
Redfish – Simple, Modern and Secure Management for Cloud and Web-Based Infrastructures 1

DISTRIBUTED MANAGEMENT TASK FORCE
Technical Note

 August 2015

Copyright © 2015 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

T A B L E O F C O N T E N T S

1 Introduction

1 Why a new interface?

1 DMTF’s Redfish API

2 Why REST, JSON and OData?

2 Why separate the data model from the protocol?

2 Basic Concepts

3 Collections

3 Operations

3 Conclusion

3 Recommended Reading

Redfish – Simple, Modern and
Secure Management for Multi-
Vendor Cloud and Web-Based
Infrastructures

Introduction
In today’s cloud- and web-based data center

infrastructures, scalability is often achieved through

large quantities of simple servers. This hyperscale

usage model is drastically different than that of

traditional enterprise platforms, and requires a new

approach to management.

As an open industry standard that meets scalability

requirements in multi-vendor deployments, Redfish

integrates easily with commonly used tools by

specifying a RESTful interface and utilizing JSON

and OData.

Why a new interface?

A variety of influences have resulted in the need for

a new standard management interface. First, the

market is shifting from traditional data center

environments to scale-out solutions. With

massive quantities of simple servers brought

together to perform a set of tasks in a

distributed fashion (as opposed to centrally

located), the usage model is different from

traditional enterprise environments. This set of

customers demands a standards-based

management interface that is consistent in

heterogeneous, multi-vendor environments.

However, functionality and homogeneous

interfaces are lacking in scale-out management.

IPMI, an older standard for out-of-band

management, is limited to a “least common

denominator” set of commands (e.g. Power

On/Off/Reboot, temperature value, text console,

etc.). As a result, customers have been forced to

use a reduced set of functionality because

vendor extensions are not common across all

platforms. This set of new customers is

increasingly developing their own tools for tight

integration, often having to rely on in-band

management software.

Seeking a modern interface that builds on

widely-used tools to accelerate development,

today’s customers expect APIs to use the

protocols, structures and security models that

are common in emerging cloud interfaces.

Specifically, these customers are asking for

RESTful protocols that express data in JSON

formats.

DMTF’s Redfish API

Offering a secure, multi-node capable

replacement for IPMI-over-LAN, Redfish uses

REST, JSON and OData to address modern

customer requirements. Usable by existing

client applications and browser-based GUIs,

Redfish – Simple, Modern and Secure Management for Cloud and Web-Based Infrastructures 2

Redfish delivers powerful simplicity with its

human-readable output.

Why REST, JSON and OData?

RESTful protocols are rapidly replacing SOAP.

The cloud ecosystem is adopting REST and the

web API community has followed suit.

RESTful protocols are much quicker to learn

than SOAP. They have the simplicity of being a

data pattern (as REST is not strictly a protocol)

mapped to HTTP operations directly.

JSON is fast becoming the modern data format.

It is inherently human readable, more concise

than XML, has a plethora of modern language

support and is the most rapidly growing data

format for web service APIs.

JSON has one additional advantage for

embedded manageability environments: most

Baseboard Management Controllers (BMCs)

already support a web server and managing a

server through a browser is common (typically

via a Java script-driven interface). By utilizing

JSON in Redfish, the data from a Redfish service

is viewed directly in the browser, ensuring the

data and the programmatic interface is uniform

in semantics and value.

But following RESTful practices and formatting

results as JSON alone are not enough for

interoperability. There are nearly as many

RESTful interfaces as there are applications, and

they all differ in the resources they expose, the

headers and query options available, and how

results are represented. Similarly, while JSON

provides an easy-to read representation,

semantics of common properties such as id, type,

links, etc., are imposed through naming

conventions that vary from service to service.

OData defines a set of common RESTful

conventions, which provides for interoperability

between APIs. Redfish adopts common OData

conventions for describing schema, URL

conventions, and naming, as well as the structure

of common properties in a JSON payload. This

not only encapsulates best practices for

RESTful APIs which can be used in traditional

and scalable environments, but further enables

Redfish services to be consumed by a growing

ecosystem of generic client libraries,

applications, and tools.

