of the structure of the meta schema. The complete meta schema is
defined by the MOF in ANNEX B. The rules defining the meta schema are as follows:

1) Every meta construct is expressed as a descendent of a named element.

2) A named element has zero or more characteristics. A characteristic is a qualifier for a named
element.

3) A named element can trigger zero or more indications.

4) A schema is a named element and can contain zero or more classes. A class must belong to
only one schema.

5) A qualifier type (not shown in Figure 2) is a named element and must supply a type for a
qualifier (that is, a qualifier must have a qualifier type). A qualifier type can be used to type zero
or more qualifiers.

18 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

 605

606

607
608
609

610
611
612

613
614
615
616
617

618
619
620

621

622
623

624

625

626

627

628

629
630
631

Figure 2 – Meta Schema Structure

6) A qualifier is a named element and has a name, a type (intrinsic data type), a value of this type,
a scope, a flavor, and a default value. The type of the qualifier value must agree with the type of
the qualifier type.

7) A property is a named element with exactly one domain: the class that owns the property. The
property can apply to instances of the domain (including instances of subclasses of the domain)
and not to any other instances.

8) A property can override another property from a different class. The domain of the overridden
property must be a supertype of the domain of the overriding property. For non-reference
properties, the type of the overriding property shall be the same as the type of the overridden
property. For References, the range of the overriding Reference shall be the same as, or a
subclass of, the range of the overridden Reference.

9) The class referenced by the range association (Figure 5) of an overriding reference must be the
same as, or a subtype of, the class referenced by the range associations of the overridden
reference.

10) The domain of a reference must be an association.

11) A class is a type of named element. A class can have instances (not shown on the diagram)
and is the domain for zero or more properties. A class is the domain for zero or more methods.

12) A class can have zero or one supertype and zero or more subtypes.

13) An association is a type of class. Associations are classes with an association qualifier.

14) An association must have two or more references.

15) An association cannot inherit from a non-association class.

16) Any subclass of an association is an association.

17) A method is a named element with exactly one domain: the class that owns the method. The
method can apply to instances of the domain (including instances of subclasses of the domain)
and not to any other instances.

Version 2.5.0 DMTF Standard 19

Common Information Model (CIM) Infrastructure DSP0004

632
633

634
635
636

637
638

639
640
641

642
643

644
645

646
647
648
649

650

651
652
653

654
655
656
657

658
659
660
661

18) A method can override another method from a different class. The domain of the overridden
method must be a superclass of the domain of the overriding method.

19) A trigger is an operation that is invoked on any state change, such as object creation, deletion,
modification, or access, or on property modification or access. Qualifiers, qualifier types, and
schemas may not have triggers. The changes that invoke a trigger are specified as a qualifier.

20) An indication is a type of class and has an association with zero or more named triggers that
can create instances of the indication.

21) Every meta-schema object is a descendent of a named element. All names are case-
insensitive. The naming rules, which vary depending on the creation type of the object, are as
follows:

a) Fully-qualified class names (that is, prefixed by the schema name) are unique within the
schema.

b) Fully-qualified association and indication names are unique within the schema (implied by
the fact that associations and indications are subtypes of class).

c) Implicitly-defined qualifier names are unique within the scope of the characterized object.
That is, a named element may not have two characteristics with the same name. Explicitly-
defined qualifier names are unique within the defining namespace and must agree in type,
scope, and flavor with any explicitly-defined qualifier of the same name.

d) Trigger names must be unique within the property, class, or method to which they apply.

e) Method and property names must be unique within the domain class. A class can inherit
more than one property or method with the same name. Property and method names can
be qualified using the name of the declaring class.

f) Reference names must be unique within the scope of their defining association and obey
the same rules as property names. Reference names do not have to be unique within the
scope of the related class because the reference provides the name of the class in the
context defined by the association (Figure 3).

It is legal for the class system to be related to service by two independent associations
(dependency and hosted services, each with roles system and service). However, hosted
services cannot define another reference service to the service class because a single
association would then contain two references called service.

System

Service Service

System

Service

System

Service

DependencyHosted Services

 662

663

664
665
666
667
668

Figure 3 – Reference Naming

22) Qualifiers are characteristics of named elements. A qualifier has a name (inherited from a
named element) and a value that defines the characteristics of the named element. For
example, a class can have a qualifier named "Description," the value of which is the description
for the class. A property can have a qualifier named "Units" that has values such as "bytes" or
"kilobytes." The value is a variant (that is, a value plus a type).

20 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

669
670
671
672
673
674
675

676
677

678

679

23) Association and indication are types of class, so they can be the domain for methods,
properties, and references. That is, associations and indications can have properties and
methods just as a class does. Associations and indications can have instances. The instance of
an association has a set of references that relate one or more objects. An instance of an
indication represents an event and is created because of that event — usually a trigger.
Indications are not required to have keys. Typically, indications are very short-lived objects to
communicate information to an event consumer.

24) A reference has a range that represents the type of the Reference. For example, in the model of
PhysicalElements and PhysicalPackages (Figure 4), there are two references:

– ContainedElement has PhysicalElement as its range and container as its domain.

– ContainingElement has PhysicalPackage as its range and container as its domain.

Physical
Element

Physical
Package

Container

Contained Element

Containing Element

 680

681

682
683
684

685
686
687

Figure 4 – References, Ranges, and Domains

25) A class has a subtype-supertype association for substitutions so that any instance of a subtype
can be substituted for any instance of the supertype in an expression without invalidating the
expression.

In the container example (Figure 5), Card is a subtype of PhysicalPackage. Therefore, Card can
be used as a value for the ContainingElement reference. That is, an instance of Card can be
used as a substitute for an instance of PhysicalPackage.

CabinetCard

Physical
Element

Physical
Package

Container

Contained Element

Containing Element

 688

689

690
691
692
693
694

Figure 5 – References, Ranges, Domains, and Inheritance

A similar relationship can exist between properties. For example, given that PhysicalPackage
has a Name property (which is a simple alphanumeric string); Card overrides Name to an alpha-
only string. Similarly, a method that overrides another method must support the same signature
as the original method and, most importantly, must be a substitute for the original method in all
cases.

Version 2.5.0 DMTF Standard 21

Common Information Model (CIM) Infrastructure DSP0004

695
696
697
698
699

700
701
702
703
704

705
706
707
708
709

710

711
712
713
714
715
716
717

718

719

26) The override relationship is used to indicate the substitution relationship between a property or
method of a subclass and the overridden property or method inherited from the superclass. This
is the opposite of the C++ convention in which the superclass property or method is specified as
virtual, with overrides as a side effect of declaring a feature with the same signature as the
inherited virtual feature.

27) The number of references in an association class defines the arity of the association. An
association containing two references is a binary association. An association containing three
references is a ternary Association. Unary associations, which contain one reference, are not
meaningful. Arrays of references are not allowed. When an association is subclassed, its arity
cannot change.

28) Schemas allow ownership of portions of the overall model by individuals and organizations who
manage the evolution of the schema. In any given installation, all classes are visible, regardless
of schema ownership. Schemas have a universally unique name. The schema name is part of
the class name. The full class name (that is, class name plus owning schema name) is unique
within the namespace and is the fully-qualified name (see 5.4).

5.2 Data Types

Properties, references, parameters, and methods (that is, method return values) have a data type. These
data types are limited to the intrinsic data types or arrays of such. Additional constraints apply to the data
types of some elements, as defined in this document. Structured types are constructed by designing new
classes. There are no subtype relationships among the intrinsic data types uint8, sint8, uint16, sint16,
uint32, sint32, uint64, sint64, string, boolean, real32, real64, datetime, char16, and arrays of them. CIM
elements of any intrinsic data type (including <classname> REF) may have the special value NULL,
indicating absence of value, unless further constrained in this document.

Table 2 lists the intrinsic data types and how they are interpreted.

Table 2 – Intrinsic Data Types

Intrinsic Data Type Interpretation

uint8 Unsigned 8-bit integer

sint8 Signed 8-bit integer

uint16 Unsigned 16-bit integer

sint16 Signed 16-bit integer

uint32 Unsigned 32-bit integer

sint32 Signed 32-bit integer

uint64 Unsigned 64-bit integer

sint64 Signed 64-bit integer

string UCS-2 string

boolean Boolean

real32 4-byte floating-point value compatible with IEEE-754® Single format

real64 8-byte floating-point compatible with IEEE-754® Double format

Datetime A string containing a date-time

<classname> ref Strongly typed reference

char16 16-bit UCS-2 character

22 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

5.2.1 Datetime Type 720

721
722
723

724

725

726

727
728
729
730
731
732
733
734
735
736
737
738

739

The datetime type specifies a timestamp (point in time) or an interval. If it specifies a timestamp, the
timezone offset can be preserved. In both cases, datetime specifies the date and time information with
varying precision.

Datetime uses a fixed string-based format. The format for timestamps is:

yyyymmddhhmmss.mmmmmmsutc

The meaning of each field is as follows:

• yyyy is a 4-digit year.
• mm is the month within the year (starting with 01).
• dd is the day within the month (starting with 01).
• hh is the hour within the day (24-hour clock, starting with 00).
• mm is the minute within the hour (starting with 00).
• ss is the second within the minute (starting with 00).
• mmmmmm is the microsecond within the second (starting with 000000).
• s is a + (plus) or – (minus), indicating that the value is a timestamp with the sign of Universal

Coordinated Time (UTC), which is basically the same as Greenwich Mean Time correction field.
A + (plus) is used for time zones east of Greenwich, and a – (minus) is used for time zones
west of Greenwich.

• utc is the offset from UTC in minutes (using the sign indicated by s).

Timestamps are based on the proleptic Gregorian calendar, as defined in section 3.2.1, "The Gregorian
calendar", of ISO 8601:2004(E). 740

741
742
743

744
745

746

747

748

749

750

751

752

753

754

755

756

Because datetime contains the time zone information, the original time zone can be reconstructed from
the value. Therefore, the same timestamp can be specified using different UTC offsets by adjusting the
hour and minutes fields accordingly.

For example, Monday, May 25, 1998, at 1:30:15 PM EST is represented as 19980525133015.0000000-
300.

An alternative representation of the same timestamp is 19980525183015.0000000+000.

The format for intervals is as follows:

ddddddddhhmmss.mmmmmm:000, with

The meaning of each field is as follows:

• dddddddd is the number of days.

• hh is the remaining number of hours.

• mm is the remaining number of minutes.

• ss is the remaining number of seconds.

• mmmmmm is the remaining number of microseconds.

• : (colon) indicates that the value is an interval.

• 000 (the UTC offset field) is always zero for interval properties.

Version 2.5.0 DMTF Standard 23

http://www.iso.ch/

Common Information Model (CIM) Infrastructure DSP0004

757
758

759

760
761

762
763
764
765
766
767

768
769

770

771

772

773

774

775

776

777

778

779

780
781

782

783

784
785

786
787

788

789
790

791
792

793
794
795
796

For example, an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 0 microseconds would be
represented as follows:

00000001132312.000000:000.

For both timestamps and intervals, the field values shall be zero-padded so that the entire string is always
25 characters in length.

For both timestamps and intervals, fields that are not significant shall be replaced with the asterisk (*)
character. Fields that are not significant are beyond the resolution of the data source. These fields
indicate the precision of the value and can be used only for an adjacent set of fields, starting with the
least significant field (mmmmmm) and continuing to more significant fields. The granularity for asterisks is
always the entire field, except for the mmmmmm field, for which the granularity is single digits. The UTC
offset field shall not contain asterisks.

For example, if an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 125 milliseconds is measured
with a precision of 1 millisecond, the format is: 00000001132312.125***:000.

The following operations are defined on datetime types:

• Arithmetic operations:

– Adding or subtracting an interval to or from an interval results in an interval.

– Adding or subtracting an interval to or from a timestamp results in a timestamp.

– Subtracting a timestamp from a timestamp results in an interval.

– Multiplying an interval by a numeric or vice versa results in an interval.

– Dividing an interval by a numeric results in an interval.

Other arithmetic operations are not defined.

• Comparison operations:

– Testing for equality of two timestamps or two intervals results in a Boolean value.

– Testing for the ordering relation (<, <=, >, >=) of two timestamps or two intervals results in
a Boolean value.

Other comparison operations are not defined.

Comparison between a timestamp and an interval and vice versa is not defined.

Specifications that use the definition of these operations (such as specifications for query languages)
should state how undefined operations are handled.

Any operations on datetime types in an expression shall be handled as if the following sequential steps
were performed:

1) Each datetime value is converted into a range of microsecond values, as follows:

• The lower bound of the range is calculated from the datetime value, with any asterisks
replaced by their minimum value.

• The upper bound of the range is calculated from the datetime value, with any asterisks
replaced by their maximum value.

• The basis value for timestamps is the oldest valid value (that is, 0 microseconds
corresponds to 00:00.000000 in the timezone with datetime offset +720, on January 1 in
the year 1 BCE, using the proleptic Gregorian calendar). This definition implicitly performs
timestamp normalization. Note that 1 BCE is the year before 1 CE.

24 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

797

798

799
800

801
802

803
804

805

806
807
808
809
810
811
812

813
814
815
816
817
818
819
820

821

2) The expression is evaluated using the following rules for any datetime ranges:

• Definitions:

T(x, y) The microsecond range for a timestamp with the lower bound x and the upper
 bound y

I(x, y) The microsecond range for an interval with the lower bound x and the upper
 bound y

D(x, y) The microsecond range for a datetime (timestamp or interval) with the lower
 bound x and the upper bound y

• Rules:

I(a, b) + I(c, d) := I(a+c, b+d)
I(a, b) - I(c, d) := I(a-d, b-c)
T(a, b) + I(c, d) := T(a+c, b+d)
T(a, b) - I(c, d) := T(a-d, b-c)
T(a, b) - T(c, d) := I(a-d, b-c)
I(a, b) * c := I(a*c, b*c)
I(a, b) / c := I(a/c, b/c)

D(a, b) < D(c, d) := true if b < c, false if a >= d, otherwise NULL (uncertain)
D(a, b) <= D(c, d) := true if b <= c, false if a > d, otherwise NULL (uncertain)
D(a, b) > D(c, d) := true if a > d, false if b <= c, otherwise NULL (uncertain)
D(a, b) >= D(c, d) := true if a >= d, false if b < c, otherwise NULL (uncertain)
D(a, b) = D(c, d) := true if a = b = c = d, false if b < c OR a > d, otherwise NULL
(uncertain)
D(a, b) <> D(c, d) := true if b < c OR a > d, false if a = b = c = d, otherwise NULL
(uncertain)

These rules follow the well-known mathematical interval arithmetic. For a definition of
mathematical interval arithmetic, see http://en.wikipedia.org/wiki/Interval_arithmetic. 822

823
824
825
826
827

828
829

830

831
832

833
834

835

836

837
838

NOTE 1: Mathematical interval arithmetic is commutative and associative for addition and
multiplication, as in ordinary arithmetic.

NOTE 2: Mathematical interval arithmetic mandates the use of three-state logic for the result of
comparison operations. A special value called "uncertain" indicates that a decision cannot be made.
The special value of "uncertain" is mapped to the NULL value in datetime comparison operations.

3) Overflow and underflow condition checking is performed on the result of the expression, as
follows:

For timestamp results:

• A timestamp older than the oldest valid value in the timezone of the result produces
an arithmetic underflow condition.

• A timestamp newer than the newest valid value in the timezone of the result produces
an arithmetic overflow condition.

For interval results:

• A negative interval produces an arithmetic underflow condition.

• A positive interval greater than the largest valid value produces an arithmetic overflow
condition.

Version 2.5.0 DMTF Standard 25

http://en.wikipedia.org/wiki/Interval_arithmetic

Common Information Model (CIM) Infrastructure DSP0004

839
840

841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

884
885

886
887

888
889

Specifications using these operations (for instance, query languages) should define how these
conditions are handled.

4) If the result of the expression is a datetime type, the microsecond range is converted into a valid
datetime value such that the set of asterisks (if any) determines a range that matches the actual
result range or encloses it as closely as possible. The GMT timezone shall be used for any
timestamp results.
NOTE: For most fields, asterisks can be used only with the granularity of the entire field.

EXAMPLE:
"20051003110000.000000+000" + "00000000002233.000000:000" evaluates to
"20051003112233.000000+000"

"20051003110000.******+000" + "00000000002233.000000:000" evaluates to
"20051003112233.******+000"

"20051003110000.******+000" + "00000000002233.00000*:000" evaluates to
"200510031122**.******+000"

"20051003110000.******+000" + "00000000002233.******:000" evaluates to
"200510031122**.******+000"

"20051003110000.******+000" + "00000000005959.******:000" evaluates to
"20051003******.******+000"

"20051003110000.******+000" + "000000000022**.******:000" evaluates to
"2005100311****.******+000"

"20051003112233.000000+000" - "00000000002233.000000:000" evaluates to
"20051003110000.000000+000"

"20051003112233.******+000" - "00000000002233.000000:000" evaluates to
"20051003110000.******+000"

"20051003112233.******+000" - "00000000002233.00000*:000" evaluates to
"20051003110000.******+000"

"20051003112233.******+000" - "00000000002232.******:000" evaluates to
"200510031100**.******+000"

"20051003112233.******+000" - "00000000002233.******:000" evaluates to
"20051003******.******+000"

"20051003060000.000000-300" + "00000000002233.000000:000" evaluates to
"20051003112233.000000+000"

"20051003060000.******-300" + "00000000002233.000000:000" evaluates to
"20051003112233.******+000"

"000000000011**.******:000" * 60 evaluates to
"0000000011****.******:000"

60 times adding up "000000000011**.******:000" evaluates to
"0000000011****.******:000"

"20051003112233.000000+000" = "20051003112233.000000+000" evaluates to true

"20051003122233.000000+060" = "20051003112233.000000+000" evaluates to true

"20051003112233.******+000" = "20051003112233.******+000" evaluates to NULL (uncertain)

"20051003112233.******+000" = "200510031122**.******+000" evaluates to NULL (uncertain)

"20051003112233.******+000" = "20051003112234.******+000" evaluates to false

"20051003112233.******+000" < "20051003112234.******+000" evaluates to true

"20051003112233.5*****+000" < "20051003112233.******+000" evaluates to NULL (uncertain)

A datetime value is valid if the value of each single field is in the valid range. Valid values shall
not be rejected by any validity checking within the CIM infrastructure.

Within these valid ranges, some values are defined as reserved. Values from these reserved
ranges shall not be interpreted as points in time or durations.

Within these reserved ranges, some values have special meaning. The CIM schema should not
define additional class-specific special values from the reserved range.

26 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

890

891

892
893

894
895

896
897

898

899

900

901

902

903

904
905

906
907

908

909

910

911

912
913
914
915
916
917
918
919
920
921
922
923
924

925
926

The valid and reserved ranges and the special values are defined as follows:

• For timestamp values:

Oldest valid timestamp "00000101000000.000000+720"
 Reserved range (1 million values)

Oldest useable timestamp "00000101000001.000000+720"
 Range interpreted as points in time

Youngest useable timestamp "99991231115959.999998-720"
 Reserved range (1 value)

Youngest valid timestamp "99991231115959.999999-720"

– Special values in the reserved ranges:

"Now" "00000101000000.000000+720"

"Infinite past" "00000101000000.999999+720"

"Infinite future" "99991231115959.999999-720"

• For interval values:

Smallest valid and useable interval "00000000000000.000000:000"
 Range interpreted as durations

Largest useable interval "99999999235958.999999:000"
 Reserved range (1 million values)

Largest valid interval "99999999235959.999999:000"

– Special values in reserved range:

"Infinite duration" "99999999235959.000000:000"

5.2.2 Indicating Additional Type Semantics with Qualifiers

Because counter and gauge types are actually simple integers with specific semantics, they are not
treated as separate intrinsic types. Instead, qualifiers must be used to indicate such semantics when
properties are declared. The following example merely suggests how this can be done; the qualifier
names chosen are not part of this standard:

class Acme_Example
{
 [counter]
 uint32 NumberOfCycles;
 [gauge]
 uint32 MaxTemperature;
 [octetstring, ArrayType("Indexed")]
 uint8 IPAddress[10];
};

For documentation purposes, implementers are permitted to introduce such arbitrary qualifiers. The
semantics are not enforced.

Version 2.5.0 DMTF Standard 27

Common Information Model (CIM) Infrastructure DSP0004

5.3 Supported Schema Modifications 927

928
929
930

931

932

933

934
935

936

937

938

939

940

941

942
943
944
945
946
947
948
949
950

951

Some of the following supported schema modifications change application behavior. Changes are all
subject to security restrictions. Only the owner of the schema or someone authorized by the owner can
modify the schema.

• A class can be added to or deleted from a schema.

• A property can be added to or deleted from a class.

• A class can be added as a subtype or supertype of an existing class.

• A class can become an association as a result of the addition of an Association qualifier, plus
two or more references.

• A qualifier can be added to or deleted from any named element to which it applies.

• The Override qualifier can be added to or removed from a property or reference.

• A method can be added to a class.

• A method can override an inherited method.

• Methods can be deleted, and the signature of a method can be changed.

• A trigger may be added to or deleted from a class.

In defining an extension to a schema, the schema designer is expected to operate within the constraints
of the classes defined in the core model. It is recommended that any added component of a system be
defined as a subclass of an appropriate core model class. For each class in the core model, the schema
designer is expected to consider whether the class being added is a subtype of this class. After the core
model class to be extended is identified, the same question should be addressed for each subclass of the
identified class. This process defines the superclasses of the class to be defined and should be continued
until the most detailed class is identified. The core model is not a part of the meta schema, but it is an
important device for introducing uniformity across schemas that represent aspects of the managed
environment.

5.3.1 Schema Versions

952

953

954

955

956

957
958
959
960
961
962
963
964

Schema versioning is described in the DSP4004. Versioning takes the form m.n.u, where:

• m = major version identifier in numeric form

• n = minor version identifier in numeric form

• u = update (errata or coordination changes) in numeric form

The usage rules for the Version qualifier in 5.5.2.53 provide additional information.

Classes are versioned in the CIM schemas. The Version qualifier for a class indicates the schema release
of the last change to the class. Class versions in turn dictate the schema version. A major version change
for a class requires the major version number of the schema release to be incremented. All class versions
must be at the same level or a higher level than the schema release because classes and models that
differ in minor version numbers shall be backwards-compatible. In other words, valid instances shall
continue to be valid if the minor version number is incremented. Classes and models that differ in major
version numbers are not backwards-compatible. Therefore, the major version number of the schema
release shall be incremented.

28 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Table 3 lists modifications to the CIM schemas in final status that cause a major version number change.
Preliminary models are allowed to evolve based on implementation experience. These modifications
change application behavior and/or customer code. Therefore, they force a major version update and are
discouraged.

965
966
967
968
969

970
971
972

973

Table 3 is an exhaustive list of the possible modifications based on current CIM experience
and knowledge. Items could be added as new issues are raised and CIM standards evolve.

Alterations beyond those listed in Table 3 are considered interface-preserving and require the minor
version number to be incremented. Updates/errata are not classified as major or minor in their impact, but
they are required to correct errors or to coordinate across standards bodies.

Table 3 – Changes that Increment the CIM Schema Major Version Number

Description Explanation or Exceptions

Class deletion

Property deletion or data type change

Method deletion or signature change

Reorganization of values in an
enumeration

The semantics and mappings of an enumeration cannot change, but
values can be added in unused ranges as a minor change or update.

Movement of a class upwards in the
inheritance hierarchy; that is, the
removal of superclasses from the
inheritance hierarchy

The removal of superclasses deletes properties or methods. New classes
can be inserted as superclasses as a minor change or update. Inserted
classes shall not change keys or add required properties.

Addition of Abstract, Indication, or
Association qualifiers to an existing
class

Change of an association reference
downward in the object hierarchy to a
subclass or to a different part of the
hierarchy

The change of an association reference to a subclass can invalidate
existing instances.

Addition or removal of a Key or Weak
qualifier

Addition of a Required qualifier

Decrease in MaxLen, decrease in
MaxValue, increase in MinLen, or
increase in MinValue

Decreasing a maximum or increasing a minimum invalidates current data.
The opposite change (increasing a maximum) results in truncated data,
where necessary.

Decrease in Max or increase in Min
cardinalities

Addition or removal of Override
qualifier

There is one exception. An Override qualifier can be added if a property is
promoted to a superclass, and it is necessary to maintain the specific
qualifiers and descriptions in the original subclass. In this case, there is no
change to existing instances.

Change in the following qualifiers:
In/Out, Units

5.4 Class Names 974

975
976
977

978
979

Fully-qualified class names are in the form <schema name>_<class name>. An underscore is used as a
delimiter between the <schema name> and the <class name>. The delimiter cannot appear in the
<schema name> although it is permitted in the <class name>.

The format of the fully-qualified name allows the scope of class names to be limited to a schema. That is,
the schema name is assumed to be unique, and the class name is required to be unique only within the

Version 2.5.0 DMTF Standard 29

Common Information Model (CIM) Infrastructure DSP0004

980
981

982

983

984

985

986

987

988
989
990
991
992

993
994
995
996
997
998

999

1000
1001

1002

schema. The isolation of the schema name using the underscore character allows user interfaces
conveniently to strip off the schema when the schema is implied by the context.

The following are examples of fully-qualified class names:

• CIM_ManagedSystemElement: the root of the CIM managed system element hierarchy

• CIM_ComputerSystem: the object representing computer systems in the CIM schema

• CIM_SystemComponent: the association relating systems to their components

• Win32_ComputerSystem: the object representing computer systems in the Win32 schema

5.5 Qualifiers

Qualifiers are values that provide additional information about classes, associations, indications,
methods, method parameters, properties, or references. Qualifiers shall not be applied to qualifiers or to
qualifier types. All qualifiers have a name, type, value, scope, flavor, and default value. Qualifiers cannot
be duplicated. There cannot be more than one qualifier of the same name for any given class,
association, indication, method, method parameter, property, or reference.

The following clauses describe meta, standard, optional, and user-defined qualifiers. When any of these
qualifiers are used in a model, they must be declared in the MOF file before they are used. These
declarations must abide by the details (name, applied to, type) specified in the tables below. It is not valid
to change any of this information for the meta, standard, or optional qualifiers. The default values can be
changed. A default value is the assumed value for a qualifier when it is not explicitly specified for
particular model elements.

5.5.1 Meta Qualifiers

Table 4 lists the qualifiers that refine the definition of the meta constructs in the model. These qualifiers
refine the actual usage of a class declaration and are mutually exclusive.

Table 4 – Meta Qualifiers

Qualifier Default Type Description

Association FALSE Boolean The object class is defining an association.

Indication FALSE Boolean The object class is defining an indication.

5.5.2 Standard Qualifiers 1003

1004
1005
1006

1007

1008
1009

1010
1011
1012
1013

1014
1015

The following subclauses list the standard qualifiers required for all CIM-compliant implementations. Any
given object does not have all the qualifiers listed. Additional qualifiers can be supplied by extension
classes to provide instances of the class and other operations on the class.

Not all of these qualifiers can be used together. The following principles apply:

• Not all qualifiers can be applied to all meta-model constructs. For each qualifier, the constructs to
which it applies are listed.

• For a particular meta-model construct, such as associations, the use of the legal qualifiers may be
further constrained because some qualifiers are mutually exclusive or the use of one qualifier implies
restrictions on the value of another, and so on. These usage rules are documented in the subclause
for each qualifier.

• Legal qualifiers are not inherited by meta-model constructs. For example, the MaxLen qualifier that
applies to properties is not inherited by references.

30 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

The meta-model constructs that can use a particular qualifier are identified for each qualifier. For
qualifiers such as Association (see

1016
1017
1018
1019

1020
1021
1022

1023

1024
1025

1026
1027

1028

1029

1030
1031

1032

1033
1034

1035

1036

1037
1038

1039
1040

1041

1042
1043

1044

1045
1046

1047
1048
1049
1050
1051
1052

1053

5.5.1), there is an implied usage rule that the meta qualifier must also
be present. For example, the implicit usage rule for the Aggregation qualifier (see 5.5.2.3) is that the
Association qualifier must also be present.