Why separate the data model from the

protocol?

The Redfish data model is extensible and is

expected to cover additional properties in the

future. The Redfish protocol, however, is

expected to require fewer updates. Therefore,

Redfish separates the protocol specification

from the data model to avoid unnecessary

versioning. Strict forward compatibility rules

are included in the specification.

Fig 1 – Redfish Capabilities

Basic Concepts

In Redfish, every URL represents a resource, a

service, or a collection of resources. In

RESTful terms, these Uniform Resource

Identifiers (URIs) point to resources and

clients interact with resources.

The resource format is defined by the Redfish

Schema, which the client can use to determine

Redfish – Simple, Modern and Secure Management for Cloud and Web-Based Infrastructures 3

the correct semantics, if needed (Redfish semantics

are designed to be largely intuitive).

The Redfish Schema is defined in two formats. It is

defined in the OData Common Schema Definition

Language (CSDL), so generic OData tools and

applications can interpret it. The schema is also

defined in the JSON Schema format for other

environments, such as Python scripts, JavaScript

code and visualization.

Collections

In Redfish, a collection represents a group of similar

resources. Examples include Systems, Managers

and Chassis.

A System represents the logical view of a computer

system. Any subsystem accessible from the host

CPU is represented in a System resource. Each

System instance will have CPUs, memory and other

components. Computer systems are contained as

members of the Systems collection.

The Managers collection contains BMCs, Enclosure

Managers or any other component managing the

infrastructure. Managers handle various

management services and can also have their own

components (such as NICs).

The Chassis collection contains resources that

represent the physical aspects of the infrastructure.

A single Chassis resource can house sensors, fans

and the like. Racks, enclosures and blades are

examples of Chassis resources included in the

Chassis collection. In addition, Redfish provides a

method to represent a Chassis contained within

another Chassis.

Operations

Redfish uses HTTP operations including GET,

PUT, PATCH, POST, DELETE and HEAD. GET

retrieves data. POST is used for creating resources

or to use actions. DELETE will delete a resource,

but there are currently only a few resources that can

be deleted. PATCH is used to change one or more

properties on a resource, while PUT is used to

replace a resource entirely (though only a few

resources can be completely replaced). HEAD is

similar to GET without the body data returned, and

can be used for figuring out the URI structure by

programs accessing a Redfish implementation.

Conclusion

Redfish represents a new style of standard that is

capable of managing modern IT infrastructures –

from hyperscale to blades to stand alone servers – in

a consistent manner. As a result of broad industry

collaboration, Redfish meets customer demands for

simple, modern and secure management of scalable

platform hardware, reducing vendor lock-in and

increasing the productivity of system administrators.

Recommended Reading

 Redfish White Paper –

dmtf.org/sites/default/files/standards/docum

ents/DSP2044_1.0.0.pdf

 Redfish FAQ -

dmtf.org/sites/default/files/standards/docum

ents/DSP2045_1.0.0.pdf

 BrightTALK Webcast: Redfish Data Model

Deep Dive –

www.brighttalk.com/webcast/9077/163783

 BrightTALK Webcast: DMTF: Redfish

Overview –

https://www.brighttalk.com/webcast/9077/1

56709

 Redfish Home Page -

www.dmtf.org/standards/redfish

Acknowledgements

Work on the Redfish standard takes place in the

DMTF’s Scalable Platforms Management Forum

(SPMF) (http://dmtf.org/standards/spmf). SPMF

members contributed to this Technical Note.

http://www.dmtf.org/sites/default/files/standards/documents/DSP2044_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP2044_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP2045_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP2045_1.0.0.pdf
http://www.brighttalk.com/webcast/9077/163783
https://www.brighttalk.com/webcast/9077/156709
https://www.brighttalk.com/webcast/9077/156709
http://www.dmtf.org/standards/redfish
http://dmtf.org/standards/spmf