The allowed set of values for scope is (Class Association Indication Property Reference Parameter
Method). Each qualifier has one or more of these scopes. If the scope is Class it does not apply to
Association or Indication. If the scope is Property it does not apply to Reference.

5.5.2.1 Abstract

The Abstract qualifier takes Boolean values, and has a Scope(Class Association Indication). The default
value is FALSE.

This qualifier indicates that the class is abstract and serves only as a base for new classes. It is not
possible to create instances of such classes.

5.5.2.2 Aggregate

The Aggregate qualifier takes Boolean values, and has a Scope(Reference). The default value is FALSE.

The Aggregation and Aggregate qualifiers are used together. The Aggregation qualifier relates to the
association, and the Aggregate qualifier specifies the parent reference.

5.5.2.3 Aggregation

The Aggregation qualifier takes Boolean values, and has Scope(Association). The default value is
FALSE.

The Aggregation qualifier indicates that the association is an aggregation.

5.5.2.4 ArrayType

The ArrayType qualifier takes string array values, and has Scope(Property Parameter). The default value
is FALSE.

The ArrayType qualifier is the type of the qualified array. Valid values are "Bag", "Indexed," and
"Ordered."

For definitions of the array types, refer to 7.8.2.

The ArrayType qualifier shall be applied only to properties and method parameters that are arrays
(defined using the square bracket syntax specified in ANNEX A).

5.5.2.5 Bitmap

The Bitmap qualifier takes string array values, and has a Scope(Property Parameter Method). The default
value is NULL.

The Bitmap qualifier indicates the bit positions that are significant in a bitmap. The bitmap is evaluated
from the right, starting with the least significant value. This value is referenced as 0 (zero). For example,
using a uint8 data type, the bits take the form Mxxx xxxL, where M and L designate the most and least
significant bits, respectively. The least significant bits are referenced as 0 (zero), and the most significant
bit is 7. The position of a specific value in the Bitmap array defines an index used to select a string literal
from the BitValues array.

The number of entries in the BitValues and Bitmap arrays shall match.

Version 2.5.0 DMTF Standard 31

Common Information Model (CIM) Infrastructure DSP0004

5.5.2.6 BitValues 1054

1055
1056

1057
1058

1059

1060

1061
1062

1063

The BitValues qualifier takes string array values, and has Scope(Property Parameter Method). The
default value is NULL.

The BitValues qualifier translates between a bit position value and an associated string. See 5.5.2.5 for
the description for the Bitmap qualifier.

The number of entries in the BitValues and Bitmap arrays shall match.

5.5.2.7 ClassConstraint

The ClassConstraint qualifier takes string array values and has Scope(Class Association Indication). The
default value is NULL.

The qualified element specifies one or more constraints that are defined in the Object Constraint
Language (OCL), as specified in the OMG Object Constraint Language Specification. 1064

1065
1066
1067

1068
1069

1070

1071
1072

1073
1074
1075

1076
1077

1078

1079

1080

1081

1082
1083

1084
1085
1086

1087

1088

1089

1090

The ClassConstraint array contains string values that specify OCL definition and invariant constraints.
The OCL context of these constraints (that is, what "self" in OCL refers to) is an instance of the qualified
class, association, or indication.

OCL definition constraints define OCL attributes and OCL operations that are reusable by other OCL
constraints in the same OCL context.

The attributes and operations in the OCL definition constraints shall be visible for:

• OCL definition and invariant constraints defined in subsequent entries in the same
ClassConstraint array

• OCL constraints defined in PropertyConstraint qualifiers on properties and references in a class
whose value (specified or inherited) of the ClassConstraint qualifier defines the OCL definition
constraint

• Constraints defined in MethodConstraint qualifiers on methods defined in a class whose value
(specified or inherited) of the ClassConstraint qualifier defines the OCL definition constraint

A string value specifying an OCL definition constraint shall conform to the following syntax:

ocl_definition_string = "def" [ocl_name] ":" ocl_statement

Where:

ocl_name is the name of the OCL constraint.

ocl_statement is the OCL statement of the definition constraint, which defines the reusable attribute
or operation.

An OCL invariant constraint is expressed as a typed OCL expression that specifies whether the constraint
is satisfied. The type of the expression shall be Boolean. The invariant constraint shall be satisfied at any
time in the lifetime of the instance.

A string value specifying an OCL invariant constraint shall conform to the following syntax:

ocl_invariant_string = "inv" [ocl_name] ":" ocl_statement

Where:

ocl_name is the name of the OCL constraint.

32 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1091
1092
1093
1094
1095
1096
1097

1098
1099
1100
1101
1102
1103
1104

1105

1106

1107
1108
1109

ocl_statement is the OCL statement of the invariant constraint, which defines the Boolean
expression.

EXAMPLE: For example, to check that both property x and property y cannot be NULL in any instance of a class,
use the following qualifier, defined on the class:

ClassConstraint {
 "inv: not (self.x.oclIsUndefined() and self.y.oclIsUndefined())"
}

The same check can be performed by first defining OCL attributes. Also, the invariant constraint is named
in the following example:

ClassConstraint {
 "def: xNull : Boolean = self.x.oclIsUndefined()",
 "def: yNull : Boolean = self.y.oclIsUndefined()",
 "inv xyNullCheck: xNull = false or yNull = false)"
}

5.5.2.8 Composition

The Composition qualifier takes Boolean values and has Scope(Association). The default value is FALSE.

The Composition qualifier refines the definition of an aggregation association, adding the semantics of a
whole-part/compositional relationship to distinguish it from a collection or basic aggregation. This
refinement is necessary to map CIM associations more precisely into UML where whole-part relationships
are considered compositions. The semantics conveyed by composition align with that of the OMG UML 1110

1111

1112
1113

1114
1115
1116
1117
1118
1119

1120
1121
1122
1123

1124

1125

1126
1127
1128

1129
1130
1131
1132

1133
1134

Specification. Following is a quote (with emphasis added) from section 7.3.3:

"Composite aggregation is a strong form of aggregation that requires a part instance be included in at
most one composite at a time. If a composite is deleted, all of its parts are normally deleted with it."

Use of this qualifier imposes restrictions on the membership of the ‘collecting’ object (the whole). Care
should be taken when entities are added to the aggregation, because they shall be "parts" of the whole.
Also, if the collecting entity (the whole) is deleted, it is the responsibility of the implementation to dispose
of the parts. The behavior may vary with the type of collecting entity whether the parts are also deleted.
This is very different from that of a collection, because a collection may be removed without deleting the
entities that are collected.

The Aggregation and Composition qualifiers are used together. Aggregation indicates the general nature
of the association, and Composition indicates more specific semantics of whole-part relationships. This
duplication of information is necessary because Composition is a more recent addition to the list of
qualifiers. Applications can be built only on the basis of the earlier Aggregation qualifier.

5.5.2.9 Correlatable

The Correlatable qualifier takes string array values, and has Scope(Property). The default value is NULL.

The Correlatable qualifier is used to define sets of properties that can be compared to determine if two
CIM instances represent the same resource entity. For example, these instances may cross
logical/physical boundaries, CIM Server scopes, or implementation interfaces.

The sets of properties to be compared are defined by first specifying the organization in whose context
the set exists (organization_name), and then a set name (set_name). In addition, a property is given a
role name (role_name) to allow comparisons across the CIM Schema (that is, where property names may
vary although the semantics are consistent).

The value of each entry in the Correlatable qualifier string array shall follow the formal syntax:
correlatablePropertyID = organization_name ":" set_name ":" role_name

Version 2.5.0 DMTF Standard 33

Common Information Model (CIM) Infrastructure DSP0004

1135
1136
1137
1138
1139
1140

1141
1142
1143

1144

1145
1146
1147
1148
1149

1150
1151

1152
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1177
1178
1179

1180
1181
1182

The determination whether two CIM instances represent the same resource entity is done by comparing
one or more property values of each instance (where the properties are tagged by their role name), as
follows: The property values of all role names within at least one matching organization name / set name
pair shall match in order to conclude that the two instances represent the same resource entity.
Otherwise, no conclusion can be reached and the instances may or may not represent the same resource
entity.

correlatablePropertyID values shall be compared case-insensitively. For example,
"Acme:Set1:Role1" and "ACME:set1:role1" are considered matching. Note that the values of any
string properties in CIM are defined to be compared case-sensitively.

To assure uniqueness of a correlatablePropertyID:

• organization_name shall include a copyrighted, trademarked or otherwise unique name that is
owned by the business entity defining set_name, or is a registered ID that is assigned to the
business entity by a recognized global authority. organization_name shall not contain a colon
(":"). For DMTF defined correlatablePropertyID values, the organization_name shall be
"CIM".

• set_name shall be unique within the context of organization_name and identifies a specific set
of correlatable properties. set_name shall not contain a colon (":").

• role_name shall be unique within the context of organization_name and set_name and identifies
the semantics or role that the property plays within the Correlatable comparison.

The Correlatable qualifier may be defined on only a single class. In this case, instances of only that class
are compared. However, if the same correlation set (defined by organization_name and set_name) is
specified on multiple classes, then comparisons can be done across those classes.
EXAMPLE: As an example, assume that instances of two classes can be compared: Class1 with properties
PropA, PropB, and PropC, and Class2 with properties PropX, PropY and PropZ. There are two correlation sets
defined, one set with two properties that have the role names Role1 and Role2, and the other set with one property
with the role name OnlyRole. The following MOF represents this example:

Class1 {
 [Correlatable {"Acme:Set1:Role1"}]
 string PropA;
 [Correlatable {"Acme:Set2:OnlyRole"}]
 string PropB;
 [Correlatable {"Acme:Set1:Role2"}]
 string PropC;
 };
Class2 {
 [Correlatable {"Acme:Set1:Role1"}]
 string PropX;
 [Correlatable {"Acme:Set2:OnlyRole"}]
 string PropY;
 [Correlatable {"Acme:Set1:Role2"}]
 string PropZ;
};

Following the comparison rules defined above, one can conclude that an instance of Class1 and an
instance of Class2 represent the same resource entity if PropB and PropY's values match, or if
PropA/PropX and PropC/PropZ's values match, respectively.

The Correlatable qualifier can be used to determine if multiple CIM instances represent the same
underlying resource entity. Some may wonder if an instance’s key value (such as InstanceID) is meant to
perform the same role. This is not the case. InstanceID is merely an opaque identifier of a CIM instance,

34 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1183
1184

1185
1186

1187

1188
1189

1190

1191
1192
1193
1194

1195

1196
1197

1198
1199
1200
1201
1202
1203
1204

1205
1206
1207
1208
1209

1210
1211
1212

1213

1214

1215

1216

1217

1218

1219
1220

whereas Correlatable is not opaque and can be used to draw conclusions about the identity of the
underlying resource entity of two or more instances.

DMTF-defined Correlatable qualifiers are defined in the CIM Schema on a case-by-case basis. There is
no central document that defines them.

5.5.2.10 Counter

The Counter qualifier takes string array values and has Scope(Property Parameter Method). The default
value is FALSE.

The Counter qualifier applies only to unsigned integer types.

It represents a non-negative integer that monotonically increases until it reaches a maximum value of
2^n-1, when it wraps around and starts increasing again from zero. N can be 8, 16, 32, or 64 depending
on the data type of the object to which the qualifier is applied. Counters have no defined initial value, so a
single value of a counter generally has no information content.

5.5.2.11 Deprecated

The Deprecated qualifier takes string array values and has Scope(Class Association Indication Property
Reference Parameter Method). The default value is NULL.

The Deprecated qualifier indicates that the CIM element (for example, a class or property) that the
qualifier is applied to is considered deprecated. The qualifier may specify replacement elements. Existing
instrumentation shall continue to support the deprecated element so that current applications do not
break. Existing instrumentation should add support for any replacement elements. A deprecated element
should not be used in new applications. Existing and new applications shall tolerate the deprecated
element and should move to any replacement elements as soon as possible. The deprecated element
may be removed in a future major version release of the CIM schema, such as CIM 2.x to CIM 3.0.

The qualifier acts inclusively. Therefore, if a class is deprecated, all the properties, references, and
methods in that class are also considered deprecated. However, no subclasses or associations or
methods that reference that class are deprecated unless they are explicitly qualified as such. For clarity
and to specify replacement elements, all such implicitly deprecated elements should be specifically
qualified as deprecated.

The Deprecated qualifier’s string value should specify one or more replacement elements. Replacement
elements shall be specified using the following syntax:

className [[embeddedInstancePath] "." elementSpec];

where:

elementSpec = propertyName | methodName "(" [parameterName *("," parameterName)] ")"

is a specification of the replacement element.

embeddedInstancePath = 1*("." propertyName)

is a specification of a path through embedded instances.

The qualifier is defined as a string array so that a single element can be replaced by multiple elements.

If there is no replacement element, then the qualifier string array shall contain a single entry with the
string "No value”.

Version 2.5.0 DMTF Standard 35

Common Information Model (CIM) Infrastructure DSP0004

1221
1222

1223
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233

1234

1235
1236

1237

1238

1239
1240

1241
1242

1243

1244
1245

1246

When an element is deprecated, its description shall indicate why it is deprecated and how any
replacement elements are used. Following is an acceptable example description:

"The X property is deprecated in lieu of the Y method defined in this class because the property
actually causes a change of state and requires an input parameter."

The parameters of the replacement method may be omitted.
NOTE 1: Replacing a deprecated element with a new element results in duplicate representations of the element.
This is of particular concern when deprecated classes are replaced by new classes and instances may be duplicated.
To allow a management application to detect such duplication, implementations should document (in a ReadMe,
MOF, or other documentation) how such duplicate instances are detected.

NOTE 2: Key properties may be deprecated, but they shall continue to be key properties and shall satisfy all rules for
key properties. When a key property is no longer intended to be a key, only one option is available. It is necessary to
deprecate the entire class and therefore its properties, methods, references, and so on, and to define a new class
with the changed key structure.

5.5.2.12 Description

The Description qualifier takes string array values, and has a Scope(Class Association Indication Property
Reference Parameter Method). The default value is NULL.

The Description qualifier describes a named element.

5.5.2.13 DisplayName

The DisplayName qualifier takes string values and has Scope(Class Association Indication Property
Reference Parameter Method). The default value is NULL.

The DisplayName qualifier defines a name that is displayed on a user interface instead of the actual
name of the element.

5.5.2.14 DN

The DN qualifier takes string array values, and has a Scope(Property Parameter Method). The default
value is FALSE.

When applied to a string element, the DN qualifier specifies that the string shall be a distinguished name
as defined in Section 9 of X.501 and the string representation defined in RFC2253. This qualifier shall not
be applied to qualifiers that are not of the intrinsic data type string.

1247
1248

1249

1250
1251

1252
1253
1254

1255

1256
1257
1258

1259
1260
1261

5.5.2.15 EmbeddedInstance

The EmbeddedInstance qualifier takes string array values and has Scope(Property Parameter Method).
The default value is NULL.

The qualified string typed element contains an embedded instance. The encoding of the instance
contained in the string typed element qualified by EmbeddedInstance follows the rules defined in
ANNEX G.

This qualifier may be used only on elements of string type.

The qualifier value shall specify the name of a CIM class in the same namespace as the class owning the
qualified element. The embedded instance shall be an instance of the specified class, including instances
of its subclasses.

This qualifier shall not be used on an element that overrides an element not qualified by
EmbeddedInstance. However, it may be used on an overriding element to narrow the class specified in
this qualifier on the overridden element to one of its subclasses.

36 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1262

1263

1264
1265

1266
1267
1268

1269
1270

1271

1272

1273
1274

1275
1276
1277

1278
1279
1280
1281

1282

1283
1284

1285
1286

1287
1288
1289
1290
1291
1292

1293
1294
1295
1296

1297
1298

1299

1300
1301

See ANNEX G for examples.

5.5.2.16 EmbeddedObject

The EmbeddedObject qualifier takes Boolean values and has Scope(Property Parameter Method). The
default value is FALSE.

This qualifier indicates that the qualified string typed element contains an encoding of an instance's data
or an encoding of a class definition. The encoding of the object contained in the string typed element
qualified by EmbeddedObject follows the rules defined in ANNEX G.

This qualifier may be used only on elements of string type. It shall not be used on an element that
overrides an element not qualified by EmbeddedObject.

See ANNEX G for examples.

5.5.2.17 Exception

The Exception qualifier takes Boolean values and has Scope(Class Indication). The default value is
FALSE.

This qualifier indicates that the class and all subclasses of this class describe transient exception
information. The definition of this qualifier is identical to that of the Abstract qualifier except that it cannot
be overridden. It is not possible to create instances of exception classes.

The Exception qualifier denotes a class hierarchy that defines transient (very short-lived) exception
objects. Instances of Exception classes communicate exception information between CIMEntities. The
Exception qualifier cannot be used with the Abstract qualifier. The subclass of an exception class shall be
an exception class.

5.5.2.18 Experimental

The Experimental qualifier takes Boolean values and has Scope(Class Association Indication Property
Reference Parameter Method). The default value is FALSE.

If the Experimental qualifier is specified, the qualified element has experimental status. The implications
of experimental status are specified by the schema owner.

In a DMTF-produced schema, experimental elements are subject to change and are not part of the final
schema. In particular, the requirement to maintain backwards compatibility across minor schema versions
does not apply to experimental elements. Experimental elements are published for developing
implementation experience. Based on implementation experience, changes may occur to this element in
future releases, it may be standardized "as is," or it may be removed. An implementation does not have to
support an experimental feature to be compliant to a DMTF-published schema.

When applied to a class, the Experimental qualifier conveys experimental status to the class itself, as well
as to all properties and features defined on that class. Therefore, if a class already bears the
Experimental qualifier, it is unnecessary also to apply the Experimental qualifier to any of its properties or
features, and such redundant use is discouraged.

No element shall be both experimental and deprecated (as with the Deprecated qualifier). Experimental
elements whose use is considered undesirable should simply be removed from the schema.

5.5.2.19 Gauge

The Gauge qualifier takes Boolean values and has Scope(Property Parameter Method). The default value
is FALSE.

Version 2.5.0 DMTF Standard 37

Common Information Model (CIM) Infrastructure DSP0004

1302
1303

1304
1305
1306
1307
1308

1309

1310

1311

1312

1313
1314

1315
1316

1317
1318

1319

1320

1321

1322
1323
1324

1325
1326
1327
1328

1329

1330
1331

1332
1333

1334

1335

1336
1337
1338
1339

1340

The Gauge qualifier is applicable only to unsigned integer types. It represents an integer that may
increase or decrease in any order of magnitude.

The value of a gauge is capped at the implied limits of the property’s data type. If the information being
modeled exceeds an implied limit, the value represented is that limit. Values do not wrap. For unsigned
integers, the limits are zero (0) to 2^n-1, inclusive. For signed integers, the limits are –(2^(n-1)) to
2^(n-1)-1, inclusive. N can be 8, 16, 32, or 64 depending on the data type of the property to which the
qualifier is applied.

5.5.2.20 IN

The IN qualifier takes Boolean values and has Scope(Parameter). The default value is TRUE.

The IN qualifier is used with an associated parameter to pass values to a method.

5.5.2.21 IsPUnit

The IsPUnit qualifier takes Boolean values and has Scope(Property Parameter Method). The default
value is FALSE.

The qualified string typed property, method return value, or method parameter represents a programmatic
unit of measure. The value of the string element follows the syntax for programmatic units.

The qualifier must be used on string data types only. A value of NULL for the string element indicates that
the programmatic unit is unknown. The syntax for programmatic units is defined in ANNEX C.

Experimental: This qualifier has status "Experimental."

5.5.2.22 Key

The Key qualifier takes Boolean values and has Scope(Property Reference). The default value is FALSE.

The property or reference is part of the model path (see 8.3.2 for information on the model path). If more
than one property or reference has the Key qualifier, then all such elements collectively form the key (a
compound key).

The values of key properties and key references are determined once at instance creation time and shall
not be modified afterwards. Properties of an array type shall not be qualified with Key. Properties qualified
with EmbeddedObject or EmbeddedInstance shall not be qualified with Key. Key properties and Key
references shall not be NULL.

5.5.2.23 MappingStrings

The MappingStrings qualifier takes string array values and has Scope(Class Association Indication
Property Reference Parameter Method). The default value is NULL.

This qualifier indicates mapping strings for one or more management data providers or agents. See 5.5.5
for details.

5.5.2.24 Max

The Max qualifier takes uint32 values and has Scope(Reference). The default value is NULL.

The Max qualifier specifies the maximum cardinality of the reference, which is the maximum number of
values a given reference may have for each set of other reference values in the association. For example,
if an association relates A instances to B instances, and there shall be at most one A instance for each B
instance, then the reference to A should have a Max(1) qualifier.

The NULL value means that the maximum cardinality is unlimited.

38 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

5.5.2.25 MaxLen 1341

1342
1343

1344
1345
1346

1347
1348

1349

1350
1351

1352
1353
1354
1355

1356
1357

1358

1359
1360

1361

The MaxLen qualifier takes uint32 values and has Scope(Property Parameter Method). The default value
is NULL.

The MaxLen qualifier specifies the maximum length, in characters, of a string data item. MaxLen may be
used only on string data types. If MaxLen is applied to CIM elements with a string array data type, it
applies to every element of the array. A value of NULL implies unlimited length.

An overriding property that specifies the MAXLEN qualifier must specify a maximum length no greater
than the maximum length for the property being overridden.

5.5.2.26 MaxValue

The MaxValue qualifier takes uint32 values and has Scope(Property Parameter Method). The default
value is NULL.

The MaxValue qualifier specifies the maximum value of this element. MaxValue may be used only on
numeric data types. If MaxValue is applied to CIM elements with a numeric array data type, it applies to
every element of the array. A value of NULL means that the maximum value is the highest value for the
data type.

An overriding property that specifies the MaxValue qualifier must specify a maximum value no greater
than the maximum value of the property being overridden.

5.5.2.27 MethodConstraint

The MethodConstraint qualifier takes string array values and has Scope(Method). The default value is
NULL.

The qualified element specifies one or more constraints, which are defined using the Object Constraint
Language (OCL), as specified in the OMG Object Constraint Language Specification. 1362

1363
1364

1365
1366

1367
1368
1369

1370

1371

1372

1373
1374
1375

1376
1377
1378

The MethodConstraint array contains string values that specify OCL precondition, postcondition, and
body constraints.

The OCL context of these constraints (that is, what "self" in OCL refers to) is the object on which the
qualified method is invoked.

An OCL precondition constraint is expressed as a typed OCL expression that specifies whether the
precondition is satisfied. The type of the expression shall be Boolean. For the method to complete
successfully, all preconditions of a method shall be satisfied before it is invoked.

A string value specifying an OCL precondition constraint shall conform to the syntax:

ocl_precondition_string = "pre" [ocl_name] ":" ocl_statement

Where:

ocl_name is the name of the OCL constraint.
ocl_statement is the OCL statement of the precondition constraint, which defines the Boolean
expression.

An OCL postcondition constraint is expressed as a typed OCL expression that specifies whether the
postcondition is satisfied. The type of the expression shall be Boolean. All postconditions of the method
shall be satisfied immediately after successful completion of the method.

Version 2.5.0 DMTF Standard 39

Common Information Model (CIM) Infrastructure DSP0004

1379

1380

1381

1382
1383
1384

1385
1386
1387

1388

1389

1390

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401

1402

1403

1404
1405
1406
1407

1408

1409

1410
1411

1412
1413
1414

1415
1416

1417

1418
1419

A string value specifying an OCL post-condition constraint shall conform to the following syntax:

ocl_postcondition_string = "post" [ocl_name] ":" ocl_statement

Where:

ocl_name is the name of the OCL constraint.
ocl_statement is the OCL statement of the post-condition constraint, which defines the Boolean
expression.

An OCL body constraint is expressed as a typed OCL expression that specifies the return value of a
method. The type of the expression shall conform to the CIM data type of the return value. Upon
successful completion, the return value of the method shall conform to the OCL expression.

A string value specifying an OCL body constraint shall conform to the following syntax:

ocl_body_string = "body" [ocl_name] ":" ocl_statement

Where:

ocl_name is the name of the OCL constraint.
ocl_statement is the OCL statement of the body constraint, which defines the method return value.

EXAMPLE: The following qualifier defined on the RequestedStateChange() method of the
EnabledLogicalElement class specifies that if a Job parameter is returned as not NULL, then an OwningJobElement
association must exist between the EnabledLogicalElement class and the Job.

MethodConstraint {
 "post AssociatedJob:"
 "not Job.oclIsUndefined()"
 "implies"
 "self.cIM_OwningJobElement.OwnedElement = Job"
}

5.5.2.28 Min

The Min qualifier takes uint32 values and has Scope(Reference). The default value is "0".

The Min qualifier specifies the minimum cardinality of the reference, which is the minimum number of
values a given reference may have for each set of other reference values in the association. For example,
if an association relates A instances to B instances and there shall be at least one A instance for each B
instance, then the reference to A should have a Min(1) qualifier.

The qualifier value shall not be NULL.

5.5.2.29 MinLen

The MinLen qualifier takes uint32 values and has Scope(Property Parameter Method). The default value
is "0".

The MinLen qualifier specifies the minimum length, in characters, of a string data item. MinLen may be
used only on string data types. If MinLen is applied to CIM elements with a string array data type, it
applies to every element of the array. The NULL value is not allowed for MinLen.

An overriding property that specifies the MINLEN qualifier must specify a minimum length no smaller than
the minimum length of the property being overridden.

5.5.2.30 MinValue

The MinValue qualifier takes sint64 values and has Scope(Property Parameter Method). The default
value is NULL.

40 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1420
1421
1422
1423

1424
1425

1426

1427
1428

1429
1430
1431

1432

1433
1434

1435
1436
1437

1438

1439
1440
1441
1442

1443
1444
1445
1446
1447
1448

1449
1450

1451
1452
1453
1454

1455
1456
1457
1458

1459
1460

1461

1462

The MinValue qualifier specifies the minimum value of this element. MinValue may be used only on
numeric data types. If MinValue is applied to CIM elements with a numeric array data type, it applies to
every element of the array. A value of NULL means that the minimum value is the lowest value for the
data type.

An overriding property that specifies the MinValue qualifier must specify a minimum value no smaller than
the minimum value of the property being overridden.

5.5.2.31 ModelCorrespondence

The ModelCorrespondence qualifier takes string array values and has Scope(Class Association Indication
Property Reference Parameter Method). The default value is NULL.

The ModelCorrespondence qualifier indicates a correspondence between two elements in the CIM
schema. The referenced elements shall be defined in a standard or extension MOF file, such that the
correspondence can be examined. If possible, forward referencing of elements should be avoided.

Object elements are identified using the following syntax:

<className> [*("."(<propertyName> | < referenceName>)) ["." <methodName> ["("
<parameterName> ")"]]]

Note that the basic relationship between the referenced elements is a "loose" correspondence, which
simply indicates that the elements are coupled. This coupling may be unidirectional. Additional qualifiers
may be used to describe a tighter coupling.

The following list provides examples of several correspondences found in CIM and vendor schemas:

• A vendor defines an Indication class corresponding to a particular CIM property or method so
that Indications are generated based on the values or operation of the property or method. In
this case, the ModelCorrespondence may only be on the vendor's Indication class, which is an
extension to CIM.

• A property provides more information for another. For example, an enumeration has an allowed
value of "Other", and another property further clarifies the intended meaning of "Other." In
another case, a property specifies status and another property provides human-readable strings
(using an array construct) expanding on this status. In these cases, ModelCorrespondence is
found on both properties, each referencing the other. Also, referenced array properties may not
be ordered but carry the default ArrayType qualifier definition of "Bag."

• A property is defined in a subclass to supplement the meaning of an inherited property. In this
case, the ModelCorrespondence is found only on the construct in the subclass.

• Multiple properties taken together are needed for complete semantics. For example, one
property may define units, another property may define a multiplier, and another property may
define a specific value. In this case, ModelCorrespondence is found on all related properties,
each referencing all the others.

• Multi-dimensional arrays are desired. For example, one array may define names while another
defines the name formats. In this case, the arrays are each defined with the
ModelCorrespondence qualifier, referencing the other array properties or parameters. Also, they
are indexed and they carry the ArrayType qualifier with the value "Indexed."

The semantics of the correspondence are based on the elements themselves. ModelCorrespondence is
only a hint or indicator of a relationship between the elements.

5.5.2.32 NonLocal

This instance-level qualifier and the corresponding pragma were removed as an erratum by CR1461.

Version 2.5.0 DMTF Standard 41

Common Information Model (CIM) Infrastructure DSP0004

5.5.2.33 NonLocalType 1463

1464

1465

1466

1467
1468

1469
1470
1471

1472

1473
1474

1475
1476

1477

1478
1479

1480

1481
1482

1483
1484
1485
1486
1487
1488
1489

1490

1491

1492

1493

1494
1495

1496
1497

1498
1499
1500
1501

This instance-level qualifier and the corresponding pragma were removed as an erratum by CR1461.

5.5.2.34 NullValue

The NullValue qualifier takes string values and has Scope(Property). The default value is NULL.

The NullValue qualifier defines a value that indicates that the associated property is NULL. That is, the
property is considered to have a valid or meaningful value.

The NullValue qualifier may be used only with properties that have string and integer values. When used
with an integer type, the qualifier value is a MOF integer value. The syntax for representing an integer
value is:

["+" / "-"] 1*<decimalDigit>

The content, maximum number of digits, and represented value are constrained by the data type of the
qualified property.

Note that this qualifier cannot be overridden because it seems unreasonable to permit a subclass to
return a different null value than that of the superclass.

5.5.2.35 OctetString

The OctetString qualifier takes Boolean values and has Scope(Property Parameter Method). The default
value is FALSE.

This qualifier identifies the qualified property or parameter as an octet string.

When used in conjunction with an unsigned 8-bit integer (uint8) array, the OctetString qualifier indicates
that the unsigned 8-bit integer array represents a single octet string.

When used in conjunction with arrays of strings, the OctetString qualifier indicates that the qualified
character strings are encoded textual conventions representing octet strings. The text encoding of these
binary values conforms to the following grammar: "0x" 4*(<hexDigit> <hexDigit>). In both cases, the first 4
octets of the octet string (8 hexadecimal digits in the text encoding) are the number of octets in the
represented octet string with the length portion included in the octet count. (For example, "0x00000004" is
the encoding of a 0 length octet string. A second example is "0x000000050A" that is an encoding of the
octect string “0x0A”.)

5.5.2.36 Out

The Out qualifier takes Boolean values and has Scope(Parameter). The default value is FALSE.

The Out qualifier indicates that the associated parameter is used to return values from a method.

5.5.2.37 Override

The Override qualifier takes string values and has Scope(Property Parameter Method). The default value
is NULL.

If non-NULL, the qualified element in the derived (containing) class takes the place of another element (of
the same name) defined in the ancestry of that class.

The flavor of the qualifier is defined as 'Restricted' so that the Override qualifier is not repeated in
(inherited by) each subclass. The effect of the override is inherited, but not the identification of the
Override qualifier itself. This enables new Override qualifiers in subclasses to be easily located and
applied.

42 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1502
1503

1504

1505
1506
1507

1508
1509

1510
1511

1512
1513
1514

1515

1516

1517
1518
1519
1520

1521

1522

1523

1524
1525

1526

An effective value of NULL (the default) indicates that the element is not overriding any element. If not
NULL, the value shall have the following format:

 [className"."] IDENTIFIER,

where IDENTIFIER shall be the name of the overridden element and if present, className shall be
the name of a class in the ancestry of the derived class. The className shall be present if the class
exposes more than one element with the same name. (See 7.5.1.)

If the className is omitted, the overridden element is found by searching the ancestry of the class until a
definition of an appropriately-named subordinate element (of the same meta-schema class) is found.

If the className is specified, the element being overridden is found by searching the named class and its
ancestry until a definition of an element of the same name (of the same meta-schema class) is found.

The Override qualifier may only refer to elements of the same meta-schema class. For example,
properties can only override properties, etc. An element’s name or signature shall not be changed when
overriding.

5.5.2.38 Propagated

The Propagated qualifier takes string values and has Scope(Property). The default value is NULL.

The Propagated qualifier is a string-valued qualifier that contains the name of the key that is propagated.
Its use assumes only one Weak qualifier on a reference with the containing class as its target. The
associated property shall have the same value as the property named by the qualifier in the class on the
other side of the weak association. The format of the string to accomplish this is as follows:

[<className> "."] <IDENTIFIER>

When the Propagated qualifier is used, the Key qualifier shall be specified with a value of TRUE.

5.5.2.39 PropertyConstraint

The PropertyConstraint qualifier takes string array values and has Scope(Property Reference). The
default value is NULL.

The qualified element specifies one or more constraints that are defined using the Object Constraint
Language (OCL) as specified in the OMG Object Constraint Language Specification. 1527

1528
1529
1530

1531
1532

1533

1534

1535

1536
1537

1538
1539
1540

The PropertyConstraint array contains string values that specify OCL initialization and derivation
constraints. The OCL context of these constraints (that is, what "self" in OCL refers to) is an instance of
the class, association, or indication that exposes the qualified property or reference.

An OCL initialization constraint is expressed as a typed OCL expression that specifies the permissible
initial value for a property. The type of the expression shall conform to the CIM data type of the property.

A string value specifying an OCL initialization constraint shall conform to the following syntax:

ocl_initialization_string = "init" ":" ocl_statement

Where:

ocl_statement is the OCL statement of the initialization constraint, which defines the typed
expression.

An OCL derivation constraint is expressed as a typed OCL expression that specifies the permissible
value for a property at any time in the lifetime of the instance. The type of the expression shall conform to
the CIM data type of the property.

Version 2.5.0 DMTF Standard 43

Common Information Model (CIM) Infrastructure DSP0004

1541

1542

1543

1544

1545
1546
1547
1548
1549
1550

1551
1552
1553

1554

1555
1556

1557
1558

1559
1560

1561

1562

1563

1564

1565

1566
1567

1568
1569
1570

1571
1572
1573
1574

1575
1576
1577

1578

A string value specifying an OCL derivation constraint shall conform to the following syntax:

ocl_derivation_string = "derive" ":" ocl_statement

Where:

ocl_statement is the OCL statement of the derivation constraint, which defines the typed expression.

For example, PolicyAction has a SystemName property that must be set to the name of the system
associated with PolicySetInSystem. The following qualifier defined on PolicyAction.SystemName specifies
that constraint:

PropertyConstraint {
 "derive: self.CIM_PolicySetInSystem.Antecedent.Name"
}

A property shall not be qualified with more than one initialization constraint or derivation constraint. The
definition of an initialization constraint and a derivation constraint on the same property is allowed. In this
case, the value of the property immediately after creation of the instance shall satisfy both constraints.

5.5.2.40 PUnit

The PUnit qualifier takes string array values and has Scope(Property Parameter Method). The default
value is NULL.

The PUnit qualifier indicates the programmatic unit of measure of the qualified property, method return
value, or method parameter. The qualifier value follows the syntax for programmatic units.

NULL indicates that the programmatic unit is unknown. The syntax for programmatic units is defined in
ANNEX C.

Experimental: This qualifier has a status of "Experimental."

5.5.2.41 Read

The Read qualifier takes Boolean values and has Scope(Property). The default value is TRUE.

The Read qualifier indicates that the property is readable.

5.5.2.42 Required

The Required qualifier takes Boolean values and has Scope(Property Reference Parameter Method). The
default value is FALSE.

A non-NULL value is required for the element. For CIM elements with an array type, the Required
qualifier affects the array itself, and the elements of the array may be NULL regardless of the Required
qualifier.

Properties of a class that are inherent characteristics of a class and identify that class are such properties
as domain name, file name, burned-in device identifier, IP address, and so on. These properties are likely
to be useful for applications as query entry points that are not KEY properties but should be Required
properties.

References of an association that are not KEY references shall be Required references. There are no
particular usage rules for using the Required qualifier on parameters of a method outside of the meaning
defined in this clause.

A property that overrides a required property shall not specify REQUIRED(false).

44 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

5.5.2.43 Revision (Deprecated) 1579

1580

1581
1582

1583

1584
1585

1586

1587
1588

1589
1590

1591

1592

1593

1594

1595

1596

1597

1598
1599

1600

1601

1602
1603

1604

1605
1606

1607

1608
1609

1610

1611
1612
1613

The Revision qualifier is deprecated. (See 5.5.2.53 for the description of the Version qualifier.)

The Revision qualifier takes string values and has Scope(Class Association Indication). The default value
is NULL.

The Revision qualifier provides the minor revision number of the schema object.

The Version qualifier shall be present to supply the major version number when the Revision qualifier is
used.

5.5.2.44 Schema (Deprecated)

The Schema string qualifier is deprecated. The schema for any feature can be determined by examining
the complete class name of the class defining that feature.

The Schema string qualifier takes string values and has Scope(Property Method). The default value is
NULL.

The Schema qualifier indicates the name of the schema that contains the feature.

5.5.2.45 Source

This instance-level qualifier and the corresponding pragma are removed as an erratum by CR1461.

5.5.2.46 SourceType

This instance-level qualifier and the corresponding pragma are removed as an erratum by CR1461.

5.5.2.47 Static

The Static qualifier takes Boolean values and has Scope(Property Method). The default value is FALSE.

The property or method is static. For a definition of static properties, see 7.5.6. For a definition of static
methods, see 7.9.1.

An element that overrides a non-static element shall not be a static element.

5.5.2.48 Terminal

The Terminal qualifier takes Boolean values and has Scope(Class Association Indication). The default
value is FALSE.

The class can have no subclasses. If such a subclass is declared, the compiler generates an error.

This qualifier cannot coexist with the Abstract qualifier. If both are specified, the compiler generates an
error.

5.5.2.49 UMLPackagePath

The UMLPackagePath qualifier takes string values and has Scope(Class Association Indication). The
default value is NULL.

This qualifier specifies a position within a UML package hierarchy for a CIM class.

The qualifier value shall consist of a series of package names, each interpreted as a package within the
preceding package, separated by '::'. The first package name in the qualifier value shall be the schema
name of the qualified CIM class.

Version 2.5.0 DMTF Standard 45

Common Information Model (CIM) Infrastructure DSP0004

1614
1615
1616

1617

1618
1619

1620
1621

1622

1623
1624
1625

1626
1627

1628
1629

1630
1631
1632

1633

1634
1635

1636
1637

1638
1639
1640

1641

1642

1643

1644
1645

1646
1647

1648

1649
1650
1651
1652

1653

For example, consider a class named "CIM_Abc" that is in a package named "PackageB" that is in a
package named "PackageA" that, in turn, is in a package named "CIM." The resulting qualifier
specification for this class "CIM_Abc" is as follows:

UMLPACKAGEPATH ("CIM::PackageA::PackageB")

A value of NULL indicates that the following default rule shall be used to create the UML package path:
The name of the UML package path is the schema name of the class, followed by "::default".

For example, a class named "CIM_Xyz" with a UMLPackagePath qualifier value of NULL has the UML
package path "CIM::default".

5.5.2.50 Units (Deprecated)

The Units qualifier is deprecated. Instead, the PUnit qualifier should be used for programmatic access,
and the client application should use its own conventions to construct a string to be displayed from the
PUnit qualifier.

The Units qualifier takes string values and has Scope(Property Parameter Method). The default value is
NULL.

The Units qualifier specifies the unit of measure of the qualified property, method return value, or method
parameter. For example, a Size property might have a unit of "Bytes."

NULL indicates that the unit is unknown. An empty string indicates that the qualified property, method
return value, or method parameter has no unit and therefore is dimensionless. The complete set of DMTF
defined values for the Units qualifier is presented in ANNEX C.

5.5.2.51 ValueMap

The ValueMap qualifier takes string array values and has Scope(Property Parameter Method). The
default value is NULL.

The ValueMap qualifier defines the set of permissible values for the qualified property, method return, or
method parameter.

The ValueMap qualifier can be used alone or in combination with the Values qualifier. When it is used
with the Values qualifier, the location of the value in the ValueMap array determines the location of the
corresponding entry in the Values array.

Where:

ValueMap may be used only with string or integer types.

When used with a string type, a ValueMap entry is a MOF stringvalue.

When used with an integer type, a ValueMap entry is a MOF integervalue or an integervaluerange as
defined here.

integervaluerange:
 [integervalue] ".." [integervalue]

A ValueMap entry of :

"x" claims the value x.
"..x" claims all values less than and including x.
"x.." claims all values greater than and including x.
".." claims all values not otherwise claimed.

The values claimed are constrained by the type of the associated property.

46 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1654

1655
1656
1657
1658
1659

1660

1661
1662
1663
1664

1665
1666
1667
1668
1669
1670
1671

1672

1673
1674

1675
1676
1677
1678
1679
1680
1681

1682

1683
1684

1685
1686

1687
1688

1689
1690

1691

1692
1693
1694
1695
1696

ValueMap = ("..") is not permitted.

If used with a Value array, then all values claimed by a particular ValueMap entry apply to the
corresponding Value entry.
EXAMPLE:

 [Values {"zero&one", "2to40", "fifty", "the unclaimed", "128-255"}, ValueMap {"..1","2..40" "50", "..", "x80.." }]
uint8 example;

In this example, where the type is uint8, the following mappings are made:

"..1" and "zero&one" map to 0 and 1.
"2..40" and "2to40" map to 2 through 40.
".." and "the unclaimed" map to 41 through 49 and to 51 through 127.
"0x80.." and "128-255" map to 128 through 255.

An overriding property that specifies the ValueMap qualifier shall not map any values not allowed by the
overridden property. In particular, if the overridden property specifies or inherits a ValueMap qualifier,
then the overriding ValueMap qualifier must map only values that are allowed by the overridden
ValueMap qualifier. (Note, however, that the overriding property may organize these values differently
than does the overridden property. For example, ValueMap {"0..10"} may be overridden by ValueMap
{"0..1", "2..9"}.) An overriding ValueMap qualifier may specify fewer values than the overridden property
would otherwise allow.

5.5.2.52 Values

The Values qualifier takes string array values and has Scope(Property Parameter Method). The default
value is NULL.

The Values qualifier translates between integer values and strings (such as abbreviations or English
terms) in the ValueMap array, and an associated string at the same index in the Values array. If a
ValueMap qualifier is not present, the Values array is indexed (zero relative) using the value in the
associated property, method return type, or method parameter. If a ValueMap qualifier is present, the
Values index is defined by the location of the property value in the ValueMap. If both Values and
ValueMap are specified or inherited, the number of entries in the Values and ValueMap arrays shall
match.

5.5.2.53 Version

The Version qualifier takes string values and has Scope(Class Association Indication). The default value
is NULL.

The Version qualifier provides the version information of the object, which increments when changes are
made to the object.

Starting with CIM Schema 2.7 (including extension schema), the Version qualifier shall be present on
each class to indicate the version of the last update to the class.

The string representing the version comprises three decimal integers separated by periods; that is,
M.N.U, or, more formally, 1*<decimalDigit> "." 1*<decimalDigit> "." 1*<decimalDigit>

The meaning of M.N.U is as follows:

M - The major version in numeric form of the change to the class.
N - The minor version in numeric form of the change to the class.
U - The update (for example, errata, patch, ...) in numeric form of the change to the class.

NOTE 1: The addition or removal of the Experimental qualifier does not require the version information to be
updated.

Version 2.5.0 DMTF Standard 47

Common Information Model (CIM) Infrastructure DSP0004

1697
1698

1699
1700
1701

1702

1703

1704
1705
1706
1707
1708

1709

1710

1711
1712
1713

1714

1715
1716
1717
1718

1719

1720
1721

1722

1723

1724
1725

1726
1727

1728
1729
1730

1731
1732
1733

NOTE 2: The version change applies only to elements that are local to the class. In other words, the version change
of a superclass does not require the version in the subclass to be updated.

EXAMPLE:

Version("2.7.0")
Version("1.0.0")

5.5.2.54 Weak

The Weak qualifier takes Boolean values and has Scope(Reference). The default value is FALSE.

The keys of the referenced class include the keys of the other participants in the association. This
qualifier is used when the identity of the referenced class depends on that of the other participants in the
association. No more than one reference to any given class can be weak. The other classes in the
association shall define a key. The keys of the other classes are repeated in the referenced class and
tagged with a propagated qualifier.

5.5.2.55 Write

The Write qualifier takes Boolean values and has Scope(Property). The default value is FALSE.

The modeling semantics of a property support modification of that property by consumers. The purpose of
this qualifier is to capture modeling semantics and not to address more dynamic characteristics such as
provider capability or authorization rights.

5.5.3 Optional Qualifiers

The following subclauses list the optional qualifiers that address situations that are not common to all
CIM-compliant implementations. Thus, CIM-compliant implementations can ignore optional qualifiers
because they are not required to interpret or understand them. The optional qualifiers are provided in the
specification to avoid random user-defined qualifiers for these recurring situations.

5.5.3.1 Alias

The Alias qualifier takes string values and has Scope(Property Reference Method). The default value is
NULL.

The Alias qualifier establishes an alternate name for a property or method in the schema.

5.5.3.2 Delete

The Delete qualifier takes Boolean values and has Scope(Association Reference). The default value is
FALSE.

For associations: The qualified association shall be deleted if any of the objects referenced in the
association are deleted and the respective object referenced in the association is qualified with IfDeleted.

For references: The referenced object shall be deleted if the association containing the reference is
deleted and qualified with IfDeleted. It shall also be deleted if any objects referenced in the association
are deleted and the respective object referenced in the association is qualified with IfDeleted.

Applications shall chase associations according to the modeled semantic and delete objects
appropriately.
NOTE: This usage rule must be verified when the CIM security model is defined.

48 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

5.5.3.3 DisplayDescription 1734

1735
1736

1737
1738

1739
1740
1741
1742

1743

1744
1745

1746

1747

1748
1749

1750
1751

1752

1753
1754

1755
1756
1757

1758

1759

1760

1761

1762
1763

1764
1765
1766
1767
1768
1769

1770

1771

1772

The DisplayDescription qualifier takes string values and has Scope(Class Association Indication Property
Reference Parameter Method). The default value is NULL.

The DisplayDescription qualifier defines descriptive text for the qualified element for display on a human
interface — for example, fly-over Help or field Help.

The DisplayDescription qualifier is for use within extension subclasses of the CIM schema to provide
display descriptions that conform to the information development standards of the implementing product.
A value of NULL indicates that no display description is provided. Therefore, a display description
provided by the corresponding schema element of a superclass can be removed without substitution.

5.5.3.4 Expensive

The Expensive qualifier takes string values and has Scope(Class Association Indication Property
Reference Parameter Method).The default value is FALSE.

The Expensive qualifier indicates that the element is expensive to manipulate and/or compute.

5.5.3.5 IfDeleted

The IfDeleted qualifier takes Boolean values and has Scope(Association Reference). The default value is
FALSE.

All objects qualified by Delete within the association shall be deleted if the referenced object or the
association, respectively, is deleted.

5.5.3.6 Invisible

The Invisible qualifier takes Boolean values and has Scope(Class Association Property Reference
Method). The default value is FALSE.

The Invisible qualifier indicates that the element is defined only for internal purposes and should not be
displayed or otherwise relied upon. For example, an intermediate value in a calculation or a value to
facilitate association semantics is defined only for internal purposes.

5.5.3.7 Large

The Large qualifier takes Boolean values and has Scope(Class Property). The default value is FALSE.

The Large qualifier property or class requires a large amount of storage space.

5.5.3.8 PropertyUsage

The PropertyUsage qualifier takes string values and has Scope(Property). The default value is
“CURRENTCONTEXT”.

This qualifier allows properties to be classified according to how they are used by managed elements.
Therefore, the managed element can convey intent for property usage. The qualifier does not convey
what access CIM has to the properties. That is, not all configuration properties are writeable. Some
configuration properties may be maintained by the provider or resource that the managed element
represents, and not by CIM. The PropertyUsage qualifier enables the programmer to distinguish between
properties that represent attributes of the following:

• A managed resource versus capabilities of a managed resource

• Configuration data for a managed resource versus metrics about or from a managed resource

• State information for a managed resource.

Version 2.5.0 DMTF Standard 49

Common Information Model (CIM) Infrastructure DSP0004

1773
1774
1775

1776
1777
1778
1779
1780
1781
1782

1783

1784

1785

1786
1787

1788
1789

1790
1791

1792
1793

1794
1795

1796
1797
1798

1799
1800
1801

1802
1803
1804
1805

1806
1807

1808
1809
1810
1811

1812

1813
1814

If the qualifier value is set to CurrentContext (the default value), then the value of PropertyUsage should
be determined by looking at the class in which the property is placed. The rules for which default
PropertyUsage values belong to which classes/subclasses are as follows:

Class>CurrentContext PropertyUsage Value
Setting > Configuration
Configuration > Configuration
Statistic > Metric ManagedSystemElement > State Product > Descriptive
FRU > Descriptive
SupportAccess > Descriptive
Collection > Descriptive

The valid values for this qualifier are as follows:

• UNKNOWN. The property's usage qualifier has not been determined and set.

• OTHER. The property's usage is not Descriptive, Capabilities, Configuration, Metric, or State.

• CURRENTCONTEXT. The PropertyUsage value shall be inferred based on the class placement
of the property according to the following rules:

– If the property is in a subclass of Setting or Configuration, then the PropertyUsage value of
CURRENTCONTEXT should be treated as CONFIGURATION.

– If the property is in a subclass of Statistics, then the PropertyUsage value of
CURRENTCONTEXT should be treated as METRIC.

– If the property is in a subclass of ManagedSystemElement, then the PropertyUsage value
of CURRENTCONTEXT should be treated as STATE.

– If the property is in a subclass of Product, FRU, SupportAccess or Collection, then the
PropertyUsage value of CURRENTCONTEXT should be treated as DESCRIPTIVE.

• DESCRIPTIVE. The property contains information that describes the managed element, such
as vendor, description, caption, and so on. These properties are generally not good candidates
for representation in Settings subclasses.

• CAPABILITY. The property contains information that reflects the inherent capabilities of the
managed element regardless of its configuration. These are usually specifications of a product.
For example, VideoController.MaxMemorySupported=128 is a capability.

• CONFIGURATION. The property contains information that influences or reflects the
configuration state of the managed element. These properties are candidates for representation
in Settings subclasses. For example, VideoController.CurrentRefreshRate is a configuration
value.

• STATE indicates that the property contains information that reflects or can be used to derive the
current status of the managed element.

• METRIC indicates that the property contains a numerical value representing a statistic or metric
that reports performance-oriented and/or accounting-oriented information for the managed
element. This would be appropriate for properties containing counters such as
“BytesProcessed”.

5.5.3.9 Provider

The Provider qualifier takes string values and has Scope(Class Association Indication Property Reference
Parameter Method). The default value is NULL.

50 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1815
1816

1817

1818
1819

1820
1821

1822

1823
1824

1825
1826

1827

1828
1829

1830

1831
1832
1833
1834

1835

1836

1837
1838

1839
1840

1841
1842

1843

1844
1845

1846
1847
1848

1849
1850

1851
1852

An implementation-specific handle to the instrumentation that populates elements in the schemas that
refers to dynamic data.

5.5.3.10 Syntax

The Syntax qualifier takes string values and has Scope(Property, Reference, Parameter Method). The
default value is NULL.

The Syntax qualifier indicates the specific type assigned to a data item. It must be used with the
SyntaxType qualifier.

5.5.3.11 SyntaxType

The SyntaxType qualifier takes string values and has Scope(Property Reference Parameter Method). The
default value is NULL.

The SyntaxType qualifier defines the format of the Syntax qualifier. It must be used with the Syntax
qualifier.

5.5.3.12 TriggerType

The TriggerType qualifier takes string values and has Scope(Class Association Indication Property
Reference Method). The default value is NULL.

The TriggerType qualifier specifies the circumstances that cause a trigger to be fired.

The trigger types vary by meta-model construct. For classes and associations, the legal values are
CREATE, DELETE, UPDATE, and ACCESS. For properties and references, the legal values are
UPDATE and ACCESS. For methods, the legal values are BEFORE and AFTER. For indications, the
legal value is THROWN.

5.5.3.13 UnknownValues

The UnknownValues qualifier takes string values and has Scope(Property). The default value is NULL.

The UnknownValues qualifier specifies a set of values that indicates that the value of the associated
property is unknown. Therefore, the property cannot be considered to have a valid or meaningful value.

The conventions and restrictions for defining unknown values are the same as those for the ValueMap
qualifier.

The UnknownValues qualifier cannot be overridden because it is unreasonable for a subclass to treat as
known a value that a superclass treats as unknown.

5.5.3.14 UnsupportedValues

The UnsupportedValues qualifier takes string values and has Scope(Property). The default value is
NULL.

The UnsupportedValues qualifier specifies a set of values that indicates that the value of the associated
property is unsupported. Therefore, the property cannot be considered to have a valid or meaningful
value.

The conventions and restrictions for defining unsupported values are the same as those for the ValueMap
qualifier.

The UnsupportedValues qualifier cannot be overridden because it is unreasonable for a subclass to treat
as supported a value that a superclass treats as unknown.

Version 2.5.0 DMTF Standard 51

Common Information Model (CIM) Infrastructure DSP0004

5.5.4 User-defined Qualifiers 1853

1854
1855
1856

1857

1858
1859
1860
1861
1862

1863

1864
1865
1866
1867
1868

1869

1870

The user can define any additional arbitrary named qualifiers. However, it is recommended that only
defined qualifiers be used and that the list of qualifiers be extended only if there is no other way to
accomplish the objective.

5.5.5 Mapping Entities of Other Information Models to CIM

The MappingStrings qualifier can be used to map entities of other information models to CIM or to
express that a CIM element represents an entity of another information model. Several mapping string
formats are defined in this clause to use as values for this qualifier. The CIM schema shall use only the
mapping string formats defined in this specification. Extension schemas should use only the mapping
string formats defined in this specification.

The mapping string formats defined in this specification conform to the following formal syntax:

mappingstrings_format = mib_format | oid_format | general_format | mif_format
NOTE: As defined in the respective clauses, the "MIB", "OID", and "MIF" formats support a limited form of
extensibility by allowing an open set of defining bodies. However, the syntax defined for these formats does not allow
variations by defining body; they need to conform. A larger degree of extensibility is supported in the general format,
where the defining bodies may define a part of the syntax used in the mapping.

5.5.5.1 SNMP-Related Mapping String Formats

The two SNMP-related mapping string formats, Management Information Base (MIB) and globally unique
object identifier (OID), can express that a CIM element represents a MIB variable. As defined in RFC1155
a MIB variable has an associated variable name that is unique within a MIB and an OID that is unique
within a management protocol.

1871
1872
1873

1874
1875
1876

1877
1878

1879
1880
1881

1882
1883
1884

1885
1886

1887
1888
1889

1890
1891
1892

The "MIB" mapping string format identifies a MIB variable using naming authority, MIB name, and variable
name. It may be used only on CIM properties, parameters, or methods. The format is defined as follows:

mib_format = "MIB" "." mib_naming_authority "|" mib_name "." mib_variable_name

Where:
mib_naming_authority = 1*(stringChar)

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and
vertical bar (|) characters are not allowed.

mib_name = 1*(stringChar)

is the name of the MIB as defined by the MIB naming authority (for example, "HOST-
RESOURCES-MIB"). The dot (.) and vertical bar (|) characters are not allowed.

mib_variable_name = 1*(stringChar)

is the name of the MIB variable as defined in the MIB (for example, "hrSystemDate"). The dot
(.) and vertical bar (|) characters are not allowed.

The tokens in mib_format should be assembled without intervening white space characters. The MIB
name should be the ASN.1 module name of the MIB (that is, not the RFC number). For example, instead
of using "RFC1493", the string "BRIDGE-MIB" should be used.

For example:
 [MappingStrings { "MIB.IETF|HOST-RESOURCES-MIB.hrSystemDate" }]

datetime LocalDateTime;

52 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1893
1894
1895
1896
1897

1898
1899

1900
1901
1902

1903
1904
1905

1906
1907

1908
1909
1910
1911

1912
1913

1914
1915

1916

1917

1918
1919
1920
1921

1922
1923
1924
1925

1926
1927

1928
1929
1930

1931
1932

The "OID" mapping string format identifies a MIB variable using a management protocol and an object
identifier (OID) within the context of that protocol. This format is especially important for mapping
variables defined in private MIBs. It may be used only on CIM properties, parameters, or methods. The
format is defined as follows:

oid_format = "OID" "." oid_naming_authority "|" oid_protocol_name "." oid

Where:
oid_naming_authority = 1*(stringChar)

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and
vertical bar (|) characters are not allowed.

oid_protocol_name = 1*(stringChar)

is the name of the protocol providing the context for the OID of the MIB variable (for example,
"SNMP"). The dot (.) and vertical bar (|) characters are not allowed.

oid = 1*(stringChar)

is the object identifier (OID) of the MIB variable in the context of the protocol (for example,
"1.3.6.1.2.1.25.1.2").

The tokens in oid_format should be assembled without intervening white space characters.
EXAMPLE:

 [MappingStrings { "OID.IETF|SNMP.1.3.6.1.2.1.25.1.2" }]

datetime LocalDateTime;

For both mapping string formats, the name of the naming authority defining the MIB shall be one of the
following:

• The name of a standards body (for example, IETF), for standard MIBs defined by that standards
body

• A company name (for example, Acme), for private MIBs defined by that company

5.5.5.2 General Mapping String Format

This clause defines the mapping string format, which provides a basis for future mapping string formats.
Future mapping string formats defined in this document should be based on the general mapping string
format. A mapping string format based on this format shall define the kinds of CIM elements with which it
is to be used.

The format is defined as follows. Note that the division between the name of the format and the actual
mapping is slightly different than for the "MIF", "MIB", and "OID" formats:

general_format = general_format_fullname "|" general_format_mapping

general_format_fullname = general_format_name "." general_format_defining_body

Where:
general_format_name = 1*(stringChar)

is the name of the format, unique within the defining body. The dot (.) and vertical bar (|)
characters are not allowed.

general_format_defining_body = 1*(stringChar)

is the name of the defining body. The dot (.) and vertical bar (|) characters are not allowed.
general_format_mapping = 1*(stringChar)

Version 2.5.0 DMTF Standard 53

Common Information Model (CIM) Infrastructure DSP0004

1933

1934
1935

1936
1937

is the mapping of the qualified CIM element, using the named format.

The tokens in general_format and general_format_fullname should be assembled without intervening
white space characters.

The text in Figure 6 is an example that defines a mapping string format based on the general mapping
string format.

General Mapping String Formats Defined for InfiniBand Trade Association (IBTA)

IBTA defines the following mapping string formats, which are based on the general mapping string format:

"MAD.IBTA"

This format expresses that a CIM element represents an IBTA MAD attribute. It shall be used only on CIM properties,
parameters, or methods. It is based on the general mapping string format as follows:

general_format_fullname = "MAD" "." "IBTA"

general_format_mapping = mad_class_name "|" mad_attribute_name

Where:

mad_class_name = 1*(stringChar)

is the name of the MAD class. The dot (.) and vertical bar (|) characters are not allowed.

mad_attribute_name = 1*(stringChar)

is the name of the MAD attribute, which is unique within the MAD class. The dot (.) and vertical bar (|)
characters are not allowed.

The tokens in general_format_mapping and general_format_fullname should be assembled without intervening white
space characters.

Figure 6 – Example for Mapping a String Format Based on the General Mapping String Format 1938

1939

1940
1941
1942

1943
1944
1945
1946
1947

1948
1949
1950

1951
1952

1953
1954

5.5.5.3 MIF-Related Mapping String Format

Management Information Format (MIF) attributes can be mapped to CIM elements using the
MappingStrings qualifier. This qualifier maps DMTF and vendor-defined MIF groups to CIM classes or
properties using either domain or recast mapping.

Deprecation Note: MIF is defined in the DMTF Desktop Management Interface Specification, which
completed DMTF end of life in 2005 and is therefore no longer considered relevant. Any occurrence of
the MIF format in values of the MappingStrings qualifier is considered deprecated. Any other usage of
MIF in this specification is also considered deprecated. The MappingStrings qualifier itself is not
deprecated because it is used for formats other than MIF.

As stated in the DMTF Desktop Management Interface Specification, every MIF group defines a unique
identification that uses the MIF class string, which has the following formal syntax:

mif_class_string = mif_defining_body "|" mif_specific_name "|" mif_version

where:
mif_defining_body = 1*(stringChar)

is the name of the body defining the group. The dot (.) and vertical bar (|) characters are not
allowed.

54 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

1955

1956
1957

1958

1959
1960
1961
1962

1963
1964
1965

1966
1967

1968
1969

1970
1971

1972
1973

1974

1975
1976
1977

1978
1979
1980
1981
1982
1983

1984

mif_specific_name = 1*(stringChar)

is the unique name of the group. The dot (.) and vertical bar (|) characters are not allowed.
mif_version = 3(decimalDigit)

is a three-digit number that identifies the version of the group definition.

By default, the formal syntax rules in this (current) specification allow each token to be separated by an
arbitrary number of white spaces. However, the DMTF Desktop Management Interface Specification
considers MIF class strings to be opaque identification strings for MIF groups. MIF class strings that differ
only in white space characters are considered to be different identification strings.

In addition, each MIF attribute has a unique numeric identifier, starting with the number one, using the
following formal syntax:

mif_attribute_id = positiveDecimalDigit *decimalDigit

A MIF domain mapping maps an individual MIF attribute to a particular CIM property. A MIF recast
mapping maps an entire MIF group to a particular CIM class.

The MIF format for use as a value of the MappingStrings qualifier has the following formal syntax:
mif_format = mif_attribute_format | mif_group_format

Where:
mif_attribute_format = "MIF" "." mif_class_string "." mif_attribute_id

is used for mapping a MIF attribute to a CIM property.
mif_group_format = "MIF" "." mif_class_string

is used for mapping a MIF group to a CIM class.

For example, a MIF domain mapping of a MIF attribute to a CIM property is as follows:
 [MappingStrings { "MIF.DMTF|ComponentID|001.4" }]

string SerialNumber;

A MIF recast mapping maps an entire MIF group into a CIM class, as follows:
 [MappingStrings { "MIF.DMTF|Software Signature|002" }]
class SoftwareSignature
{
 ...
};

6 Managed Object Format
The management information is described in a language based on ISO/IEC 14750:1999 called the
Managed Object Format (MOF). In this document, the term "MOF specification" refers to a collection of
management information described in a way that conforms to the MOF syntax. Elements of MOF syntax
are introduced on a case-by-case basis with examples. In addition, a complete description of the MOF
syntax is provided in

1985
1986
1987
1988
1989 ANNEX A.
1990
1991

1992
1993

NOTE: All grammars defined in this specification use the notation defined in RFC 4234; any exceptions are stated
with the grammar.

The MOF syntax describes object definitions in textual form and therefore establishes the syntax for
writing definitions. The main components of a MOF specification are textual descriptions of classes,

Version 2.5.0 DMTF Standard 55

Common Information Model (CIM) Infrastructure DSP0004

1994
1995

1996
1997
1998

1999

2000

2001
2002
2003
2004
2005
2006
2007
2008
2009

2010

2011
2012
2013
2014

2015

2016
2017
2018

2019

2020

2021

2022

2023

2024
2025

2026
2027
2028
2029

2030
2031
2032

associations, properties, references, methods, and instance declarations and their associated qualifiers.
Comments are permitted.

In addition to serving the need for specifying the managed objects, a MOF specification can be processed
using a compiler. To assist the process of compilation, a MOF specification consists of a series of
compiler directives.

A MOF file can be encoded in either Unicode or UTF-8.

6.1 MOF Usage

The managed object descriptions in a MOF specification can be validated against an active namespace
(see clause 8). Such validation is typically implemented in an entity acting in the role of a server. This
clause describes the behavior of an implementation when introducing a MOF specification into a
namespace. Typically, such a process validates both the syntactic correctness of a MOF specification and
its semantic correctness against a particular implementation. In particular, MOF declarations must be
ordered correctly with respect to the target implementation state. For example, if the specification
references a class without first defining it, the reference is valid only if the server already has a definition
of that class. A MOF specification can be validated for the syntactic correctness alone, in a component
such as a MOF compiler.

6.2 Class Declarations

A class declaration is treated as an instruction to create a new class. Whether the process of introducing
a MOF specification into a namespace can add classes or modify classes is a local matter. If the
specification references a class without first defining it, the server must reject it as invalid if it does not
already have a definition of that class.

6.3 Instance Declarations

Any instance declaration is treated as an instruction to create a new instance where the key values of the
object do not already exist or an instruction to modify an existing instance where an object with identical
key values already exists.

7 MOF Components
The following subclauses describe the components of MOF syntax.

7.1 Keywords

All keywords in the MOF syntax are case-insensitive.

7.2 Comments

Comments can appear anywhere in MOF syntax and are indicated by either a leading double slash (//)
or a pair of matching /* and */ sequences.

A // comment is terminated by carriage return, line feed, or the end of the MOF specification (whichever
comes first).
EXAMPLE:

// This is a comment

A /* comment is terminated by the next */ sequence or by the end of the MOF specification (whichever
comes first). The meta model does not recognize comments, so they are not preserved across
compilations. Therefore, the output of a MOF compilation is not required to include any comments.

56 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

7.3 Validation Context 2033

2034
2035
2036
2037

2038

2039
2040

2041
2042

Semantic validation of a MOF specification involves an explicit or implied namespace context. This is
defined as the namespace against which the objects in the MOF specification are validated and the
namespace in which they are created. Multiple namespaces typically indicate the presence of multiple
management spaces or multiple devices.

7.4 Naming of Schema Elements

This clause describes the rules for naming schema elements, including classes, properties, qualifiers,
methods, and namespaces.

CIM is a conceptual model that is not bound to a particular implementation. Therefore, it can be used to
exchange management information in a variety of ways, examples of which are described in the
Introduction. Some implementations may use case-sensitive technologies, while others may use case-
insensitive technologies. The naming rules defined in this clause allow efficient implementation in either
environment and enable the effective exchange of management information among all compliant
implementations.

2043
2044
2045
2046

2047
2048
2049
2050

2051
2052
2053
2054
2055
2056

2057
2058
2059
2060

2061

2062

2063
2064

2065

2066

2067
2068

2069

2070

2071
2072
2073

All names are case-insensitive, so two schema item names are identical if they differ only in case. This is
mandated so that scripting technologies that are case-insensitive can leverage CIM technology. However,
string values assigned to properties and qualifiers are not covered by this rule and must be treated as
case-sensitive.

The case of a name is set by its defining occurrence and must be preserved by all implementations. This
is mandated so that implementations can be built using case-sensitive technologies such as Java and
object databases. This also allows names to be consistently displayed using the same user-friendly
mixed-case format. For example, an implementation, if asked to create a Disk class must reject the
request if there is already a DISK class in the current schema. Otherwise, when returning the name of the
Disk class it must return the name in mixed case as it was originally specified.

CIM does not currently require support for any particular query language. It is assumed that
implementations will specify which query languages are supported by the implementation and will adhere
to the case conventions that prevail in the specified language. That is, if the query language is case-
insensitive, statements in the language will behave in a case-insensitive way.

For the full rules for schema names, see ANNEX E.

7.5 Class Declarations

A class is an object describing a grouping of data items that are conceptually related and that model an
object. Class definitions provide a type system for instance construction.

7.5.1 Declaring a Class

A class is declared by specifying these components:

• Qualifiers of the class, which can be empty, or a list of qualifier name/value bindings separated
by commas (,) and enclosed with square brackets ([and]).

• Class name.

• Name of the class from which this class is derived, if any.

• Class properties, which define the data members of the class. A property may also have an
optional qualifier list expressed in the same way as the class qualifier list. In addition, a property
has a data type, and (optionally) a default (initializer) value.

Version 2.5.0 DMTF Standard 57

Common Information Model (CIM) Infrastructure DSP0004

2074
2075

2076
2077
2078
2079
2080
2081
2082

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

2096

2097
2098
2099
2100
2101
2102
2103

2104
2105
2106

2107

2108
2109
2110
2111
2112
2113

2114
2115

2116

2117
2118
2119

• Methods supported by the class. A method may have an optional qualifier list, and it has a
signature consisting of its return type plus its parameters and their type and usage.

• A CIM class may expose more than one element (property or method) with a given name, but it
is not permitted to define more than one element with a particular name. This can happen if a
base class defines an element with the same name as an element defined in a derived class
without overriding the base class element. (Although considered rare, this could happen in a
class defined in a vendor extension schema that defines a property or method that uses the
same name that is later chosen by an addition to an ancestor class defined in the common
schema.)

This sample shows how to declare a class:
 [abstract]
class Win32_LogicalDisk
{
 [read]
 string DriveLetter;
 [read, Units("KiloBytes")]
 sint32 RawCapacity = 0;
 [write]
 string VolumeLabel;
 [Dangerous]
 boolean Format([in] boolean FastFormat);
};

7.5.2 Subclasses

To indicate that a class is a subclass of another class, the derived class is declared by using a colon
followed by the superclass name. For example, if the class Acme_Disk_v1 is derived from the class
CIM_Media:

class Acme_Disk_v1 : CIM_Media
{
 // Body of class definition here ...
};

The terms base class, superclass, and supertype are used interchangeably, as are derived class,
subclass, and subtype. The superclass declaration must appear at a prior point in the MOF specification
or already be a registered class definition in the namespace in which the derived class is defined.

7.5.3 Default Property Values

Any properties in a class definition can have default initializers. For example:
class Acme_Disk_v1 : CIM_Media
{
 string Manufacturer = "Acme";
 string ModelNumber = "123-AAL";
};

When new instances of the class are declared, any such property is automatically assigned its default
value unless the instance declaration explicitly assigns a value to the property.

7.5.4 Class and Property Qualifiers

Qualifiers are meta data about a property, method, method parameter, or class, and they are not part of
the definition itself. For example, a qualifier indicates whether a property value can be changed (using the
Write qualifier). Qualifiers always precede the declaration to which they apply.

58 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2120
2121

2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134

2135
2136
2137
2138
2139
2140
2141
2142
2143

2144
2145
2146
2147
2148
2149
2150
2151

2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173

Certain qualifiers are well known and cannot be redefined (see 5.5). Apart from these restrictions,
arbitrary qualifiers may be used.

Qualifier declarations include an explicit type indicator, which must be one of the intrinsic types. A
qualifier with an array-based parameter is assumed to have a type, which is a variable-length
homogeneous array of one of the intrinsic types. In Boolean arrays, each element in the array is either
TRUE or FALSE.
EXAMPLE:

Write(true) // boolean
profile { true, false, true } // boolean []
description("A string") // string
info { "this", "a", "bag", "is" } // string []
id(12) // uint32
idlist { 21, 22, 40, 43 } // uint32 []
apple(3.14) // real32
oranges { -1.23E+02, 2.1 } // real32 []

Qualifiers are applied to a class by preceding the class declaration with a qualifier list, comma-separated
and enclosed within square brackets. Qualifiers are applied to a property or method in a similar way.
EXAMPLE:

class CIM_Process:CIM_LogicalElement
{
 uint32 Priority;
 [Write(true)]
 string Handle;
};

When a Boolean qualifier is specified in a class or property declaration, the name of the qualifier can be
used without also specifying a value. From the previous example:

class CIM_Process:CIM_LogicalElement
{
 uint32 Priority;
 [Write] // Equivalent declaration to Write (True)
 string Handle;
};

If only the qualifier name is listed for a Boolean qualifier, it is implicitly set to TRUE. In contrast, when a
qualifier is not specified at all for a class or property, the default value for the qualifier is assumed.
Consider another example:

 [Association,
 Aggregation] // Specifies the Aggregation qualifier to be True
class CIM_SystemDevice: CIM_SystemComponent
{
 [Override ("GroupComponent"),
 Aggregate] // Specifies the Aggregate qualifier to be True
 CIM_ComputerSystem Ref GroupComponent;
 [Override ("PartComponent"),
 Weak] // Defines the Weak qualifier to be True
 CIM_LogicalDevice Ref PartComponent;
};

[Association] // Since the Aggregation qualifier is not specified,
 // its default value, False, is set
class Acme_Dependency: CIM_Dependency
{
 [Override ("Antecedent")] // Since the Aggregate and Weak
 // qualifiers are not used, their
 // default values, False, are assumed

Version 2.5.0 DMTF Standard 59

Common Information Model (CIM) Infrastructure DSP0004

2174
2175
2176
2177

2178
2179
2180
2181
2182
2183
2184
2185
2186

2187
2188
2189

2190
2191
2192

2193
2194
2195
2196
2197
2198
2199

2200
2201

2202

 Acme_SpecialSoftware Ref Antecedent;
 [Override ("Dependent")]
 Acme_Device Ref Dependent;
};

Qualifiers can automatically be transmitted from classes to derived classes or from classes to instances,
subject to certain rules. The rules prescribing how the transmission occurs are attached to each qualifier
and encapsulated in the concept of the qualifier flavor. For example, a qualifier can be designated in the
base class as automatically transmitted to all of its derived classes, or it can be designated as belonging
specifically to that class and not transmittable. The former is achieved by using the ToSubclass flavor,
and the latter by using the Restricted flavor. These two flavors shall not be used at the same time. In
addition, if a qualifier is transmitted to its derived classes, the qualifier flavor can be used to control
whether derived classes can override the qualifier value or whether the qualifier value must be fixed for
an entire class hierarchy. This aspect of qualifier flavor is referred to as override permissions.

Override permissions are assigned using the EnableOverride or DisableOverride flavors, which shall not
be used at the same time. If a qualifier is not transmitted to its derived classes, these two flavors are
meaningless and shall be ignored.

Qualifier flavors are indicated by an optional clause after the qualifier and are preceded by a colon. They
consist of some combination of the key words EnableOverride, DisableOverride, ToSubclass, and
Restricted, indicating the applicable propagation and override rules.

EXAMPLE:

class CIM_Process:CIM_LogicalElement
{
 uint32 Priority;
 [Write(true):DisableOverride ToSubclass]
 string Handle;
};

In this example, Handle is designated as writable for the Process class and for every subclass of this
class.

The recognized flavor types are shown in Table 5.

60 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Table 5 – Recognized Flavor Types 2203

Parameter Interpretation Default

ToSubclass The qualifier is inherited by any subclass. ToSubclass

Restricted The qualifier applies only to the class in which it is declared. ToSubclass

EnableOverride If ToSubclass is in effect, the qualifier can be overridden. EnableOverride

DisableOverride If ToSubclass is in effect, the qualifier cannot be overridden. EnableOverride

Translatable The value of the qualifier can be specified in multiple locales
(language and country combination). When Translatable(yes) is
specified for a qualifier, it is legal to create implicit qualifiers of the
form:

label_ll_cc

where

 label is the name of the qualifier with Translatable(yes).

 ll is the language code for the translated string.

 cc is the country code for the translated string.

In other words, a label_ll_cc qualifier is a clone, or derivative, of the
"label" qualifier with a postfix to capture the locale of the translated
value. The locale of the original value (that is, the value specified
using the qualifier with a name of "label") is determined by the
locale pragma.

When a label_ll_cc qualifier is implicitly defined, the values for the
other flavor parameters are assumed to be the same as for the
"label" qualifier. When a label_ll_cc qualifier is explicitly defined, the
values for the other flavor parameters must also be the same. A
"yes" for this parameter is valid only for string-type qualifiers.

EXAMPLE: If an English description is translated into Mexican
Spanish, the actual name of the qualifier is:
DESCRIPTION_es_MX.

No

7.5.5 Key Properties 2204

2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

2215
2216

2217
2218

2219
2220

Instances of a class require a way to distinguish the instances within a single namespace. Designating
one or more properties with the reserved Key qualifier provides instance identification. For example, this
class has one property (Volume) that serves as its key:

class Acme_Drive
{
 [key]
 string Volume;
 string FileSystem;
 sint32 Capacity;
};

In this example, instances of Drive are distinguished using the Volume property, which acts as the key for
the class.

Compound keys are supported and are designated by marking each of the required properties with the
key qualifier.

If a new subclass is defined from a superclass and the superclass has key properties (including those
inherited from other classes), the new subclass cannot define any additional key properties. New key

Version 2.5.0 DMTF Standard 61

Common Information Model (CIM) Infrastructure DSP0004

2221
2222

2223
2224
2225
2226
2227
2228
2229
2230
2231

2232
2233
2234
2235
2236
2237
2238

2239
2240
2241
2242
2243
2244
2245
2246

2247

2248
2249
2250
2251
2252

2253

2254

2255
2256
2257

2258

2259

2260
2261
2262

2263

2264
2265

properties in the subclass can be introduced only if all classes in the inheritance chain of the new
subclass are keyless.

If any reference to the class has the Weak qualifier, the properties that are qualified as Key in the other
classes in the association are propagated to the referenced class. The key properties are duplicated in
the referenced class using the name of the property, prefixed by the name of the original declaring class.
For example:

class CIM_System:CIM_LogicalElement
{
 [Key]
 string Name;
};

class CIM_LogicalDevice: CIM_LogicalElement
{
 [Key]
 string DeviceID;
 [Key, Propagated("CIM_System.Name")]
 string SystemName;
};

[Association]
class CIM_SystemDevice: CIM_SystemComponent
{
 [Override ("GroupComponent"), Aggregate, Min(1), Max(1)]
 CIM_System Ref GroupComponent;
 [Override ("PartComponent"), Weak]
 CIM_LogicalDevice Ref PartComponent;
};

7.5.6 Static Properties

If a property is declared as a static property, it has the same value for all CIM instances that have the
property in the same namespace. Therefore, any change in the value of a static property for a CIM
instance also affects the value of that property for the other CIM instances that have it. As for any
property, a change in the value of a static property of a CIM instance in one namespace may or may not
affect its value in CIM instances in other namespaces.

Overrides on static properties are prohibited. Overrides of static methods are allowed.

7.6 Association Declarations

An association is a special kind of class describing a link between other classes. Associations also
provide a type system for instance constructions. Associations are just like other classes with a few
additional semantics, which are explained in the following subclauses.

7.6.1 Declaring an Association

An association is declared by specifying these components:

• Qualifiers of the association (at least the Association qualifier, if it does not have a supertype).
Further qualifiers may be specified as a list of qualifier/name bindings separated by commas
(,) . The entire qualifier list is enclosed in square brackets ([and]) .

• Association name. The name of the association from which this association derives (if any).

• Association references. Define pointers to other objects linked by this association. References
may also have qualifier lists that are expressed in the same way as the association qualifier list

62 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2266
2267

2268
2269

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

2282

2283
2284
2285

2286

2287
2288
2289

2290
2291
2292
2293
2294
2295
2296
2297
2298

2299
2300
2301
2302

2303

2304
2305
2306

2307

2308

2309

— especially the qualifiers to specify cardinalities of references (see 5.5.2). In addition, a
reference has a data type, and (optionally) a default (initializer) value.

• Additional association properties that define further data members of this association. They are
defined in the same way as for ordinary classes.

• The methods supported by the association. They are defined in the same way as for ordinary
classes.

EXAMPLE: The following example shows how to declare an association (assuming given classes CIM_A and
CIM_B):

 [Association]
class CIM_LinkBetweenAandB : CIM_Dependency
{
 [Override ("Antecedent")]
 CIM_A Ref Antecedent;
 [Override ("Dependent")]
 CIM_B Ref Dependent;
};

7.6.2 Subassociations

To indicate a subassociation of another association, the same notation as for ordinary classes is used.
The derived association is declared using a colon followed by the superassociation name. (An example is
provided in 7.6.2.)

7.6.3 Key References and Properties

Instances of an association also must provide a way to distinguish the instances, for they are just a
special kind of a class. Designating one or more references/properties with the reserved Key qualifier
identifies the instances.

A reference/property of an association is (part of) the association key if the Key qualifier is applied.
 [Association, Aggregation]
class CIM_Component
{
 [Aggregate, Key]
 CIM_ManagedSystemElement Ref GroupComponent;
 [Key]
 CIM_ManagedSystemElement Ref PartComponent;
};

The key definition of association follows the same rules as for ordinary classes. Compound keys are
supported in the same way. Also a new subassociation cannot define additional key
properties/references. If any reference to a class has the Weak qualifier, the KEY-qualified properties of
the other class, whose reference is not Weak-qualified, are propagated to the class (see 7.5.5).

7.6.4 Object References

Object references are special properties whose values are links or pointers to other objects (classes or
instances). The value of an object reference is expressed as a string, which represents a path to another
object. A non-NULL value of an object reference includes:

• The namespace in which the object resides

• The class name of the object

• The values of all key properties for an instance if the object represents an instance

Version 2.5.0 DMTF Standard 63

Common Information Model (CIM) Infrastructure DSP0004

2310
2311
2312
2313
2314
2315
2316
2317

2318
2319

2320

2321

2322
2323
2324

2325

The data type of an object reference is declared as "XXX ref", indicating a strongly typed reference to
objects of the class with name "XXX" or a derivation of this class. For example:

 [Association]
class Acme_ExampleAssoc
{
 Acme_AnotherClass ref Inst1;
 Acme_Aclass ref Inst2;
};

In this declaration, Inst1 can be set to point only to instances of type Acme_AnotherClass, including
instances of its subclasses.

References in associations shall not have the special NULL value.

Also, see 7.12.2 for information about initializing references using aliases.

In associations, object references have cardinalities that are denoted using the Min and Max qualifiers.
Examples of UML cardinality notations and their respective combinations of Min and Max values are
shown in Table 6.

Table 6 – UML Cardinality Notations

UML MIN MAX Required MOF Text* Description

* 0 NULL Many

1..* 1 NULL Min(1) At least one

1 1 1 Min(1), Max(1) One

0,1 (or 0..1) 0 1 Max(1) At most one

7.7 Qualifier Declarations 2326

2327
2328

2329
2330

2331
2332
2333
2334

2335
2336

2337
2338
2339
2340
2341
2342

Qualifiers may be declared using the keyword "qualifier." The declaration of a qualifier allows the
definition of types, default values, propagation rules (also known as Flavors), and restrictions on use.

The default value for a declared qualifier is used when the qualifier is not explicitly specified for a given
schema element. Explicit specification includes inherited qualifier specification.

The MOF syntax allows a qualifier to be specified without an explicit value. The assumed value depends
on the qualifier type: Boolean types are TRUE, numeric types are NULL, strings are NULL, and arrays are
empty. For example, the Alias qualifier is declared as follows:

qualifier alias :string = null, scope(property, reference, method);

This declaration establishes a qualifier called alias of type string. It has a default value of NULL and may
be used only with properties, references, and methods.

The meta qualifiers are declared as follows:
Qualifier Association : boolean = false,
 Scope(class, association), Flavor(DisableOverride);

Qualifier Indication : boolean = false,
 Scope(class, indication), Flavor(DisableOverride);

64 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

7.8 Instance Declarations 2343

2344
2345
2346

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362

2363
2364
2365
2366
2367
2368

2369

2370

2371

2372

2373

2374
2375
2376

2377
2378
2379

2380
2381
2382
2383
2384
2385

Instances are declared using the keyword sequence "instance of" and the class name. The property
values of the instance may be initialized within an initialization block. Any qualifiers specified for the
instance shall already be present in the defining class and shall have the same value and flavors.

Property initialization consists of an optional list of preceding qualifiers, the name of the property, and an
optional value. Any qualifiers specified for the property shall already be present in the property definition
from the defining class, and they shall have the same value and flavors. Any property values not
initialized have default values as specified in the class definition, or (if no default value is specified) the
special value NULL to indicate absence of value. For example, given the class definition:

class Acme_LogicalDisk: CIM_Partition
{
 [key]
 string DriveLetter;
 [Units("kilo bytes")]
 sint32 RawCapacity = 128000;
 [write]
 string VolumeLabel;
 [Units("kilo bytes")]
 sint32 FreeSpace;
};

an instance of this class can be declared as follows:
instance of Acme_LogicalDisk
{
 DriveLetter = "C";
 VolumeLabel = "myvol";
};

The resulting instance takes these property values:

• DriveLetter is assigned the value "C".

• RawCapacity is assigned the default value 128000.

• VolumeLabel is assigned the value "myvol".

• FreeSpace is assigned the value NULL.

For subclasses, all properties in the superclass must have their values initialized along with the properties
in the subclass. Any property values not specifically assigned in the instance block have either the default
value for the property (if there is one) or the value NULL.

The values of all key properties must be specified for an instance to be identified and created. There is no
requirement to initialize other property values explicitly. See 7.11.6 for information on behavior when
there is no property value initialization.

As described in item 21)-e) of 5.1, a class may have, by inheritance, more than one property with a
particular name. If a property initialization has a property name that is scoped to more than one property
in the class, the initialization applies to the property defined closest to the class of the instance. That is,
the property can be located by starting at the class of the instance. If the class defines a property with the
name from the initialization, then that property is initialized. Otherwise, the search is repeated from the
direct superclass of the class. See ANNEX I for more information about the name conflict issue.

Version 2.5.0 DMTF Standard 65

Common Information Model (CIM) Infrastructure DSP0004

2386
2387
2388
2389
2390
2391

2392

2393
2394
2395
2396
2397

2398
2399

2400

2401
2402
2403
2404
2405

2406
2407

2408
2409
2410

2411
2412
2413
2414
2415

2416
2417
2418
2419

2420
2421
2422
2423
2424

2425
2426

2427
2428
2429
2430
2431

Instances of associations may also be defined, as in the following example:
instance of CIM_ServiceSAPDependency
{
 Dependent = "CIM_Service.Name = \"mail\"";
 Antecedent = "CIM_ServiceAccessPoint.Name = \"PostOffice\"";
};

7.8.1 Instance Aliasing

An alias can be assigned to an instance using this syntax:
instance of Acme_LogicalDisk as $Disk
{
 // Body of instance definition here ...
};

Such an alias can later be used within the same MOF specification as a value for an object reference
property. For more information, see 7.12.2.

7.8.2 Arrays

Arrays of any of the basic data types can be declared in the MOF specification by using square brackets
after the property or parameter identifier. If there is an unsigned integer constant within the square
brackets, the array is a fixed-length array and the constant indicates the size of the array; if there is
nothing within the square brackets, the array is a variable-length array. Otherwise, the array definition is
invalid.

Fixed-length arrays always have the specified number of elements. Elements cannot be added to or
deleted from fixed-length arrays, but the values of elements can be changed.

Variable-length arrays have a number of elements between 0 and an implementation-defined maximum.
Elements can be added to or deleted from variable-length array properties, and the values of existing
elements can be changed.

Element addition, deletion, or modification is defined only for array properties because array parameters
are only transiently instantiated when a CIM method is invoked. For array parameters, the array is
thought to be created by the CIM client for input parameters and by the CIM server side for output
parameters. The array is thought to be retrieved and deleted by the CIM server side for input parameters
and by the CIM client for output parameters.

Array indexes start at 0 and have no gaps throughout the entire array, both for fixed-length and variable-
length arrays. The special NULL value signifies the absence of a value for an element, not the absence of
the element itself. In other words, array elements that are NULL exist in the array and have a value of
NULL. They do not represent gaps in the array.

Like any CIM type, an array itself may have the special NULL value to indicate absence of value.
Conceptually, the value of the array itself, if not absent, is the set of its elements. An empty array (that is,
an array with no elements) must be distinguishable from an array that has the special NULL value. For
example, if an array contains error messages, it makes a difference to know that there are no error
messages rather than to be uncertain about whether there are any error messages.

The type of an array is defined by the ArraryType qualifier with values of Bag, Ordered, or Indexed. The
default array type is Bag.

For a Bag array type, no significance is attached to the array index other than its convenience for
accessing the elements of the array. There can be no assumption that the same index returns the same
element for every retrieval, even if no element of the array is changed. The only valid assumption is that a
retrieval of the entire array contains all of its elements and the index can be used to enumerate the
complete set of elements within the retrieved array. The Bag array type should be used in the CIM

66 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2432
2433

2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446

2447
2448
2449
2450
2451
2452
2453
2454

2455

2456
2457
2458
2459

2460
2461
2462
2463
2464
2465
2466
2467

2468
2469
2470
2471
2472
2473

2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484

schema when the order of elements in the array does not have a meaning. There is no concept of
corresponding elements between Bag arrays.

For an Ordered array type, the CIM server side maintains the order of elements in the array as long as no
array elements are added, deleted, or changed. Therefore, the CIM server side does not honor any order
of elements presented by the CIM client when creating the array (during creation of the CIM instance for
an array property or during CIM method invocation for an input array parameter) or when modifying the
array. Instead, the CIM server side itself determines the order of elements on these occasions and
therefore possibly reorders the elements. The CIM server side then maintains the order it has determined
during successive retrievals of the array. However, as soon as any array elements are added, deleted, or
changed, the server side again determines a new order and from then on maintains that new order. For
output array parameters, the server side determines the order of elements and the client side sees the
elements in that same order upon retrieval. The Ordered array type should be used when the order of
elements in the array does have a meaning and should be controlled by the CIM server side. The order
the CIM server side applies is implementation-defined unless the class defines particular ordering rules.
Corresponding elements between Ordered arrays are those that are retrieved at the same index.

For an Indexed array type, the array maintains the reliability of indexes so that the same index returns the
same element for successive retrievals. Therefore, particular semantics of elements at particular index
positions can be defined. For example, in a status array property, the first array element might represent
the major status and the following elements represent minor status modifications. Consequently, element
addition and deletion is not supported for this array type. The Indexed array type should be used when
the relative order of elements in the array has a meaning and should be controlled by the CIM client, and
reliability of indexes is needed. Corresponding elements between Indexed arrays are those at the same
index.

The current release of CIM does not support n-dimensional arrays.

Arrays of any basic data type are legal for properties. Arrays of references are not legal for properties.
Arrays must be homogeneous; arrays of mixed types are not supported. In MOF, the data type of an
array precedes the array name. Array size, if fixed-length, is declared within square brackets after the
array name. For a variable-length array, empty square brackets follow the array name.

Arrays are declared using the following MOF syntax:
class A
{
 [Description("An indexed array of variable length"), ArrayType("Indexed")]
 uint8 MyIndexedArray[];
 [Description("A bag array of fixed length")]
 uint8 MyBagArray[17];
};

If default values are to be provided for the array elements, this syntax is used:
class A
{
 [Description("A bag array property of fixed length")]
 uint8 MyBagArray[17] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};
};

The following MOF presents further examples of Bag, Ordered, and Indexed array declarations:
class Acme_Example
{
 char16 Prop1[]; // Bag (default) array of chars, Variable length

 [ArrayType ("Ordered")] // Ordered array of double-precision reals,
 real64 Prop2[]; // Variable length

 [ArrayType ("Bag")] // Bag array containing 4 32-bit signed integers
 sint32 Prop3[4];

Version 2.5.0 DMTF Standard 67

Common Information Model (CIM) Infrastructure DSP0004

2485
2486
2487
2488
2489
2490
2491
2492
2493

2494

2495
2496
2497
2498

2499
2500

2501
2502

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513

2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527

2528

2529
2530
2531

 [ArrayType ("Ordered")] // Ordered array of strings, Variable length
 string Prop4[] = {"an", "ordered", "list"};

 // Prop4 is variable length with default values defined at the
 // first three positions in the array

 [ArrayType ("Indexed")] // Indexed array of 64-bit unsigned integers
 uint64 Prop5[];
};

7.9 Method Declarations

A method is defined as an operation with a signature that consists of a possibly empty list of parameters
and a return type. There are no restrictions on the type of parameters other than they shall be a fixed- or
variable-length array of one of the data types described in 5.2. Method return types defined in MOF must
be one of the data types described in 5.2. Return types cannot be arrays but are otherwise unrestricted.

Methods are expected, but not required, to return a status value indicating the result of executing the
method. Methods may use their parameters to pass arrays.

Syntactically, the only thing that distinguishes a method from a property is the parameter list. The fact that
methods are expected to have side-effects is outside the scope of this specification.

In the following example, Start and Stop methods are defined on the Service class. Each method returns
an integer value:

class CIM_Service:CIM_LogicalElement
{
 [Key]
 string Name;
 string StartMode;
 boolean Started;
 uint32 StartService();
 uint32 StopService();
};

In the following example, a Configure method is defined on the Physical DiskDrive class. It takes a
DiskPartitionConfiguration object reference as a parameter and returns a Boolean value:

class Acme_DiskDrive:CIM_Media
{
 sint32 BytesPerSector;
 sint32 Partitions;
 sint32 TracksPerCylinder;
 sint32 SectorsPerTrack;
 string TotalCylinders;
 string TotalTracks;
 string TotalSectors;
 string InterfaceType;
 boolean Configure([IN] DiskPartitionConfiguration REF config);
};

7.9.1 Static Methods

If a method is declared as a static method, it does not depend on any per-instance data. Non-static
methods are invoked in the context of an instance; for static methods, the context of a class is sufficient.
Overrides on static properties are prohibited. Overrides of static methods are allowed.

68 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

7.10 Compiler Directives 2532

2533
2534

2535

Compiler directives are provided as the keyword "pragma" preceded by a hash (#) character and
followed by a string parameter. The current standard compiler directives are listed in Table 7.

Table 7 – Standard Compiler Directives

Compiler Directive Interpretation

#pragma include() Has a file name as a parameter. The file is assumed to be a MOF file. The pragma has
the effect of textually inserting the contents of the include file at the point where the
include pragma is encountered.

#pragma
instancelocale()

Declares the locale used for instances described in a MOF file. This pragma specifies
the locale when "INSTANCE OF" MOF statements include string or char16 properties
and the locale is not the same as the locale specified by a #pragma locale() statement.
The locale is specified as a parameter of the form ll_cc where ll is the language code
based on ISO/IEC 639 and cc is the country code based on ISO/IEC 3166.

#pragma locale() Declares the locale used for a particular MOF file. The locale is specified as a
parameter of the form ll_cc, where ll is the language code based on ISO/IEC 639, and
cc is the country code based on ISO/IEC 3166. When the pragma is not specified, the
assumed locale is "en_US".
This pragma does not apply to the syntax structures of MOF. Keywords, such as "class"
and "instance", are always in en_US.

#pragma namespace() This pragma is used to specify a Namespace path.

#pragma nonlocal()

#pragma nonlocaltype()

#pragma source()

#pragma sourcetype()

These compiler directives and the corresponding instance-level qualifiers are removed
as errata by CR1461.

2536
2537
2538

2539

2540
2541

2542

2543

2544
2545

2546
2547

2548
2549
2550

Pragma directives may be added as a MOF extension mechanism. Unless standardized in a future CIM
infrastructure specification, such new pragma definitions must be considered vendor-specific. Use of non-
standard pragma affects the interoperability of MOF import and export functions.

7.11 Value Constants

The constant types supported in the MOF syntax are described in the subclauses that follow. These are
used in initializers for classes and instances and in the parameters to named qualifiers.

For a formal specification of the representation, see ANNEX A.

7.11.1 String Constants

A string constant is a sequence of zero or more UCS-2 characters enclosed in double-quotes (") . A
double-quote is allowed within the value, as long as it is preceded immediately by a backslash (\) .

For example, the following is a string constant:
"This is a string"

Successive quoted strings are concatenated as long as only white space or a comment intervenes:
"This" " becomes a long string"

"This" /* comment */ " becomes a long string"

Version 2.5.0 DMTF Standard 69

http://www.iso.ch/
http://www.iso.ch/
http://www.iso.ch/

Common Information Model (CIM) Infrastructure DSP0004

2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562

2563

Escape sequences are recognized as legal characters within a string. The complete set of escape
sequences is as follows:

\b // \x0008: backspace BS
\t // \x0009: horizontal tab HT
\n // \x000A: linefeed LF
\f // \x000C: form feed FF
\r // \x000D: carriage return CR
\" // \x0022: double quote "
\' // \x0027: single quote '
\\ // \x005C: backslash \
\x<hex> // where <hex> is one to four hex digits
\X<hex> // where <hex> is one to four hex digits

The character set of the string depends on the character set supported by the local installation. While the
MOF specification may be submitted in UCS-2 form defined in ISO/IEC 10646:2003, the local
implementation may only support ANSI and vice versa. Therefore, the string type is unspecified and
dependent on the character set of the MOF specification itself. If a MOF specification is submitted using
UCS-2 characters outside the normal ASCII range, the implementation may have to convert these
characters to the locally-equivalent character set.

2564
2565
2566
2567
2568

2569

2570
2571
2572
2573
2574

2575
2576
2577

2578

2579
2580
2581
2582
2583
2584
2585

2586
2587

2588
2589

2590

7.11.2 Character Constants

Character and wide-character constants are specified as follows:
'a'
'\n'
'1'
'\x32'

Forms such as octal escape sequences (for example, '\020') are not supported. Integer values can also
be used as character constants, as long as they are within the numeric range of the character type. For
example, wide-character constants must fall within the range of 0 to 0xFFFF.

7.11.3 Integer Constants

Integer constants may be decimal, binary, octal, or hexadecimal. For example, the following constants are
all legal:

1000
-12310
0x100
01236
100101B

Note that binary constants have a series of 1 and 0 digits, with a "b" or "B" suffix to indicate that the value
is binary.

The number of digits permitted depends on the current type of the expression. For example, it is not legal
to assign the constant 0xFFFF to a property of type uint8.

7.11.4 Floating-Point Constants

2591
2592
2593
2594
2595

Floating-point constants are declared as specified by ANSI/IEEE 754-1985. For example, the following
constants are legal:

3.14
-3.14
-1.2778E+02

70 DMTF Standard Version 2.5.0

http://www.iso.ch/

DSP0004 Common Information Model (CIM) Infrastructure

2596
2597

2598

2599
2600
2601
2602
2603

2604

2605

2606
2607

2608

2609
2610
2611
2612

2613

2614
2615
2616
2617
2618
2619
2620
2621
2622

2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633

2634
2635

2636

2637
2638
2639

The range for floating-point constants depends on whether float or double properties are used, and they
must fit within the range specified for 4-byte and 8-byte floating-point values, respectively.

7.11.5 Object Reference Constants

Object references are simple URL-style links to other objects, which may be classes or instances. They
take the form of a quoted string containing an object path that is a combination of a namespace path and
the model path. For example:

"//./root/default:LogicalDisk.SystemName=\"acme\",LogicalDisk.Drive=\"C\""
"//./root/default:NetworkCard=2"

An object reference can also be an alias. See 7.12.2 for details.

7.11.6 NULL

All types can be initialized to the predefined constant NULL, which indicates that no value is provided.
The details of the internal implementation of the NULL value are not mandated by this document.

7.12 Initializers

Initializers are used in both class declarations for default values and instance declarations to initialize a
property to a value. The format of initializer values is specified in clause 5 and its subclauses. The
initializer value shall match the property data type. The only exceptions are the NULL value, which may
be used for any data type, and integral values, which are used for characters.

7.12.1 Initializing Arrays

Arrays can be defined to be of type Bag, Ordered, or Indexed, and they can be initialized by specifying
their values in a comma-separated list (as in the C programming language). The list of array elements is
delimited with curly brackets. For example, given this class definition:

class Acme_ExampleClass
{
 [ArrayType ("Indexed")]
 string ip_addresses []; // Indexed array of variable length
 sint32 sint32_values [10]; // Bag array of fixed length = 10
};

the following is a valid instance declaration:
instance of Acme_ExampleClass
{
 ip_addresses = { "1.2.3.4", "1.2.3.5", "1.2.3.7" };

 // ip_address is an indexed array of at least 3 elements, where
 // values have been assigned to the first three elements of the
 // array

 sint32_values = { 1, 2, 3, 5, 6 };
};

Refer to 7.8.2 for additional information on declaring arrays and the distinctions between bags, ordered
arrays, and indexed arrays.

7.12.2 Initializing References Using Aliases

Aliases are symbolic references to an object located elsewhere in the MOF specification. They have
significance only within the MOF specification in which they are defined, and they are used only at
compile time to establish references. They are not available outside the MOF specification.

Version 2.5.0 DMTF Standard 71

Common Information Model (CIM) Infrastructure DSP0004

2640
2641
2642

2643
2644
2645
2646
2647
2648
2649
2650
2651

2652

2653

2654
2655
2656
2657

2658
2659

2660

2661
2662
2663

2664
2665
2666

2667
2668
2669

2670
2671

2672
2673
2674
2675

An instance may be assigned an alias as described in 7.8.1. Aliases are identifiers that begin with the $
symbol. When a subsequent reference to the instance is required for an object reference property, the
identifier is used in place of an explicit initializer.

Assuming that $Alias1 and $Alias2 are declared as aliases for instances and the obref1 and obref2
properties are object references, this example shows how the object references could be assigned to
point to the aliased instances:

instance of Acme_AnAssociation
{
 strVal = "ABC";
 obref1 = $Alias1;
 obref2 = $Alias2;
};

Forward-referencing and circular aliases are permitted.

8 Naming
Because CIM is not bound to a particular technology or implementation, it promises to facilitate sharing
management information among a variety of management platforms. The CIM naming mechanism
addresses enterprise-wide identification of objects, as well as sharing of management information. CIM
naming addresses the following requirements:

• Ability to locate and uniquely identify any object in an enterprise. Object names must be
identifiable regardless of the instrumentation technology.

• Unambiguous enumeration of all objects.

• Ability to determine when two object names reference the same entity. This entails location
transparency so that there is no need to understand which management platforms proxy the
instrumentation of other platforms.

• Allow sharing of objects and instance data among management platforms. This requirement
includes the creation of different scoping hierarchies that vary by time (for example, a current
versus proposed scoping hierarchy).

• Facilitate move operations between object trees (including within a single management
platform). Hide underlying management technology/provide technology transparency for the
domain-mapping environment.

Allowing different names for DMI versus SNMP objects requires the management platform to understand
how the underlying objects are implemented.

The Key qualifier is the CIM Meta-Model mechanism to identify the properties that uniquely identify an
instance of a class (and indirectly an instance of an association). CIM naming enhances this base
capability by introducing the Weak and Propagated qualifiers to express situations in which the keys of
one object are to be propagated to another object.

72 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

8.1 Background 2676

2677 CIM MOF files can contain definitions of instances, classes, or both, as illustrated in Figure 7.

 2678

2679

2680
2681
2682
2683

2684
2685
2686
2687
2688

2689
2690

2691
2692
2693

2694

2695
2696

2697

2698

Figure 7 – Definitions of Instances and Classes

MOF files can be used to populate a technology that understands the semantics and structure of CIM.
When an implementation consumes a MOF, two operations are actually performed, depending on the
file’s content. First, a compile or definition operation establishes the structure of the model. Second, an
import operation inserts instances into the platform or tool.

When the compile and import are complete, the actual instances are manipulated using the native
capabilities of the platform or tool. To manipulate an object (for example, change the value of a property),
one must know the type of platform into which the information was imported, the APIs or operations used
to access the imported information, and the name of the platform instance actually imported. For
example, the semantics become:

Set the Version property of the Logical Element object with Name="Cool" in the relational
database named LastWeeksData to "1.4.0".

The contents of a MOF file are loaded into a namespace that provides a domain in which the instances of
the classes are guaranteed to be unique per the Key qualifier definitions. The term "namespace" refers to
an implementation that provides such a domain.

Namespaces can be used to accomplish the following tasks:

• Define chunks of management information (objects and associations) to limit implementation
resource requirements, such as database size

• Define views on the model for applications managing only specific objects, such as hubs

• Pre-structure groups of objects for optimized query speed

Version 2.5.0 DMTF Standard 73

Common Information Model (CIM) Infrastructure DSP0004

Another viable operation is exporting from a particular management platform. This operation creates a
MOF file for all or some portion of the information content of a platform (see

2699
2700 Figure 8).

 2701

2702 Figure 8 – Exporting to MOF

74 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2703
2704
2705
2706

See Figure 9for an example. In this example, information is exchanged when the source system is of type
Mgmt_X and its name is EastCoast. The export produces a MOF file with the circle and triangle
definitions and instances 1, 3, 5 of the circle class and instances 2, 4 of the triangle class. This MOF file is
then compiled and imported into the management platform of type Mgmt_ABC with the name AllCoasts.

Instance Of

Definition

Type: Mgmt_X
Type Handle: EastCoast

Export

eastcoast.mof

Object Manager
Implementation

1 2

3

5

4

Object Manager
Implementation

Type: Mgmt_ABC
Type Handle: AllCoasts

Import

1

3

5

2

4

 2707

2708

2709
2710
2711
2712

2713

2714
2715
2716

2717

2718
2719

Figure 9 – Information Exchange

The import operation stores the information in a local or native format of Mgmt_ABC, so its native
operations can be used to manipulate the instances. The transformation to a native format is shown in the
figure by wrapping the five instances in hexagons. The transformation process must maintain the original
keys.

8.1.1 Management Tool Responsibility for an Export Operation

The management tool must be able to create unique key values for each distinct object it places into the
MOF file. For each instance placed into the MOF file, the management tool must maintain a mapping from
the MOF file keys to the native key mechanism.

8.1.2 Management Tool Responsibility for an Import Operation

The management tool must be able to map the unique keys found in the MOF file to a set of locally-
understood keys.

Version 2.5.0 DMTF Standard 75

Common Information Model (CIM) Infrastructure DSP0004

8.2 Weak Associations: Supporting Key Propagation 2720

2721
2722
2723
2724
2725
2726
2727
2728

2729
2730
2731
2732

2733
2734
2735
2736

CIM provides a mechanism to name instances within the context of other object instances. For example, if
a management tool handles a local system, it can refer to the C drive or the D drive. However, if a
management tool handles multiple machines, it must refer to the C drive on machine X and the C drive on
machine Y. In other words, the name of the drive must include the name of the hosting machine. CIM
supports the notion of weak associations to specify this type of key propagation. A weak association is
defined using a qualifier.
EXAMPLE:

Qualifier Weak: boolean = false, Scope(reference), Flavor(DisableOverride);

The keys of the referenced class include the keys of the other participants in the Weak association. This
situation occurs when the referenced class identity depends on the identity of other participants in the
association. This qualifier can be specified on only one of the references defined for an association. The
weak referenced object is the one that depends on the other object for identity.

Figure 10 shows an example of a weak association. There are three classes: ComputerSystem,
OperatingSystem and Local User. The Operating System class is weak with respect to the Computer
System class because the runs association is marked weak. Similarly, the Local User class is weak with
respect to the Operating System class, because the association is marked as weak.

Computer
System

Operating
System

Local
User

runs

has
weak

weak

CS_Name=UnixHost

OS_Name=acmeunix

CS_Name=UnixHost
OS_Name=acmeunix
uid=33

CS_Name=UnixHost
OS_Name=acmeunit
uid=44

Propagated Keys

CS_Name=UnixHost

 2737

2738

2739
2740
2741
2742
2743
2744
2745

Figure 10 – Example of Weak Association

In a weak association definition, the Computer System class is a scoping class for the Operating System
class because its keys are propagated to the Operating System class. The Computer System and the
Operating System classes are both scoping classes for the Local User class because the Local User
class gets keys from both. Finally, the Computer System is referred to as a top-level object (TLO)
because it is not weak with respect to any other class. That a class is a top-level object is implied
because no references to that class are marked with the Weak qualifier. In addition, TLOs must have the
possibility of an enterprise-wide, unique key. For example, consider a computer’s IP address in a

76 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2746
2747
2748

2749
2750
2751
2752

2753

2754
2755
2756
2757
2758
2759
2760
2761

2762
2763
2764
2765
2766
2767
2768
2769

2770
2771
2772
2773
2774
2775
2776
2777
2778
2779

2780

2781
2782
2783
2784
2785
2786
2787
2788
2789
2790

company’s enterprise-wide IP network. The goal of the TLO concept is to achieve uniqueness of keys in
the model path portion of the object name. To come as close as possible to this goal, the TLO must have
relevance in an enterprise context.

An object in the scope of another object can in turn be a scope for a different object. Therefore, all model
object instances are arranged in directed graphs with the TLOs as peer roots. The structure of this graph,
which defines which classes are in the scope of another given class, is part of CIM by means of
associations qualified with the Weak qualifier.

8.2.1 Referencing Weak Objects

A reference to an instance of an association includes the propagated keys. The properties must have the
propagated qualifier that identifies the class in which the property originates and the name of the property
in that class. For example:

instance of Acme_has
{
 anOS = "Acme_OS.Name=\"acmeunit\",SystemName=\"UnixHost\"";
 aUser = "Acme_User.uid=33,OSName=\"acmeunit\",SystemName=\"UnixHost\"";
};

The operating system being weak to system is declared as follows:
Class Acme_OS
{
 [key]
 String Name;
 [key, Propagated("CIM_System.Name")]
 String SystemName;
};

The user class being weak to operating system is declared as follows:
Class Acme_User
{
 [key]
 String uid;
 [key, Propagated("Acme_OS.Name")]
 String OSName;
 [key, Propagated("Acme_OS.SystemName")]
 String SystemName;
};

8.3 Naming CIM Objects

Because CIM allows multiple implementations, it is not sufficient to think of the name of an object as just
the combination of properties that have the Key qualifier. The name must also identify the implementation
that actually hosts the objects. The object name consists of the namespace path, which provides access
to a CIM implementation, plus the model path, which provides full navigation within the CIM schema. The
namespace path is used to locate a particular namespace. The details of the namespace path depend on
the implementation. The model path is the concatenation of the class name and the properties of the
class that are qualified with the Key qualifier. When the class is weak with respect to another class, the
model path includes all key properties from the scoping objects. Figure 11 shows the various components
of an object name. These components are described in more detail in the following clauses. See the
objectName non-terminal in ANNEX A for the formal description of object name syntax.

Version 2.5.0 DMTF Standard 77

Common Information Model (CIM) Infrastructure DSP0004

HTTP://CIMOM_host/root/CIMV2 : CIM_Disk.key1=value1

Object Name

Namespace Path

Namespace
Type

Namespace
Handle

Model Path

 2791

2792

2793

2794
2795
2796
2797

2798

2799

2800

2801
2802
2803

2804
2805

2806

2807

2808

2809
2810
2811

2812

2813
2814
2815
2816
2817

Figure 11 – Object Naming

8.3.1 Namespace Path

A namespace path references a namespace within an implementation that can host CIM objects. A
namespace path resolves to a namespace hosted by a CIM-capable implementation (in other words, a
CIM object manager). Unlike in the model path, the details of the namespace path are implementation-
specific. Therefore, the namespace path identifies the following details:

• the implementation or namespace type

• a handle that references a particular implementation or namespace handle

8.3.1.1 Namespace Type

The namespace type classifies or identifies the type of implementation. The provider of the
implementation must describe the access protocol for that implementation, which is analogous to
specifying http or ftp in a browser.

Fundamentally, a namespace type implies an access protocol or API set to manipulate objects. These
APIs typically support the following operations:

• generating a MOF file for a particular scope of classes and associations

• importing a MOF file

• manipulating instances

A particular management platform can access management information in a variety of ways. Each way
must have a namespace type definition. Given this type, there is an assumed set of mechanisms for
exporting, importing, and updating instances.

8.3.1.2 Namespace Handle

The namespace handle identifies a particular instance of the type of implementation. This handle must
resolve to a namespace within an implementation. The details of the handle are implementation-specific.
It might be a simple string for an implementation that supports one namespace, or it might be a
hierarchical structure if an implementation supports multiple namespaces. Either way, it resolves to a
namespace.

78 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Some implementations can support multiple namespaces. In this case, the implementation-specific
reference must resolve to a particular namespace within that implementation (see

2818
2819 Figure 12).

 2820

2821

2822

2823

2824
2825

2826

2827
2828
2829
2830
2831
2832
2833

2834

2835

2836

Figure 12 – Namespaces

Two important points to remember about namespaces are as follows:

• Namespaces can overlap with respect to their contents.

• When an object in one namespace has the same model path as an object in another
namespace, this does not guarantee that the objects are representing the same reality.

8.3.2 Model Path

The object name constructed as a scoping path through the CIM schema is called a model path. A model
path for an instance is a combination of the key property names and values qualified by the class name. It
is solely described by CIM elements and is absolutely implementation-independent. It can describe the
path to a particular object or to identify a particular object within a namespace. The name of any instance
is a concatenation of named key property values, including all key values of its scoping objects. When the
class is weak with respect to another class, the model path includes all key properties from the scoping
objects.

The formal syntax of model path is provided in ANNEX A.

The syntax of model path is as follows:

<className>.<key1>=<value1>[,<keyx>=<valuex>]*

Version 2.5.0 DMTF Standard 79

Common Information Model (CIM) Infrastructure DSP0004

8.3.3 Specifying the Object Name 2837

2838
2839

2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868

2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883

2884
2885
2886
2887

There are various ways to specify the object name details for any class instance or association reference
in a MOF file.

The model path is specified differently for objects and associations. For objects (instances of classes), the
model path is the combination of property value pairs marked with the Key qualifier. Therefore, the model
path for the following example is: "ex_sampleClass.label1=9921,label2=8821". Because the order of the
key properties is not significant, the model path can also be: "ex_sampleClass.label2=8821,label1=9921".

Class ex_sampleClass
{
 [key]
 uint32 labe11;
 [key]
 string label2;
 uint32 size;
 uint32 weight;
};

instance of ex_sampleClass
{
 label1 = 9921;
 label2 = "SampleLabel";
 size = 80;
 weight = 45
};

instance of ex_sampleClass
{
 label1 = 0121;
 label2 = "Component";
 size = 80;
 weight = 45
};

For associations, a model path specifies the value of a reference in an INSTANCE OF statement for an
association. In the following composedof-association example, the model path
"ex_sampleClass.label1=9921,label2=8821" references an instance of the ex_sampleClass that is playing
the role of a composer:

 [Association]
Class ex_composedof
{
 [key] composer REF ex_sampleClass;
 [key] component REF ex_sampleClass;
};
instance of ex_composedof
{
 composer = "ex_sampleClass.label1=9921,label2=\"SampleLabel\"";
 component = "ex_sampleClass.label1=0121,label2=\"Component\"";
}

An object path for the ex_composedof instance is as follows. Notice how double quote characters are
handled:

ex_composedof.composer="ex_sampleClass.label1=9921,label2=\"SampleLabel\"",componen
t="ex_sampleClass.label1=0121,label2=\"Component\""

80 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902

2903

2904

2905
2906
2907

2908

2909
2910
2911

Even in the unusual case of a reference to an association, the object name is formed the same way:
 [Association]
Class ex_moreComposed
{
 composedof REF ex_composedof;
 . . .
};

instance of ex_moreComposed
{
 composedof =
 "ex_composedof.composer=\"ex_sampleClass.label1=9921,label2=\\\"SampleLabel\\\"
 \",component=\"ex_sampleClass.label1=0121,label2=\\\"Component\\\"\"";
 . . .
};

The object name can be used as the value for object references and for object queries.

9 Mapping Existing Models into CIM
Existing models have their own meta model and model. Three types of mappings can occur between
meta schemas: technique, recast, and domain. Each mapping can be applied when MIF syntax is
converted to MOF syntax.

9.1 Technique Mapping

A technique mapping uses the CIM meta-model constructs to describe the meta constructs of the source
modeling technique (for example, MIF, GDMO, and SMI). Essentially, the CIM meta model is a meta
meta-model for the source technique (see Figure 13).

meta
constructs

expressions

Technique Specific Model

CIM Meta Model

 2912

2913

2914
2915
2916

Figure 13 – Technique Mapping Example

The DMTF uses the management information format (MIF) as the meta model to describe distributed
management information in a common way. Therefore, it is meaningful to describe a technique mapping
in which the CIM meta model is used to describe the MIF syntax.

Version 2.5.0 DMTF Standard 81

Common Information Model (CIM) Infrastructure DSP0004

The mapping presented here takes the important types that can appear in a MIF file and then creates
classes for them. Thus, component, group, attribute, table, and enum are expressed in the CIM meta
model as classes. In addition, associations are defined to document how these classes are combined.

2917
2918
2919
2920 Figure 14 illustrates the results.

Group

Table

Component

Enum

describedBy

includes

usesTemplate

usesName

usesUnnamed

Name
Description

Name
ID

Class

Name
ID

Class

Attribute

Name
ID
Description
type
Value

 2921

2922

2923

2924
2925
2926
2927

Figure 14 – MIF Technique Mapping Example

9.2 Recast Mapping

A recast mapping maps the meta constructs of the sources into the targeted meta constructs so that a
model expressed in the source can be translated into the target (Figure 15). The major design work is to
develop a mapping between the meta model of the sources and the CIM meta model. When this is done,
the source expressions are recast.

 2928

2929 Figure 15 – Recast Mapping

82 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

2930
2931
2932
2933
2934

2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990

Following is an example of a recast mapping for MIF, assuming the following mapping:
DMI attributes -> CIM properties
DMI key attributes -> CIM key properties
DMI groups -> CIM classes
DMI components -> CIM classes

The standard DMI ComponentID group can be recast into a corresponding CIM class:
Start Group
Name = "ComponentID"
Class = "DMTF|ComponentID|001"
ID = 1
Description = "This group defines the attributes common to all "
 "components. This group is required."
Start Attribute
 Name = "Manufacturer"
 ID = 1
 Description = "Manufacturer of this system."
 Access = Read-Only
 Storage = Common
 Type = DisplayString(64)
 Value = ""
End Attribute
Start Attribute
 Name = "Product"
 ID = 2
 Description = "Product name for this system."
 Access = Read-Only
 Storage = Common
 Type = DisplayString(64)
 Value = ""
End Attribute
Start Attribute
 Name = "Version"
 ID = 3
 Description = "Version number of this system."
 Access = Read-Only
 Storage = Specific
 Type = DisplayString(64)
 Value = ""
End Attribute
Start Attribute
 Name = "Serial Number"
 ID = 4
 Description = "Serial number for this system."
 Access = Read-Only
 Storage = Specific
 Type = DisplayString(64)
 Value = ""
End Attribute
Start Attribute
 Name = "Installation"
 ID = 5
 Description = "Component installation time and date."
 Access = Read-Only
 Storage = Specific
 Type = Date
 Value = ""
End Attribute
Start Attribute
 Name = "Verify"
 ID = 6
 Description = "A code that provides a level of verification that the "

Version 2.5.0 DMTF Standard 83

Common Information Model (CIM) Infrastructure DSP0004

2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006

3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028

3029

3030
3031
3032
3033

3034
3035
3036

3037

 "component is still installed and working."
 Access = Read-Only
 Storage = Common
 Type = Start ENUM
 0 = "An error occurred; check status code."
 1 = "This component does not exist."
 2 = "Verification is not supported."
 3 = "Reserved."
 4 = "This component exists, but the functionality is untested."
 5 = "This component exists, but the functionality is unknown."
 6 = "This component exists, and is not functioning correctly."
 7 = "This component exists, and is functioning correctly."
 End ENUM
 Value = 1
End Attribute
End Group

A corresponding CIM class might be the following. Notice that properties in the example include an ID
qualifier to represent the ID of the corresponding DMI attribute. Here, a user-defined qualifier may be
necessary:

[Name ("ComponentID"), ID (1), Description (
 "This group defines the attributes common to all components. "
 "This group is required.")]
class DMTF|ComponentID|001 {
 [ID (1), Description ("Manufacturer of this system."), maxlen (64)]
 string Manufacturer;
 [ID (2), Description ("Product name for this system."), maxlen (64)]
 string Product;
 [ID (3), Description ("Version number of this system."), maxlen (64)]
 string Version;
 [ID (4), Description ("Serial number for this system."), maxlen (64)]
 string Serial_Number;
 [ID (5), Description("Component installation time and date.")]
 datetime Installation;
 [ID (6), Description("A code that provides a level of verification "
 "that the component is still installed and working."),
 Value (1)]
 string Verify;
};

9.3 Domain Mapping

A domain mapping takes a source expressed in a particular technique and maps its content into either the
core or common models or extension sub-schemas of the CIM. This mapping does not rely heavily on a
meta-to-meta mapping; it is primarily a content-to-content mapping. In one case, the mapping is actually a
re-expression of content in a more common way using a more expressive technique.

Following is an example of how DMI can supply CIM properties using information from the DMI disks
group ("DMTF|Disks|002"). For a hypothetical CIM disk class, the CIM properties are expressed as shown
in Table 8.

Table 8 – Domain Mapping Example

CIM "Disk" Property Can Be Sourced from DMI Group/Attribute

StorageType
StorageInterface
RemovableDrive
RemovableMedia
DiskSize

"MIF.DMTF|Disks|002.1"
"MIF.DMTF|Disks|002.3"
"MIF.DMTF|Disks|002.6"
"MIF.DMTF|Disks|002.7"
"MIF.DMTF|Disks|002.16"

84 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

9.4 Mapping Scratch Pads 3038

3039
3040
3041
3042
3043

3044

3045
3046
3047
3048
3049

3050
3051

In general, when the contents of models are mapped between different meta schemas, information is lost
or missing. To fill this gap, scratch pads are expressed in the CIM meta model using qualifiers, which are
actually extensions to the meta model (for example, see 10.2). These scratch pads are critical to the
exchange of core, common, and extension model content with the various technologies used to build
management applications.

10 Repository Perspective
This clause describes a repository and presents a complete picture of the potential to exploit it. A
repository stores definitions and structural information, and it includes the capability to extract the
definitions in a form that is useful to application developers. Some repositories allow the definitions to be
imported into and exported from the repository in multiple forms. The notions of importing and exporting
can be refined so that they distinguish between three types of mappings.

Using the mapping definitions in 9, the repository can be organized into the four partitions: meta,
technique, recast, and domain (see Figure 16).

Repository –
store meta model
information for
program access.

CIM Meta Model

core schema
common schema
extension schemas

Has Instances realized in

Repository

Meta

Domain

RecastTechniqueImport
 Syntax Definition

 Expressions

Export

sub-partitions

Content of CIM Realization of CIM

 3052

3053 Figure 16 – Repository Partitions

Version 2.5.0 DMTF Standard 85

Common Information Model (CIM) Infrastructure DSP0004

3054

3055

3056

3057

3058

3059
3060

3061
3062
3063
3064

3065
3066

3067

3068
3069
3070
3071

3072
3073

3074
3075
3076
3077

3078
3079

3080
3081

3082
3083

3084
3085
3086
3087
3088

3089
3090
3091

3092
3093

3094
3095

3096
3097

The repository partitions have the following characteristics:

• Each partition is discrete:

– The meta partition refers to the definitions of the CIM meta model.

– The technique partition refers to definitions that are loaded using technique mappings.

– The recast partition refers to definitions that are loaded using recast mappings.

– The domain partition refers to the definitions associated with the core and common models
and the extension schemas.

• The technique and recast partitions can be organized into multiple sub-partitions to capture
each source uniquely. For example, there is a technique sub-partition for each unique meta
language encountered (that is, one for MIF, one for GDMO, one for SMI, and so on). In the re-
cast partition, there is a sub-partition for each meta language.

• The act of importing the content of an existing source can result in entries in the recast or
domain partition.

10.1 DMTF MIF Mapping Strategies

When the meta-model definition and the baseline for the CIM schema are complete, the next step is to
map another source of management information (such as standard groups) into the repository. The main
goal is to do the work required to import one or more of the standard groups. The possible import
scenarios for a DMTF standard group are as follows:

• To Technique Partition: Create a technique mapping for the MIF syntax that is the same for all
standard groups and needs to be updated only if the MIF syntax changes.

• To Recast Partition: Create a recast mapping from a particular standard group into a sub-
partition of the recast partition. This mapping allows the entire contents of the selected group to
be loaded into a sub-partition of the recast partition. The same algorithm can be used to map
additional standard groups into that same sub-partition.

• To Domain Partition: Create a domain mapping for the content of a particular standard group
that overlaps with the content of the CIM schema.

• To Domain Partition: Create a domain mapping for the content of a particular standard group
that does not overlap with CIM schema into an extension sub-schema.

• To Domain Partition: Propose extensions to the content of the CIM schema and then create a
domain mapping.

Any combination of these five scenarios can be initiated by a team that is responsible for mapping an
existing source into the CIM repository. Many other details must be addressed as the content of any of
the sources changes or when the core or common model changes. When numerous existing sources are
imported using all the import scenarios, we must consider the export side. Ignoring the technique
partition, the possible export scenarios are as follows:

• From Recast Partition: Create a recast mapping for a sub-partition in the recast partition to a
standard group (that is, inverse of import 2). The desired method is to use the recast mapping to
translate a standard group into a GDMO definition.

• From Recast Partition: Create a domain mapping for a recast sub-partition to a known
management model that is not the original source for the content that overlaps.

• From Domain Partition: Create a recast mapping for the complete contents of the CIM schema
to a selected technique (for MIF, this remapping results in a non-standard group).

• From Domain Partition: Create a domain mapping for the contents of the CIM schema that
overlaps with the content of an existing management model.

86 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3098
3099

3100

3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111

• From Domain Partition: Create a domain mapping for the entire contents of the CIM schema to
an existing management model with the necessary extensions.

10.2 Recording Mapping Decisions

To understand the role of the scratch pad in the repository (see 9.4), it is necessary to look at the import
and export scenarios for the different partitions in the repository (technique, recast, and application).
These mappings can be organized into two categories: homogeneous and heterogeneous. In the
homogeneous category, the imported syntax and expressions are the same as the exported syntax and
expressions (for example, software MIF in and software MIF out). In the heterogeneous category, the
imported syntax and expressions are different from the exported syntax and expressions (for example,
MIF in and GDMO out). For the homogenous category, the information can be recorded by creating
qualifiers during an import operation so the content can be exported properly. For the heterogeneous
category, the qualifiers must be added after the content is loaded into a partition of the repository.
Figure 17 shows the X schema imported into the Y schema and then homogeneously exported into X or
heterogeneously exported into Z. Each export arrow works with a different scratch pad.

 3112

3113 Figure 17 – Homogeneous and Heterogeneous Export

Version 2.5.0 DMTF Standard 87

Common Information Model (CIM) Infrastructure DSP0004

The definition of the heterogeneous category is actually based on knowing how a schema is loaded into
the repository. To assist in understanding the export process, we can think of this process as using one of
multiple scratch pads. One scratch pad is created when the schema is loaded, and the others are added
to handle mappings to schema techniques other than the import source (

3114
3115
3116
3117 Figure 18).

 3118

3119

3120
3121
3122

3123
3124
3125
3126
3127

3128
3129
3130
3131
3132
3133
3134
3135
3136
3137

3138

3139
3140
3141

3142
3143

Figure 18 – Scratch Pads and Mapping

Figure 18 shows how the scratch pads of qualifiers are used without factoring in the unique aspects of
each partition (technique, recast, applications) within the CIM repository. The next step is to consider
these partitions.

For the technique partition, there is no need for a scratch pad because the CIM meta model is used to
describe the constructs in the source meta schema. Therefore, by definition, there is one homogeneous
mapping for each meta schema covered by the technique partition. These mappings create CIM objects
for the syntactic constructs of the schema and create associations for the ways they can be combined.
(For example, MIF groups include attributes.)

For the recast partition, there are multiple scratch pads for each sub-partition because one is required for
each export target and there can be multiple mapping algorithms for each target. Multiple mapping
algorithms occur because part of creating a recast mapping involves mapping the constructs of the
source into CIM meta-model constructs. Therefore, for the MIF syntax, a mapping must be created for
component, group, attribute, and so on, into appropriate CIM meta-model constructs such as object,
association, property, and so on. These mappings can be arbitrary. For example, one decision to be
made is whether a group or a component maps into an object. Two different recast mapping algorithms
are possible: one that maps groups into objects with qualifiers that preserve the component, and one that
maps components into objects with qualifiers that preserve the group name for the properties. Therefore,
the scratch pads in the recast partition are organized by target technique and employed algorithm.

For the domain partitions, there are two types of mappings:

• A mapping similar to the recast partition in that part of the domain partition is mapped into the
syntax of another meta schema. These mappings can use the same qualifier scratch pads and
associated algorithms that are developed for the recast partition.

• A mapping that facilitates documenting the content overlap between the domain partition and
another model (for example, software groups).

88 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3144
3145
3146
3147
3148
3149
3150
3151

3152
3153
3154
3155

These mappings cannot be determined in a generic way at import time; therefore, it is best to consider
them in the context of exporting. The mapping uses filters to determine the overlaps and then performs
the necessary conversions. The filtering can use qualifiers to indicate that a particular set of domain
partition constructs maps into a combination of constructs in the target/source model. The conversions
are documented in the repository using a complex set of qualifiers that capture how to write or insert the
overlapped content into the target model. The mapping qualifiers for the domain partition are organized
like the recasting partition for the syntax conversions, and there is a scratch pad for each model for
documenting overlapping content.

In summary, pick the partition, develop a mapping, and identify the qualifiers necessary to capture
potentially lost information when mapping details are developed for a particular source. On the export
side, the mapping algorithm verifies whether the content to be exported includes the necessary qualifiers
for the logic to work.

Version 2.5.0 DMTF Standard 89

Common Information Model (CIM) Infrastructure DSP0004

ANNEX A
(normative)

MOF Syntax Grammar Description

3156
3157
3158
3159

3160
3161
3162

3163

3164

3165
3166
3167

3168
3169

3170
3171
3172

3173

3174

3175
3176
3177
3178

3179

This annex presents the grammar for MOF syntax. While the grammar is convenient for describing the
MOF syntax clearly, the same MOF language can also be described by a different, LL(1)-parsable,
grammar, which enables low-footprint implementations of MOF compilers. In addition, note these points:

1) An empty property list is equivalent to " * " .

2) All keywords are case-insensitive.

3) The IDENTIFIER type is used for names of classes, properties, qualifiers, methods, and
namespaces. The rules governing the naming of classes and properties are presented in
ANNEX E.

4) A string value may contain quote (") characters, if each is immediately preceded by a
backslash (\) character.

5) In the current release, the MOF BNF does not support initializing an array value to empty (an
array with no elements). In the 3.0 version of this specification, the DMTF plans to extend the
MOF BNF to support this functionality as follows:

arrayInitialize = "{" [arrayElementList] "}"

arrayElementList = constantValue *("," constantValue)

To ensure interoperability with the V2.x implementations, the DMTF recommends that, where
possible, the value of NULL rather than empty ({ }) be used to represent the most common use
cases. However, if this practice should cause confusion or other issues, implementations may
use the syntax of the 3.0 version or higher to initialize an empty array.

The following is the grammar for the MOF syntax:

mofSpecification = *mofProduction

mofProduction = compilerDirective |
 classDeclaration |
 assocDeclaration |
 indicDeclaration |
 qualifierDeclaration |
 instanceDeclaration

compilerDirective = PRAGMA pragmaName "(" pragmaParameter ")"

pragmaName = IDENTIFIER

pragmaParameter = stringValue

classDeclaration = [qualifierList]
 CLASS className [superClass]
 "{" *classFeature "}" ";"

90 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

assocDeclaration = "[" ASSOCIATION *("," qualifier) "]"
 CLASS className [superClass]
 "{" *associationFeature "}" ";"

 // Context:
 // The remaining qualifier list must not include

// the ASSOCIATION qualifier again. If the
// association has no super association, then at
// least two references must be specified! The
// ASSOCIATION qualifier may be omitted in
// sub-associations.

indicDeclaration = "[" INDICATION *("," qualifier) "]"
 CLASS className [superClass]
 "{" *classFeature "}" ";"

className = schemaName "_" IDENTIFIER // NO whitespace !

 // Context:
 // Schema name must not include "_" !

alias = AS aliasIdentifer

aliasIdentifer = "$" IDENTIFIER // NO whitespace !

superClass = ":" className

classFeature = propertyDeclaration | methodDeclaration

associationFeature = classFeature | referenceDeclaration

qualifierList = "[" qualifier *("," qualifier) "]"

qualifier = qualifierName [qualifierParameter] [":" 1*flavor]

qualifierParameter = "(" constantValue ")" | arrayInitializer

flavor = ENABLEOVERRIDE | DISABLEOVERRIDE | RESTRICTED |
 TOSUBCLASS | TRANSLATABLE

propertyDeclaration = [qualifierList] dataType propertyName
 [array] [defaultValue] ";"

referenceDeclaration = [qualifierList] objectRef referenceName
 [defaultValue] ";"

methodDeclaration = [qualifierList] dataType methodName
 "(" [parameterList] ")" ";"

propertyName = IDENTIFIER

referenceName = IDENTIFIER

Version 2.5.0 DMTF Standard 91

Common Information Model (CIM) Infrastructure DSP0004

methodName = IDENTIFIER

dataType = DT_UINT8 | DT_SINT8 | DT_UINT16 | DT_SINT16 |
 DT_UINT32 | DT_SINT32 | DT_UINT64 | DT_SINT64 |
 DT_REAL32 | DT_REAL64 | DT_CHAR16 |
 DT_STR | DT_BOOL | DT_DATETIME

objectRef = className REF

parameterList = parameter *("," parameter)

parameter = [qualifierList] (dataType|objectRef) parameterName

[array]
parameterName = IDENTIFIER

array = "[" [positiveDecimalValue] "]"

positiveDecimalValue = positiveDecimalDigit *decimalDigit

defaultValue = "=" initializer

initializer = ConstantValue | arrayInitializer | referenceInitializer

arrayInitializer = "{" constantValue*("," constantValue)"}"

constantValue = integerValue | realValue | charValue | stringValue |
 booleanValue | nullValue

integerValue = binaryValue | octalValue | decimalValue | hexValue

referenceInitializer = objectHandle | aliasIdentifier

objectHandle = stringValue

// the(unescaped)contents of which must form an
// objectName; see examples

objectName [namespacePath ":"] modelPath

namespacePath [namespaceType "://"] namespaceHandle

namespaceType One or more UCS-2 characters NOT including the sequence

"://"

namespaceHandle = One or more UCS-2 character, possibly including ":"

// Note that modelPath may also contain ":" characters
// within quotes; some care is required to parse
// objectNames.

modelPath = className "." keyValuePairList

// Note: className alone represents a path to a class,
// rather than an instance

keyValuePairList = keyValuePair *("," keyValuePair)

92 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

keyValuePair = (propertyName "=" constantValue) | (referenceName "="

objectHandle)

qualifierDeclaration = QUALIFIER qualifierName qualifierType scope
 [defaultFlavor] ";"

qualifierName = IDENTIFIER

qualifierType = ":" dataType [array] [defaultValue]

scope = "," SCOPE "(" metaElement *("," metaElement) ")"

metaElement = CLASS | ASSOCIATION | INDICATION | QUALIFIER
 PROPERTY | REFERENCE | METHOD | PARAMETER | ANY

defaultFlavor = "," FLAVOR "(" flavor *("," flavor) ")"

instanceDeclaration = [qualifierList] INSTANCE OF className [alias]
 "{" 1*valueInitializer "}" ";"

valueInitializer = [qualifierList]
 (propertyName | referenceName) "=" initializer ";"

3180 These productions do not allow white space between the terms:

schemaName = IDENTIFIER
 // Context:
 // Schema name must not include "_" !
fileName = stringValue

binaryValue = ["+" | "-"] 1*binaryDigit ("b" | "B")

binaryDigit = "0" | "1"

octalValue = ["+" | "-"] "0" 1*octalDigit

octalDigit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"

decimalValue = ["+" | "-"] (positiveDecimalDigit *decimalDigit | "0")

decimalDigit = "0" | positiveDecimalDigit

positiveDecimalDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

hexValue = ["+" | "-"] ("0x" | "0X") 1*hexDigit

hexDigit = decimalDigit | "a" | "A" | "b" | "B" | "c" | "C" |
 "d" | "D" | "e" | "E" | "f" | "F"

realValue = ["+" | "-"] *decimalDigit "." 1*decimalDigit
 [("e" | "E") ["+" | "-"] 1*decimalDigit]

charValue = // any single-quoted Unicode-character, except

Version 2.5.0 DMTF Standard 93

Common Information Model (CIM) Infrastructure DSP0004

// single quotes

stringValue = 1*(""" *stringChar """)

stringChar = "\" """ | // encoding for double-quote

"\" "\" | // encoding for backslash
any UCS-2 character but """ or "\"

booleanValue = TRUE | FALSE

nullValue = NULL

3181 The remaining productions are case-insensitive keywords:

ANY = "any"
AS = "as"
ASSOCIATION = "association"
CLASS = "class"
DISABLEOVERRIDE = "disableOverride"
DT_BOOL = "boolean"
DT_CHAR16 = "char16"
DT_DATETIME = "datetime"
DT_REAL32 = "real32"
DT_REAL64 = "real64"
DT_SINT16 = "sint16"
DT_SINT32 = "sint32"
DT_SINT64 = "sint64"
DT_SINT8 = "sint8"
DT_STR = "string"
DT_UINT16 = "uint16"
DT_UINT32 = "uint32"
DT_UINT64 = "uint64"
DT_UINT8 = "uint8"
ENABLEOVERRIDE = "enableoverride"
FALSE = "false"
FLAVOR = "flavor"
INDICATION = "indication"
INSTANCE = "instance"
METHOD = "method"
NULL = "null"
OF = "of"
PARAMETER = "parameter"
PRAGMA = "#pragma"
PROPERTY = "property"
QUALIFIER = "qualifier"
REF = "ref"
REFERENCE = "reference"
RESTRICTED = "restricted"
SCHEMA = "schema"
SCOPE = "scope"
TOSUBCLASS = "tosubclass"
TRANSLATABLE = "translatable"
TRUE = "true"

94 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

ANNEX B
(informative)

CIM Meta Schema

3182
3183
3184
3185

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233

// ==
// NamedElement
// ==
 [Version("2.3.0"), Description(
 "The Meta_NamedElement class represents the root class for the "
 "Metaschema. It has one property: Name, which is inherited by all the "
 "non-association classes in the Metaschema. Every metaconstruct is "
 "expressed as a descendent of the class Meta_Named Element.")]
class Meta_NamedElement
{
 [Description (
 "The Name property indicates the name of the current Metaschema element. "
 "The following rules apply to the Name property, depending on the "
 "creation type of the object:Fully-qualified class names, such "
 "as those prefixed by the schema name, are unique within the schema."
 "Fully-qualified association and indication names are unique within "
 "the schema (implied by the fact that association and indication classes "
 "are subtypes of Meta_Class). Implicitly-defined qualifier names are "
 "unique within the scope of the characterized object; that is, a named "
 "element may not have two characteristics with the same name."
 "Explicitly-defined qualifier names are unique within the defining "
 "schema. An implicitly-defined qualifier must agree in type, scope and "
 "flavor with any explicitly-defined qualifier of the same name."
 "Trigger names must be unique within the property, class or method "
 "to which the trigger applies. Method and property names must be "
 "unique within the domain class. A class can inherit more than one "
 "property or method with the same name. Property and method names can be "
 "qualified using the name of the declaring class. Reference names "
 "must be unique within the scope of their defining association class. "
 "Reference names obey the same rules as property names. Note: "
 "Reference names are not required to be unique within the scope of the "
 "related class. Within such a scope, the reference provides the name of "
 "the class within the context defined by the association.")]
 string Name;
};

// ==
// QualifierFlavor
// ==
 [Version("2.3.0"), Description (
 "The Meta_QualifierFlavor class encapsulates extra semantics attached "
 "to a qualifier such as the rules for transmission from superClass "
 "to subClass and whether or not the qualifier value may be translated "
 "into other languages")]
class Meta_QualifierFlavor:Meta_NamedElement
{
};

Version 2.5.0 DMTF Standard 95

Common Information Model (CIM) Infrastructure DSP0004

3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296

// ==
// Schema
// ==
 [Version("2.3.0"), Description (
 "The Meta_Schema class represents a group of classes with a single owner."
 " Schemas are used for administration and class naming. Class names must "
 "be unique within their owning schemas.")]
class Meta_Schema:Meta_NamedElement
{
};

// ==
// Trigger
// ==
 [Version("2.3.0"), Description (
 "A Trigger is a recognition of a state change (such as create, delete, "
 "update, or access) of a Class instance, and update or access of a "
 "Property.")]
class Meta_Trigger:Meta_NamedElement
{
};

// ==
// Qualifier
// ==
 [Version("2.3.0"), Description (
 "The Meta_Qualifier class represents characteristics of named elements. "
 "For example, there are qualifiers that define the characteristics of a "
 "property or the key of a class. Qualifiers provide a mechanism that "
 "makes the Metaschema extensible in a limited and controlled fashion."
 "<P>It is possible to add new types of qualifiers by the introduction of "
 "a new qualifier name, thereby providing new types of metadata to "
 "processes that manage and manipulate classes, properties, and other "
 "elements of the Metaschema.")]
class Meta_Qualifier:Meta_NamedElement
{
 [Description ("The Value property indicates the value of the qualifier.")]
 string Value;
};

// ==
// Method
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Method class represents a declaration of a signature; that is, "
 "the method name, return type and parameters, and (in the case of a "
 "concrete class) may imply an implementation.")]
class Meta_Method:Meta_NamedElement
{
};

// ==
// Property
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Property class represents a value used to characterize "
 "instances of a class. A property can be thought of as a pair of Get and "
 "Set functions that, when applied to an object, return state and set "
 "state, respectively.")]
class Meta_Property:Meta_NamedElement
{
};

96 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353

// ==
// Reference
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Reference class represents (and defines) the role each object "
 "plays in an association. The reference represents the role name of a "
 "class in the context of an association, which supports the provision of "
 "multiple relationship instances for a given object. For example, a "
 "system can be related to many system components.")]
class Meta_Reference:Meta_Property
{
};

// ==
// Class
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Class class is a collection of instances that support the same "
 "type; that is, the same properties and methods. Classes can be arranged "
 "in a generalization hierarchy that represents subtype relationships "
 "between classes. <P>The generalization hierarchy is a rooted, directed "
 "graph and does not support multiple inheritance. Classes can have "
 "methods, which represent the behavior relevant for that class. A Class "
 "may participate in associations by being the target of one of the "
 "references owned by the association.")]
class Meta_Class:Meta_NamedElement
{
};

// ==
// Indication
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Indication class represents an object created as a result of a "
 "trigger. Because Indications are subtypes of Meta_Class, they can have "
 "properties and methods, and be arranged in a type hierarchy. ")]
class Meta_Indication:Meta_Class
{
};

// ==
// Association
// ==
 [Version("2"), Revision("2"), Description (
 "The Meta_Association class represents a class that contains two or more "
 "references and represents a relationship between two or more objects. "
 "Because of how associations are defined, it is possible to establish a "
 "relationship between classes without affecting any of the related "
 "classes.<P>For example, the addition of an association does not affect "
 "the interface of the related classes; associations have no other "
 "significance. Only associations can have references. Associations can "
 "be a subclass of a non-association class. Any subclass of "
 "Meta_Association is an association.")]
class Meta_Association:Meta_Class
{
};

Version 2.5.0 DMTF Standard 97

Common Information Model (CIM) Infrastructure DSP0004

3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

// ==
// Characteristics
// ==
 [Association, Version("2"), Revision("2"), Aggregation, Description (
 "The Meta_Characteristics class relates a Meta_NamedElement to a "
 "qualifier that characterizes the named element. Meta_NamedElement may "
 "have zero or more characteristics.")]
class Meta_Characteristics
{
 [Description (
 "The Characteristic reference represents the qualifier that "
 "characterizes the named element.")]
 Meta_Qualifier REF Characteristic;
 [Aggregate, Description (
 "The Characterized reference represents the named element that is being "
 "characterized.")]
 Meta_NamedElement REF Characterized;
};

// ==
// PropertyDomain
// ==
 [Association, Version("2"), Revision("2"), Aggregation, Description (
 "The Meta_PropertyDomain class represents an association between a class "
 "and a property.<P>A property has only one domain: the class that owns "
 "the property. A property can have an override relationship with another "
 "property from a different class. The domain of the overridden property "
 "must be a supertype of the domain of the overriding property. The "
 "domain of a reference must be an association.")]
class Meta_PropertyDomain
{
 [Description (
 "The Property reference represents the property that is owned by the "
 "class referenced by Domain.")]
 Meta_Property REF Property;
 [Aggregate, Description (
 "The Domain reference represents the class that owns the property "
 "referenced by Property.")]
 Meta_Class REF Domain;
};

// ==
// MethodDomain
// ==
 [Association, Version("2"), Revision("2"), Aggregation, Description (
 "The Meta_MethodDomain class represents an association between a class "
 "and a method.<P>A method has only one domain: the class that owns the "
 "method, which can have an override relationship with another method "
 "from a different class. The domain of the overridden method must be a "
 "supertype of the domain of the overriding method. The signature of the "
 "method (that is, the name, parameters and return type) must be "
 "identical.")]
class Meta_MethodDomain
{
 [Description (
 "The Method reference represents the method that is owned by the class "
 "referenced by Domain.")]
 Meta_Method REF Method;
 [Aggregate, Description (
 "The Domain reference represents the class that owns the method "
 "referenced by Method.")]
 Meta_Class REF Domain;
};

98 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472

// ==
// ReferenceRange
// ==
 [Association, Version("2"), Revision("2"), Description (
 "The Meta_ReferenceRange class defines the type of the reference.")]
class Meta_ReferenceRange
{
 [Description (
 "The Reference reference represents the reference whose type is defined "
 "by Range.")]
 Meta_Reference REF Reference;
 [Description (
 "The Range reference represents the class that defines the type of "
 "reference.")]
 Meta_Class REF Range;
};

// ==
// QualifiersFlavor
// ==
 [Association, Version("2"), Revision("2"), Aggregation, Description (
 "The Meta_QualifiersFlavor class represents an association between a "
 "flavor and a qualifier.")]
class Meta_QualifiersFlavor
{
 [Description (
 "The Flavor reference represents the qualifier flavor to "
 "be applied to Qualifier.")]
 Meta_QualifierFlavor REF Flavor;
 [Aggregate, Description (
 "The Qualifier reference represents the qualifier to which "
 "Flavor applies.")]
 Meta_Qualifier REF Qualifier;
};

// ==
// SubtypeSupertype
// ==
 [Association, Version("2"), Revision("2"), Description (
 "The Meta_SubtypeSupertype class represents subtype/supertype "
 "relationships between classes arranged in a generalization hierarchy. "
 "This generalization hierarchy is a rooted, directed graph and does not "
 "support multiple inheritance.")]
class Meta_SubtypeSupertype
{
 [Description (
 "The SuperClass reference represents the class that is hierarchically "
 "immediately above the class referenced by SubClass.")]
 Meta_Class REF SuperClass;
 [Description (
 "The SubClass reference represents the class that is the immediate "
 "descendent of the class referenced by SuperClass.")]
 Meta_Class REF SubClass;
};

Version 2.5.0 DMTF Standard 99

Common Information Model (CIM) Infrastructure DSP0004

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535

// ==
// PropertyOverride
// ==
 [Association, Version("2"), Revision("2"), Description (
 "The Meta_PropertyOverride class represents an association between two "
 "properties where one overrides the other.<P>Properties have reflexive "
 "associations that represent property overriding. A property can "
 "override an inherited property, which implies that any access to the "
 "inherited property will result in the invocation of the implementation "
 "of the overriding property. A Property can have an override "
 "relationship with another property from a different class.<P>The domain "
 "of the overridden property must be a supertype of the domain of the "
 "overriding property. The class referenced by the Meta_ReferenceRange "
 "association of an overriding reference must be the same as, or a "
 "subtype of, the class referenced by the Meta_ReferenceRange "
 "associations of the reference being overridden.")]
class Meta_PropertyOverride
{
 [Description (
 "The OverridingProperty reference represents the property that overrides "
 "the property referenced by OverriddenProperty.")]
 Meta_Property REF OverridingProperty;
 [Description (
 "The OverriddenProperty reference represents the property that is "
 "overridden by the property reference by OverridingProperty.")]
 Meta_Property REF OverriddenProperty;
};

// ==
// MethodOverride
// ==
 [Association, Version("2"), Revision("2"), Description (
 "The Meta_MethodOverride class represents an association between two "
 "methods, where one overrides the other. Methods have reflexive "
 "associations that represent method overriding. A method can override an "
 "inherited method, which implies that any access to the inherited method "
 "will result in the invocation of the implementation of the overriding "
 "method.")]
class Meta_MethodOverride
{
 [Description (
 "The OverridingMethod reference represents the method that overrides the "
 "method referenced by OverriddenMethod.")]
 Meta_Method REF OverridingMethod;
 [Description (
 "The OverriddenMethod reference represents the method that is overridden "
 "by the method reference by OverridingMethod.")]
 Meta_Method REF OverriddenMethod;
};

// ==
// ElementSchema
// ==
 [Association, Version("2"), Revision("2"), Aggregation, Description (
 "The Meta_ElementSchema class represents the elements (typically classes "
 "and qualifiers) that make up a schema.")]
class Meta_ElementSchema
{
 [Description (
 "The Element reference represents the named element that belongs to the "
 "schema referenced by Schema.")]
 Meta_NamedElement REF Element;
 [Aggregate, Description (

100 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3536
3537
3538
3539

 "The Schema reference represents the schema to which the named element "
 "referenced by Element belongs.")]
 Meta_Schema REF Schema;
};

Version 2.5.0 DMTF Standard 101

Common Information Model (CIM) Infrastructure DSP0004

ANNEX C
(normative)

Units

3540
3541
3542
3543

3544

3545
3546
3547
3548
3549

3550

3551
3552
3553
3554
3555
3556
3557
3558
3559
3560

3561
3562

C.1 Programmatic Units

This annex defines the concept and syntax of a programmatic unit, which is an expression of a unit of
measure for programmatic access. It makes it easy to recognize the base units of which the actual unit is
made, as well as any numerical multipliers. Programmatic units are used as a value for the PUnit qualifier
and also as a value for any (string typed) CIM elements that represent units. The Boolean IsPUnit
qualifier is used to declare that a string typed element follows the syntax for programmatic units.

Programmatic units must be processed case-sensitively and white-space-sensitively.

As defined in the Augmented BNF (ABNF) syntax, the programmatic unit consists of a base unit that is
optionally followed by other base units that are each either multiplied or divided into the first base unit.
Furthermore, two optional multipliers can be applied. The first is simply a scalar, and the second is an
exponential number consisting of a base and an exponent. The optional multipliers enable the
specification of common derived units of measure in terms of the allowed base units. Note that the base
units defined in this subclause include a superset of the SI base units. When a unit is the empty string,
the value has no unit; that is, it is dimensionless. The multipliers must be understood as part of the
definition of the derived unit; that is, scale prefixes of units are replaced with their numerical value. For
example, "kilometer" is represented as "meter * 1000", replacing the "kilo" scale prefix with the numerical
factor 1000.

A string representing a programmatic unit must follow the production "programmatic-unit" in the syntax
defined in this annex. This syntax supports any type of unit, including SI units, United States units, and
any other standard or non-standard units. The syntax definition here uses ABNF with the following
exceptions:

3563
3564

3565
3566

3567
3568

3569
3570

3571
3572

3573

3574

3575

3576

3577

3578

3579

3580

• Rules separated by a bar (|) represent choices (instead of using a forward slash (/) as
defined in ABNF).

• Any characters must be processed case sensitively instead of case-insensitively, as defined in
ABNF.

ABNF defines the items in the syntax as assembled without inserted white space. Therefore, the syntax
explicitly specifies any white space. The ABNF syntax is defined as follows:

programmatic-unit = ("" | base-unit *([WS] multiplied-base-unit) *([WS] divided-base-unit) [[WS]
modifier1] [[WS] modifier2])

multiplied-base-unit = "*" [WS] base-unit

divided-base-unit = "/" [WS] base-unit

modifier1 = operator [WS] number

modifier2 = operator [WS] base [WS] "^" [WS] exponent

operator = "*" | "/"

number = ["+" | "-"] positive-number

base = positive-whole-number

exponent = ["+"| "-"] positive-whole-number

102 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596
3597
3598
3599

3600
3601
3602

3603
3604
3605

3606
3607

3608

3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622

positive-whole-number = NON-ZERO-DIGIT *(DIGIT)

positive-number = positive-whole-number | ((positive-whole-number | ZERO) "." *(DIGIT))

base-unit = simple-name | decibel-base-unit

simple-name = FIRST-UNIT-CHAR *([S] UNIT-CHAR)

decibel-base-unit = "decibel" [[S] "(" [S] simple-name [S] ")"]

FIRST-UNIT-CHAR = ("A"..."Z" | "a"..."z" | "_" | U+0080...U+FFEF)

UNIT-CHAR = (FIRST-UNIT-CHAR | "0"..."9" | "-")

ZERO = "0"

NON-ZERO-DIGIT = ("1"..."9")

DIGIT = ZERO | NON-ZERO-DIGIT

WS = (S | TAB | NL)

S = U+0020

TAB = U+0009

NL = U+000A

Unicode characters used in the syntax:

U+0009 = "\t" (tab)
U+000A = "\n" (newline)
U+0020 = " " (space)
U+0080...U+FFEF = (other Unicode characters)

For example, a speedometer may be modeled so that the unit of measure is kilometers per hour. It is
necessary to express the derived unit of measure "kilometers per hour" in terms of the allowed base units
"meter" and "second". One kilometer per hour is equivalent to

1000 meters per 3600 seconds
or
one meter / second / 3.6

so the programmatic unit for "kilometers per hour" is expressed as: "meter / second / 3.6", using the
syntax defined here.

Other examples are as follows:

"meter * meter * 10^-6" → square millimeters
"byte * 2^10" → kBytes as used for memory ("kibobyte")
"byte * 10^3" → kBytes as used for storage ("kilobyte”)
"dataword * 4" → QuadWords
"decibel(m) * -1" → -dBm
"second * 250 * 10^-9" → 250 nanoseconds
"foot * foot * foot / minute" → cubic feet per minute, CFM
"revolution / minute" → revolutions per minute, RPM
"pound / inch / inch" → pounds per square inch, PSI
"foot * pound" → foot-pounds
In the "PU Base Unit" column, Table C-1 defines the allowed values for the production "base-unit" in
the syntax, as well as the empty string indicating no unit. The "Symbol" column recommends a
symbol to be used in a human interface. The "Calculation" column relates units to other units. The
"Quantity" column lists the physical quantity measured by the unit.

Version 2.5.0 DMTF Standard 103

Common Information Model (CIM) Infrastructure DSP0004

The base units in Table C-1 consist of the SI base units and the SI derived units amended by other
commonly used units. Note that "SI" is the international abbreviation for the International System of Units
(French: "Système International d’Unites"), defined in

3623
3624

ISO 1000:1992. Also, ISO 1000:1992 defines the
notational conventions for units, which are used in

3625
3626

3627

Table C-1.

Table C-1 – Base Units for Programmatic Units

PU Base Unit Symbol Calculation Quantity

 No unit, dimensionless unit (the empty string)

percent % 1 % = 1/100 Ratio (dimensionless unit)

permille ‰ 1 ‰ = 1/1000 Ratio (dimensionless unit)

decibel dB 1 dB = 10 · lg
(P/P0)
1 dB = 20 · lg
(U/U0)

Logarithmic ratio (dimensionless unit)
Used with a factor of 10 for power, intensity, and so on. Used
with a factor of 20 for voltage, pressure, loudness of sound,
and so on

count Unit for counted items or phenomenons. The description of
the schema element using this unit should describe what kind
of item or phenomenon is counted.

revolution rev 1 rev = 360° Turn, plane angle

degree ° 180° = pi rad Plane angle

radian rad 1 rad = 1 m/m Plane angle

steradian sr 1 sr = 1 m²/m² Solid angle

bit bit Quantity of information

byte B 1 B = 8 bit Quantity of information

dataword word 1 word = N bit Quantity of information. The number of bits depends on the
computer architecture.

meter m SI base unit Length (The corresponding ISO SI unit is "metre.")

inch in 1 in = 0.0254 m Length

rack unit U 1 U = 1.75 in Length (height unit used for computer components, as
defined in EIA-310)

foot ft 1 ft = 12 in Length

yard yd 1 yd = 3 ft Length

mile mi 1 mi = 1760 yd Length (U.S. land mile)

liter l 1000 l = 1 m³ Volume
(The corresponding ISO SI unit is "litre.")

fluid ounce fl.oz 33.8140227 fl.oz
= 1 l

Volume for liquids (U.S. fluid ounce)

liquid gallon gal 1 gal = 128 fl.oz Volume for liquids (U.S. liquid gallon)

mole mol SI base unit Amount of substance

kilogram kg SI base unit Mass

ounce oz 35.27396195 oz =
1 kg

Mass (U.S. ounce, avoirdupois ounce)

104 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

PU Base Unit Symbol Calculation Quantity

pound lb 1 lb = 16 oz Mass (U.S. pound, avoirdupois pound)

second s SI base unit Time

minute min 1 min = 60 s Time

hour h 1 h = 60 min Time

day d 1 d = 24 h Time

week week 1 week = 7 d Time

hertz Hz 1 Hz = 1 /s Frequency

gravity g 1 g = 9.80665
m/s²

Acceleration

degree celsius °C 1 °C = 1 K (diff) Thermodynamic temperature

degree fahrenheit °F 1 °F = 5/9 K (diff) Thermodynamic temperature

kelvin K SI base unit Thermodynamic temperature, color temperature

candela cd SI base unit Luminous intensity

lumen lm 1 lm = 1 cd·sr Luminous flux

nit nit 1 nit = 1 cd/m² Luminance

lux lx 1 lx = 1 lm/m² Illuminance

newton N 1 N = 1 kg·m/s² Force

pascal Pa 1 Pa = 1 N/m² Pressure

bar bar 1 bar = 100000
Pa

Pressure

decibel(A) dB(A) 1 dB(A) = 20 lg
(p/p0)

Loudness of sound, relative to reference sound pressure
level of p0 = 20 µPa in gases, using frequency weight curve
(A)

decibel(C) dB(C) 1 dB(C) = 20 · lg
(p/p0)

Loudness of sound, relative to reference sound pressure
level of p0 = 20 µPa in gases, using frequency weight curve
(C)

joule J 1 J = 1 N·m Energy, work, torque, quantity of heat

watt W 1 W = 1 J/s Power, radiant flux

decibel(m) dBm 1 dBm = 10 · lg
(P/P0)

Power, relative to reference power of P0 = 1 mW

british thermal unit BTU 1 BTU = 1055.056
J

Energy, quantity of heat. The ISO definition of BTU is used
here, out of multiple definitions.

ampere A SI base unit Electric current, magnetomotive force

coulomb C 1 C = 1 A·s Electric charge

volt V 1 V = 1 W/A Electric tension, electric potential, electromotive force

farad F 1 F = 1 C/V Capacitance

ohm Ohm 1 Ohm = 1 V/A Electric resistance

siemens S 1 S = 1 /Ohm Electric conductance

Version 2.5.0 DMTF Standard 105

Common Information Model (CIM) Infrastructure DSP0004

PU Base Unit Symbol Calculation Quantity

weber Wb 1 Wb = 1 V·s Magnetic flux

tesla T 1 T = 1 Wb/m² Magnetic flux density, magnetic induction

henry H 1 H = 1 Wb/A Inductance

becquerel Bq 1 Bq = 1 /s Activity (of a radionuclide)

gray Gy 1 Gy = 1 J/kg Absorbed dose, specific energy imparted, kerma, absorbed
dose index

sievert Sv 1 Sv = 1 J/kg Dose equivalent, dose equivalent index

C.2 Value for Units Qualifier 3628

3629
3630
3631
3632
3633

3634
3635
3636

3637

3638

3639

3640
3641
3642

3643
3644

3645

3646

3647

3648

3649
3650

3651

3652

3653

3654

3655

3656

3657

Deprecated: The Units qualifier has been used both for programmatic access and for displaying a unit.
Because it does not satisfy the full needs of either of these uses, the Units qualifier is deprecated. The
PUnit qualifier should be used instead for programmatic access. For displaying a unit, the client
application should construct the string to be displayed from the PUnit qualifier using the conventions of
the client application.

The UNITS qualifier specifies the unit of measure in which the qualified property, method return value, or
method parameter is expressed. For example, a Size property might have Units (Bytes). The complete
set of DMTF-defined values for the Units qualifier is as follows:

• Bits, KiloBits, MegaBits, GigaBits

• < Bits, KiloBits, MegaBits, GigaBits> per Second

• Bytes, KiloBytes, MegaBytes, GigaBytes, Words, DoubleWords, QuadWords

• Degrees C, Tenths of Degrees C, Hundredths of Degrees C, Degrees F, Tenths of Degrees F,
Hundredths of Degrees F, Degrees K, Tenths of Degrees K, Hundredths of Degrees K, Color
Temperature

• Volts, MilliVolts, Tenths of MilliVolts, Amps, MilliAmps, Tenths of MilliAmps, Watts,
MilliWattHours

• Joules, Coulombs, Newtons

• Lumen, Lux, Candelas

• Pounds, Pounds per Square Inch

• Cycles, Revolutions, Revolutions per Minute, Revolutions per Second

• Minutes, Seconds, Tenths of Seconds, Hundredths of Seconds, MicroSeconds, MilliSeconds,
NanoSeconds

• Hours, Days, Weeks

• Hertz, MegaHertz

• Pixels, Pixels per Inch

• Counts per Inch

• Percent, Tenths of Percent, Hundredths of Percent, Thousandths

• Meters, Centimeters, Millimeters, Cubic Meters, Cubic Centimeters, Cubic Millimeters

• Inches, Feet, Cubic Inches, Cubic Feet, Ounces, Liters, Fluid Ounces

106 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

• Radians, Steradians, Degrees 3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670
3671

3672

3673

3674

3675

• Gravities, Pounds, Foot-Pounds

• Gauss, Gilberts, Henrys, MilliHenrys, Farads, MilliFarads, MicroFarads, PicoFarads

• Ohms, Siemens

• Moles, Becquerels, Parts per Million

• Decibels, Tenths of Decibels

• Grays, Sieverts

• MilliWatts

• DBm

• <Bytes, KiloBytes, MegaBytes, GigaBytes> per Second

• BTU per Hour

• PCI clock cycles
• <Numeric value> <Minutes, Seconds, Tenths of Seconds, Hundreths of Seconds,

MicroSeconds, MilliSeconds, Nanoseconds>

• Us3

• Amps at <Numeric Value> Volts

• Clock Ticks

• Packets, per Thousand Packets

3 Standard Rack Measurement equal to 1.75 inches.

Version 2.5.0 DMTF Standard 107

Common Information Model (CIM) Infrastructure DSP0004

ANNEX D
(informative)

UML Notation

3676
3677
3678
3679

3680
3681
3682

3683
3684
3685

3686
3687

3688
3689
3690

3691

3692

3693

3694

3695
3696

3697

The CIM meta-schema notation is directly based on the notation used in Unified Modeling Language
(UML). There are distinct symbols for all the major constructs in the schema except qualifiers (as opposed
to properties, which are directly represented in the diagrams).

In UML, a class is represented by a rectangle. The class name either stands alone in the rectangle or is in
the uppermost segment of the rectangle. If present, the segment below the segment with the name
contains the properties of the class. If present, a third region contains methods.

A line decorated with a triangle indicates an inheritance relationship; the lower rectangle represents a
subtype of the upper rectangle. The triangle points to the superclass.

Other solid lines represent relationships. The cardinality of the references on either side of the
relationship is indicated by a decoration on either end. The following character combinations are
commonly used:

• "1" indicates a single-valued, required reference

• "0…1" indicates an optional single-valued reference

• "*" indicates an optional many-valued reference (as does "0..*")

• "1..*" indicates a required many-valued reference

A line connected to a rectangle by a dotted line represents a subclass relationship between two
associations. The diagramming notation and its interpretation are summarized in Table D-1.

Table D-1 – Diagramming Notation and Interpretation Summary

Meta Element Interpretation Diagramming Notation

Object
Class Name:

Key Value

Property Name
= Property Value

Primitive type Text to the right of the colon in the
center portion of the class icon

Class

Method

Property

Class name

108 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Meta Element Interpretation Diagramming Notation

Subclass

Association 1:1

1:Many

1:zero or 1

Aggregation

1
1

1
*

1
0..1

Association with
properties

A link-class that has the same
name as the association and uses
normal conventions for
representing properties and
methods

Association
Name

Property

Association with
subclass

A dashed line running from the
sub-association to the super class

Property Middle section of the class icon is
a list of the properties of the class

Method

Property

Class name

Reference One end of the association line
labeled with the name of the
reference

Reference
Name

Method Lower section of the class icon is
a list of the methods of the class

Method

Property

Class name

Overriding No direct equivalent

Note: Use of the same name does
not imply overriding.

Indication Message trace diagram in which
vertical bars represent objects and
horizontal lines represent
messages

Version 2.5.0 DMTF Standard 109

Common Information Model (CIM) Infrastructure DSP0004

Meta Element Interpretation Diagramming Notation

Trigger State transition diagrams

Qualifier No direct equivalent

3698

110 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

ANNEX E
(normative)

Unicode Usage

3699
3700
3701
3702

3703
3704
3705

3706
3707
3708

3709
3710
3711

3712
3713

3714
3715
3716
3717

All punctuation symbols associated with object path or MOF syntax occur within the Basic Latin range
U+0000 to U+007F. These symbols include normal punctuators, such as slashes, colons, commas, and
so on. No important syntactic punctuation character occurs outside of this range.

All characters above U+007F are treated as parts of names, even though there are several reserved
characters such as U+2028 and U+2029, which are logically white space. Therefore, all namespace,
class, and property names are identifiers composed as follows:

• Initial identifier characters must be in set S1, where S1 = {U+005F, U+0041...U+005A,
U+0061...U+007A, U+0080...U+FFEF) (This includes alphabetic characters and the
underscore.)

• All following characters must be in set S2 where S2 = S1 union {U+0030...U+0039} (This
includes alphabetic characters, Arabic numerals 0 through 9, and the underscore.)

Note that the Unicode specials range (U+FFF0...U+FFFF) are not legal for identifiers. While the preceding
sub-range of U+0080...U+FFEF includes many diacritical characters that would not be useful in an
identifier, as well as the Unicode reserved sub-range that is not allocated, it seems advisable for simplicity
of parsers simply to treat this entire sub-range as legal for identifiers.

3718
3719

3720

3721

Refer to RFC2279 for an example of a Universal Transformation Format with specific characteristics for
dealing with multi-octet characters on an application-specific basis.

E.1 MOF Text

MOF files using Unicode must contain a signature as the first two bytes of the text file, either U+FFFE or
U+FEFF, depending on the byte ordering of the text file (as suggested in Section 2.4 of the ISO/IEC 3722
10646:2003). U+FFFE is little endian. 3723

3724
3725
3726

3727

3728
3729
3730
3731
3732

All MOF keywords and punctuation symbols are as described in the MOF syntax document and are not
locale-specific. They are composed of characters falling in the range U+0000...U+007F, regardless of the
locale of origin for the MOF or its identifiers.

E.2 Quoted Strings

In all cases where non-identifier string values are required, delimiters must surround them. The supported
delimiter for strings is U+0027. When a quoted string is started using the delimiter, the same delimiter,
U+0027, is used to terminate it. In addition, the digraph U+005C (" \ ") followed by U+0027 """ constitutes
an embedded quotation mark, not a termination of the quoted string. The characters permitted within
these quotation mark delimiters may fall within the range U+0001 through U+FFEF.

Version 2.5.0 DMTF Standard 111

Common Information Model (CIM) Infrastructure DSP0004

ANNEX F
(informative)

Guidelines

3733
3734
3735
3736

3737

3738
3739

3740

3741
3742

3743
3744

3745
3746
3747

3748

3749

3750
3751
3752
3753

3754
3755
3756
3757
3758

3759
3760
3761
3762
3763
3764

3765
3766
3767
3768
3769
3770

The following are guidelines for modeling:

• Method descriptions are recommended and must, at a minimum, indicate the method’s side
effects (pre- and post-conditions).

• Associations must not be declared as subtypes of classes that are not associations.

• Leading underscores in identifiers are to be discouraged and not used at all in the standard
schemas.

• It is generally recommended that class names not be reused as part of property or method
names. Property and method names are already unique within their defining class.

• To enable information sharing among different CIM implementations, the MaxLen qualifier
should be used to specify the maximum length of string properties. This qualifier must always
be present for string properties used as keys.

• A class with no Abstract qualifier must define, or inherit, key properties.

F.1 Mapping of Octet Strings

Most management models, including SNMP and DMI, support octet strings as data types. The octet string
data type represents arbitrary numeric or textual data that is stored as an indexed byte array of unlimited
but fixed size. Typically, the first n bytes indicate the actual string length. Because some environments
reserve only the first byte, they do not support octet strings larger than 255 bytes.

In the current release, CIM does not support octet strings as a separate data type. To map a single octet
string (that is, an octet of binary data), the equivalent CIM property should be defined as an array of
unsigned 8-bit integers (uint8). The first four bytes of the array contain the length of the octet data: byte 0
is the most significant byte of the length, and byte 3 is the least significant byte. The octet data starts at
byte 4. The OctetString qualifier may be used to indicate that the uint8 array conforms to this encoding.

Arrays of uint8 arrays are not supported. Therefore, to map an array of octet strings, a textual convention
encoding the binary information as hexadecimal digit characters (such as 0x<<0-9,A-F><0-9,A-F>>*) is
used for each octet string in the array. The number of octets in the octet string is encoded in the first 8
hexadecimal digits of the string with the most significant digits in the left-most characters of the string. The
length count octets are included in the length count. For example, "0x00000004" is the encoding of a 0-
length octet string.

The OctetString qualifier qualifies the string array.
EXAMPLE: Example use of the OctetString qualifier on a property is as follows:

[Description ("An octet string"), Octetstring]
uint8 Foo[];
[Description ("An array of octet strings"), Octetstring]
String Bar[];

112 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

F.2 SQL Reserved Words 3771

3772
3773
3774

3775

3776

Avoid using SQL reserved words in class and property names. This restriction particularly applies to
property names because class names are prefixed by the schema name, making a clash with a reserved
word unlikely. The current set of SQL reserved words is as follows:

From sql1992.txt:

AFTER ALIAS ASYNC BEFORE
BOOLEAN BREADTH COMPLETION CALL
CYCLE DATA DEPTH DICTIONARY
EACH ELSEIF EQUALS GENERAL
IF IGNORE LEAVE LESS
LIMIT LOOP MODIFY NEW
NONE OBJECT OFF OID
OLD OPERATION OPERATORS OTHERS
PARAMETERS PENDANT PREORDER PRIVATE
PROTECTED RECURSIVE REF REFERENCING
REPLACE RESIGNAL RETURN RETURNS
ROLE ROUTINE ROW SAVEPOINT
SEARCH SENSITIVE SEQUENCE SIGNAL
SIMILAR SQLEXCEPTION SQLWARNING STRUCTURE
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE
WAIT WHILE WITHOUT

From sql1992.txt (ANNEX E):

ABSOLUTE ACTION ADD ALLOCATE
ALTER ARE ASSERTION AT
BETWEEN BIT BIT_LENGTH BOTH
CASCADE CASCADED CASE CAST
CATALOG CHAR_LENGTH CHARACTER_LENGTH COALESCE
COLLATE COLLATION COLUMN CONNECT
CONNECTION CONSTRAINT CONSTRAINTS CONVERT
CORRESPONDING CROSS CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURRENT_USER DATE DAY
DEALLOCATE DEFERRABLE DEFERRED DESCRIBE
DESCRIPTOR DIAGNOSTICS DISCONNECT DOMAIN
DROP ELSE END-EXEC EXCEPT
EXCEPTION EXECUTE EXTERNAL EXTRACT
FALSE FIRST FULL GET
GLOBAL HOUR IDENTITY IMMEDIATE
INITIALLY INNER INPUT INSENSITIVE
INTERSECT INTERVAL ISOLATION JOIN
LAST LEADING LEFT LEVEL
LOCAL LOWER MATCH MINUTE
MONTH NAMES NATIONAL NATURAL
NCHAR NEXT NO NULLIF
OCTET_LENGTH ONLY OUTER OUTPUT
OVERLAPS PAD PARTIAL POSITION
PREPARE PRESERVE PRIOR READ
RELATIVE RESTRICT REVOKE RIGHT
ROWS SCROLL SECOND SESSION

Version 2.5.0 DMTF Standard 113

Common Information Model (CIM) Infrastructure DSP0004

SESSION_USER SIZE SPACE SQLSTATE
SUBSTRING SYSTEM_USER TEMPORARY THEN
TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE
TRAILING TRANSACTION TRANSLATE TRANSLATION
TRIM TRUE UNKNOWN UPPER
USAGE USING VALUE VARCHAR
VARYING WHEN WRITE YEAR
ZONE

3777

3778

From sql3part2.txt (ANNEX E):

ACTION ACTOR AFTER ALIAS
ASYNC ATTRIBUTES BEFORE BOOLEAN
BREADTH COMPLETION CURRENT_PATH CYCLE
DATA DEPTH DESTROY DICTIONARY
EACH ELEMENT ELSEIF EQUALS
FACTOR GENERAL HOLD IGNORE
INSTEAD LESS LIMIT LIST
MODIFY NEW NEW_TABLE NO
NONE OFF OID OLD
OLD_TABLE OPERATION OPERATOR OPERATORS
PARAMETERS PATH PENDANT POSTFIX
PREFIX PREORDER PRIVATE PROTECTED
RECURSIVE REFERENCING REPLACE ROLE
ROUTINE ROW SAVEPOINT SEARCH
SENSITIVE SEQUENCE SESSION SIMILAR
SPACE SQLEXCEPTION SQLWARNING START
STATE STRUCTURE SYMBOL TERM
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE
WAIT WITHOUT

sql3part4.txt (ANNEX E):

CALL DO ELSEIF EXCEPTION
IF LEAVE LOOP OTHERS
RESIGNAL RETURN RETURNS SIGNAL
TUPLE WHILE

114 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

ANNEX G
(normative)

EmbeddedObject and EmbeddedInstance Qualifiers

3779
3780
3781
3782

3783
3784
3785
3786

3787
3788
3789
3790
3791
3792
3793
3794

3795
3796
3797
3798

3799
3800
3801
3802

3803

3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825

Use of the EmbeddedObject and EmbeddedInstance qualifiers is motivated by the need to include the
data of a specific instance in an indication (event notification) or to capture the contents of an instance at
a point in time (for example, to include the CIM_DiagnosticSetting properties that dictate a particular
CIM_DiagnosticResult in the Result object).

Therefore, the next major version of the CIM Specification is expected to include a separate data type for
directly representing instances (or snapshots of instances). Until then, the EmbeddedObject and
EmbeddedInstance qualifiers can be used to achieve an approximately equivalent effect. They permit a
CIM object manager (or other entity) to simulate embedded instances or classes by encoding them as
strings when they are presented externally. Clients that do not handle embedded objects may treat
properties with this qualifier just like any other string-valued property. Clients that do want to realize the
capability of embedded objects can extract the embedded object information by decoding the presented
string value.

To reduce the parsing burden, the encoding that represents the embedded object in the string value
depends on the protocol or representation used for transmitting the containing instance. This dependency
makes the string value appear to vary according to the circumstances in which it is observed. This is an
acknowledged weakness of using a qualifier instead of a new data type.

This document defines the encoding of embedded objects for the MOF representation and for the CIM-
XML protocol. When other protocols or representations are used to communicate with embedded object-
aware consumers of CIM data, they must include particulars on the encoding for the values of string-
typed elements qualified with EmbeddedObject or EmbeddedInstance.

G.1 Encoding for MOF

When the values of string-typed elements qualified with EmbeddedObject or EmbeddedInstance are
rendered in MOF, the embedded object must be encoded into string form using the MOF syntax for the
instanceDeclaration nonterminal in embedded instances or for the classDeclaration, assocDeclaration, or
indicDeclaration nonterminals, as appropriate in embedded classes (see ANNEX A).
EXAMPLE:

Instance of CIM_InstCreation {
 EventTime = "20000208165854.457000-360";
 SourceInstance =
 "Instance of CIM_FAN {"
 "DeviceID = \"Fan 1\";"
 "Status = \"Degraded\";"
 "};";
};
Instance of CIM_ClassCreation {
 EventTime = "20031120165854.457000-360";
 ClassDefinition =
 "class CIM_Fan : CIM_CoolingDevice {"
 " boolean VariableSpeed;"
 " [Units (\"Revolutions per Minute\")]"
 "uint64 DesiredSpeed;"
 "};"
};

Version 2.5.0 DMTF Standard 115

Common Information Model (CIM) Infrastructure DSP0004

G.2 Encoding for CIM-XML 3826

3827
3828

When the values of string-typed elements qualified with EmbeddedObject or EmbeddedInstance are
rendered in CIM-XML, the embedded object must be encoded into string form as either an INSTANCE
element (for instances) or a CLASS element (for classes), as defined in the DMTF DSP0200, and 3829
DSP0201. 3830

116 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

ANNEX H
(informative)

Schema Errata

3831
3832
3833
3834

3835
3836

3837
3838

3839
3840

3841
3842
3843

3844

3845
3846

3847
3848
3849
3850

3851
3852

3853

3854
3855

3856
3857
3858

Based on the concepts and constructs in this specification, the CIM schema is expected to evolve for the
following reasons:

• To add new classes, associations, qualifiers, properties and/or methods. This task is addressed
in 5.3.

• To correct errors in the Final Release versions of the schema. This task fixes errata in the CIM
schemas after their final release.

• To deprecate and update the model by labeling classes, associations, qualifiers, and so on as
"not recommended for future development" and replacing them with new constructs. This task is
addressed by the Deprecated qualifier described in 5.5.2.11.

Examples of errata to correct in CIM schemas are as follows:

• Incorrectly or incompletely defined keys (an array defined as a key property, or incompletely
specified propagated keys)

• Invalid subclassing, such as subclassing an optional association from a weak relationship (that
is, a mandatory association), subclassing a nonassociation class from an association, or
subclassing an association but having different reference names that result in three or more
references on an association

• Class references reversed as defined by an association's roles (antecedent/dependent
references reversed)

• Use of SQL reserved words as property names

• Violation of semantics, such as Missing Min(1) on a Weak relationship, contradicting that a
Weak relationship is mandatory

Errata are a serious matter because the schema should be correct, but the needs of existing
implementations must be taken into account. Therefore, the DMTF has defined the following process (in
addition to the normal release process) with respect to any schema errata:

3859
3860

3861
3862
3863
3864

3865

a) Any error should promptly be reported to the Technical Committee (technical@dmtf.org) for
review. Suggestions for correcting the error should also be made, if possible.

b) The Technical Committee documents its findings in an email message to the submitter within
21 days. These findings report the Committee's decision about whether the submission is a
valid erratum, the reasoning behind the decision, the recommended strategy to correct the
error, and whether backward compatibility is possible.

c) If the error is valid, an email message is sent (with the reply to the submitter) to all DMTF
members (members@dmtf.org). The message highlights the error, the findings of the Technical
Committee, and the strategy to correct the error. In addition, the committee indicates the
affected versions of the schema (that is, only the latest or all schemas after a specific version).

3866
3867
3868

3869
3870
3871

d) All members are invited to respond to the Technical Committee within 30 days regarding the
impact of the correction strategy on their implementations. The effects should be explained as
thoroughly as possible, as well as alternate strategies to correct the error.

Version 2.5.0 DMTF Standard 117

mailto:technical@dmtf.org
mailto:members@dmtf.org

Common Information Model (CIM) Infrastructure DSP0004

3872
3873

3874

3875

3876

3877
3878
3879
3880
3881

3882
3883
3884
3885

e) If one or more members are affected, then the Technical Committee evaluates all proposed
alternate correction strategies. It chooses one of the following three options:

– To stay with the correction strategy proposed in b)

– To move to one of the proposed alternate strategies

– To define a new correction strategy based on the evaluation of member impacts

f) If an alternate strategy is proposed in Item e), the Technical Committee may decide to reenter
the errata process, resuming with Item c) and send an email message to all DMTF members
about the alternate correction strategy. However, if the Technical Committee believes that
further comment will not raise any new issues, then the outcome of Item e) is declared to be
final.

g) If a final strategy is decided, this strategy is implemented through a Change Request to the
affected schema(s). The Technical Committee writes and issues the Change Request. Affected
models and MOF are updated, and their introductory comment section is flagged to indicate that
a correction has been applied.

118 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

ANNEX I
(informative)

Ambiguous Property and Method Names

3886
3887
3888
3889

3890
3891
3892
3893

3894
3895
3896
3897

3898
3899
3900
3901
3902
3903
3904

3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917

3918
3919
3920
3921
3922
3923
3924
3925

3926

In 5.1, item 21)-e) explicitly allows a subclass to define a property that may have the same name as a
property defined by a superclass and for that new property not to override the superclass property. The
subclass may override the superclass property by attaching an Override qualifier; this situation is well-
behaved and is not part of the problem under discussion.

Similarly, a subclass may define a method with the same name as a method defined by a superclass
without overriding the superclass method. This annex refers only to properties, but it is to be understood
that the issues regarding methods are essentially the same. For any statement about properties, a similar
statement about methods can be inferred.

This same-name capability allows one group (the DMTF, in particular) to enhance or extend the
superclass in a minor schema change without to coordinate with, or even to know about, the development
of the subclass in another schema by another group. That is, a subclass defined in one version of the
superclass should not become invalid if a subsequent version of the superclass introduces a new
property with the same name as a property defined on the subclass. Any other use of the same-name
capability is strongly discouraged, and additional constraints on allowable cases may well be added in
future versions of CIM.

It is natural for CIM applications to be written under the assumption that property names alone suffice to
identify properties uniquely. However, such applications risk failure if they refer to properties from a
subclass whose superclass has been modified to include a new property with the same name as a
previously-existing property defined by the subclass. For example, consider the following:

[abstract]
class CIM_Superclass
{
};

class VENDOR_Subclass
{
 string Foo;
};

If there is just one instance of VENDOR_Subclass, a call to enumerateInstances("VENDOR_Subclass")
might produce the following XML result from the CIMOM if it did not bother to ask for CLASSORIGIN
information:

<INSTANCE CLASSNAME="VENDOR_Subclass">
 <PROPERTY NAME="Foo" TYPE="string">
 <VALUE>Hello, my name is Foo</VALUE>
 </PROPERTY>
</INSTANCE>

Version 2.5.0 DMTF Standard 119

Common Information Model (CIM) Infrastructure DSP0004

3927
3928
3929
3930
3931
3932

3933
3934
3935
3936
3937
3938
3939
3940
3941

3942
3943

3944
3945
3946

If the definition of CIM_Superclass changes to:
[abstract]
class CIM_Superclass
{
 string foo = "You lose!";
};

then the enumerateInstances call might return the following:
<INSTANCE>
 <PROPERTY NAME="Foo" TYPE="string">
 <VALUE>You lose!</VALUE>
 </PROPERTY>
 <PROPERTY NAME="Foo" TYPE="string">
 <VALUE>Hello, my name is Foo</VALUE>
 </PROPERTY>
</INSTANCE>

If the client application attempts to retrieve the 'foo' property, the value it obtains (if it does not experience
an error) depends on the implementation.

Although a class may define a property with the same name as an inherited property, it may not define
two (or more) properties with the same name. Therefore, the combination of defining class plus property
name uniquely identifies a property. (Most CIM operations that return instances have a flag controlling
whether to include the originClass for each property. For example, in DSP0200, see the clause on
enumerateInstances; in

3947
DSP0201, see the clause on ClassOrigin.) 3948

3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964

3965
3966
3967
3968
3969
3970
3971
3972
3973
3974

However, the use of class-plus-property-name for identifying properties makes an application vulnerable
to failure if a property is promoted to a superclass in a subsequent schema release. For example,
consider the following:

class CIM_Top
{
};

class CIM_Middle : CIM_Top
{
 uint32 foo;
};

class VENDOR_Bottom : CIM_Middle
{
 string foo;
};

An application that identifies the uint32 property as "the property named 'foo' defined by CIM_Middle" no
longer works if a subsequent release of the CIM schema changes the hierarchy as follows:

class CIM_Top
{
 uint32 foo;
};

class CIM_Middle : CIM_Top
{
};

120 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

3975
3976
3977
3978
3979

3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990

3991
3992

3993
3994
3995
3996
3997

3998
3999
4000

class VENDOR_Bottom : CIM_Middle
{
 string foo;
};

Strictly speaking, there is no longer a "property named 'foo' defined by CIM_Middle"; it is now defined by
CIM_Top and merely inherited by CIM_Middle, just as it is inherited by VENDOR_Bottom. An instance of
VENDOR_Bottom returned in XML from a CIMOM might look like this:

<INSTANCE CLASSNAME="VENDOR_Bottom">
 <PROPERTY NAME="Foo" TYPE="string" CLASSORIGIN="VENDOR_Bottom">
 <VALUE>Hello, my name is Foo!</VALUE>
 </PROPERTY>
 <PROPERTY NAME="Foo" TYPE="uint32" CLASSORIGIN="CIM_Top">
 <VALUE>47</VALUE>
 </PROPERTY>
</INSTANCE>

A client application looking for a PROPERTY element with NAME="Foo" and
CLASSORIGIN="CIM_Middle" fails with this XML fragment.

Although CIM_Middle no longer defines a 'foo' property directly in this example, we intuit that we should
be able to point to the CIM_Middle class and locate the 'foo' property that is defined in its nearest
superclass. Generally, the application must be prepared to perform this search, separately obtaining
information, when necessary, about the (current) class hierarchy and implementing an algorithm to select
the appropriate property information from the instance information returned from a server operation.

Although it is technically allowed, schema writers should not introduce properties that cause name
collisions within the schema, and they are strongly discouraged from introducing properties with names
known to conflict with property names of any subclass or superclass in another schema.

Version 2.5.0 DMTF Standard 121

Common Information Model (CIM) Infrastructure DSP0004

ANNEX J
(informative)

OCL Considerations

4001
4002
4003
4004

4005 The Object Constraint Language (OCL) is a formal language to describe expressions on models. It is
defined by the Open Management Group (OMG) in the Object Constraint Language Specification, which
describes OCL as follows:

4006
4007

4008
4009
4010
4011
4012

4013
4014
4015
4016

4017
4018
4019
4020
4021

4022
4023
4024

4025
4026
4027
4028
4029
4030

"OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without
side effect. When an OCL expression is evaluated, it simply returns a value. It cannot change
anything in the model. This means that the state of the system will never change because of the
evaluation of an OCL expression, even though an OCL expression can be used to specify a state
change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or flow
control in OCL. You cannot invoke processes or activate non-query operations within OCL. Because
OCL is a modeling language in the first place, OCL expressions are not by definition directly
executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL
expression must conform to the type conformance rules of the language. For example, you cannot
compare an Integer with a String. Each Classifier defined within a UML model represents a distinct
OCL type. In addition, OCL includes a set of supplementary predefined types. These are described
in Chapter 11 ("The OCL Standard Library").

As a specification language, all implementation issues are out of scope and cannot be expressed in
OCL. The evaluation of an OCL expression is instantaneous. This means that the states of objects in
a model cannot change during evaluation."

For a particular CIM class, more than one CIM association referencing that class with one reference can
define the same name for the opposite reference. OCL allows navigation from an instance of such a class
to the instances at the other end of an association using the name of the opposite association end (that
is, a CIM reference). However, in the case discussed, that name is not unique. For OCL statements to
tolerate the future addition of associations that create such ambiguity, OCL navigation from an instance to
any associated instances should first navigate to the association class and from there to the associated
class, as described in the Object Constraint Language Specification in sections 7.5.4 "Navigation to
Association Classes" and 7.5.5 "Navigation from Association Classes". Note that OCL requires the first
letter of the association class name to be lowercase when used for navigating to it. For example,
CIM_Dependency becomes cIM_Dependency.

4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047

EXAMPLE:

[ClassConstraint {
 "inv i1: self.p1 = self.a12.r.p2"}]
// Using a12 is required to disambiguate end name r
class C1 {
 string p1;
};
[ClassConstraint {
 "inv i2: self.p2 = self.a12.x.p1", // Using a12 is recommended
 "inv i3: self.p2 = self.x.p1"}] // Works, but not recommended
class C2 {
 string p2;
};

122 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

4048
4049
4050
4051
4052
4053
4054
4055
4056

class C3 { };
[Association] class A12 {
 C1 REF x;
 C2 REF r; // same name as A13::r
};
[Association] class A13 {
 C1 REF y;
 C3 REF r; // same name as A12::r
};

Version 2.5.0 DMTF Standard 123

Common Information Model (CIM) Infrastructure DSP0004

ANNEX K
(informative)

Change Log

4057
4058
4059
4060

Version Date Description

2.5.0a 2008/04/22 Initial creation – this version incorporates the ISO edits

2.5.0b 2009/02/16 Incorporated ArchCR0129, ArchCR0130

2.5.0c 2009/02/27 Comment resolution on WG ballot

2.5.0 2009/05/01 DMTF Standard Release

124 DMTF Standard Version 2.5.0

DSP0004 Common Information Model (CIM) Infrastructure

Bibliography 4061

4062 Grady Booch and James Rumbaugh, Unified Method for Object-Oriented Development Document Set,
Rational Software Corporation, 1996, http://www.rational.com/uml. 4063

4064
4065

4066
4067

4068
4069

4070

4071

James O. Coplein, Douglas C. Schmidt (eds). Pattern Languages of Program Design, Addison-Wesley,
Reading Mass., 1995.

Georges Gardarin and Patrick Valduriez, Relational Databases and Knowledge Bases, Addison Wesley,
1989.

Gerald M. Weinberg (1975) An Introduction to General Systems Thinking (1975 ed., Wiley-Interscience)
(2001 ed. Dorset House).

Unicode Consortium, The Unicode Standard, Version 2.0, Addison-Wesley, 1996.

Version 2.5.0 DMTF Standard 125

http://www.rational.com/uml

	Foreword
	Introduction
	CIM Management Schema
	Core Model
	Common Model
	Extension Schema
	CIM Implementations

	CIM Implementation Conformance
	1 Scope
	2 Normative References
	2.1 Approved References
	2.2 Other References

	3 Terms and Definitions
	3.1 Keywords
	3.2 Terms

	4 Symbols and Abbreviated Terms
	5 Meta Schema
	5.1 Definition of the Meta Schema
	5.2 Data Types
	5.2.1 Datetime Type
	5.2.2 Indicating Additional Type Semantics with Qualifiers

	5.3 Supported Schema Modifications
	5.3.1 Schema Versions

	5.4 Class Names
	5.5 Qualifiers
	5.5.1 Meta Qualifiers
	5.5.2 Standard Qualifiers
	5.5.2.1 Abstract
	5.5.2.2 Aggregate
	5.5.2.3 Aggregation
	5.5.2.4 ArrayType
	5.5.2.5 Bitmap
	5.5.2.6 BitValues
	5.5.2.7 ClassConstraint
	5.5.2.8 Composition
	5.5.2.9 Correlatable
	5.5.2.10 Counter
	5.5.2.11 Deprecated
	5.5.2.12 Description
	5.5.2.13 DisplayName
	5.5.2.14 DN
	5.5.2.15 EmbeddedInstance
	5.5.2.16 EmbeddedObject
	5.5.2.17 Exception
	5.5.2.18 Experimental
	5.5.2.19 Gauge
	5.5.2.20 IN
	5.5.2.21 IsPUnit
	5.5.2.22 Key
	5.5.2.23 MappingStrings
	5.5.2.24 Max
	5.5.2.25 MaxLen
	5.5.2.26 MaxValue
	5.5.2.27 MethodConstraint
	5.5.2.28 Min
	5.5.2.29 MinLen
	5.5.2.30 MinValue
	5.5.2.31 ModelCorrespondence
	5.5.2.32 NonLocal
	5.5.2.33 NonLocalType
	5.5.2.34 NullValue
	5.5.2.35 OctetString
	5.5.2.36 Out
	5.5.2.37 Override
	5.5.2.38 Propagated
	5.5.2.39 PropertyConstraint
	5.5.2.40 PUnit
	5.5.2.41 Read
	5.5.2.42 Required
	5.5.2.43 Revision (Deprecated)
	5.5.2.44 Schema (Deprecated)
	5.5.2.45 Source
	5.5.2.46 SourceType
	5.5.2.47 Static
	5.5.2.48 Terminal
	5.5.2.49 UMLPackagePath
	5.5.2.50 Units (Deprecated)
	5.5.2.51 ValueMap
	5.5.2.52 Values
	5.5.2.53 Version
	5.5.2.54 Weak
	5.5.2.55 Write

	5.5.3 Optional Qualifiers
	5.5.3.1 Alias
	5.5.3.2 Delete
	5.5.3.3 DisplayDescription
	5.5.3.4 Expensive
	5.5.3.5 IfDeleted
	5.5.3.6 Invisible
	5.5.3.7 Large
	5.5.3.8 PropertyUsage
	5.5.3.9 Provider
	5.5.3.10 Syntax
	5.5.3.11 SyntaxType
	5.5.3.12 TriggerType
	5.5.3.13 UnknownValues
	5.5.3.14 UnsupportedValues

	5.5.4 User-defined Qualifiers
	5.5.5 Mapping Entities of Other Information Models to CIM
	5.5.5.1 SNMP-Related Mapping String Formats
	5.5.5.2 General Mapping String Format
	5.5.5.3 MIF-Related Mapping String Format

	6 Managed Object Format
	6.1 MOF Usage
	6.2 Class Declarations
	6.3 Instance Declarations

	7 MOF Components
	7.1 Keywords
	7.2 Comments
	7.3 Validation Context
	7.4 Naming of Schema Elements
	7.5 Class Declarations
	7.5.1 Declaring a Class
	7.5.2 Subclasses
	7.5.3 Default Property Values
	7.5.4 Class and Property Qualifiers
	7.5.5 Key Properties
	7.5.6 Static Properties

	7.6 Association Declarations
	7.6.1 Declaring an Association
	7.6.2 Subassociations
	7.6.3 Key References and Properties
	7.6.4 Object References

	7.7 Qualifier Declarations
	7.8 Instance Declarations
	7.8.1 Instance Aliasing
	7.8.2 Arrays

	7.9 Method Declarations
	7.9.1 Static Methods

	7.10 Compiler Directives
	7.11 Value Constants
	7.11.1 String Constants
	7.11.2 Character Constants
	7.11.3 Integer Constants
	7.11.4 Floating-Point Constants
	7.11.5 Object Reference Constants
	7.11.6 NULL

	7.12 Initializers
	7.12.1 Initializing Arrays
	7.12.2 Initializing References Using Aliases

	8 Naming
	8.1 Background
	8.1.1 Management Tool Responsibility for an Export Operation
	8.1.2 Management Tool Responsibility for an Import Operation

	8.2 Weak Associations: Supporting Key Propagation
	8.2.1 Referencing Weak Objects

	8.3 Naming CIM Objects
	8.3.1 Namespace Path
	8.3.1.1 Namespace Type
	8.3.1.2 Namespace Handle

	8.3.2 Model Path
	8.3.3 Specifying the Object Name

	9 Mapping Existing Models into CIM
	9.1 Technique Mapping
	9.2 Recast Mapping
	9.3 Domain Mapping
	9.4 Mapping Scratch Pads

	10 Repository Perspective
	10.1 DMTF MIF Mapping Strategies
	10.2 Recording Mapping Decisions
	ANNEX A (normative) MOF Syntax Grammar Description
	ANNEX B (informative) CIM Meta Schema
	ANNEX C (normative) Units
	C.1 Programmatic Units
	C.2 Value for Units Qualifier
	ANNEX D (informative) UML Notation
	ANNEX E (normative) Unicode Usage
	E.1 MOF Text
	E.2 Quoted Strings
	ANNEX F (informative) Guidelines
	F.1 Mapping of Octet Strings
	F.2 SQL Reserved Words

	ANNEX G (normative) EmbeddedObject and EmbeddedInstance Qualifiers
	G.1 Encoding for MOF
	G.2 Encoding for CIM-XML

	ANNEX H (informative) Schema Errata
	ANNEX I (informative) Ambiguous Property and Method Names
	ANNEX J (informative) OCL Considerations
	ANNEX K (informative) Change Log

	Bibliography

