
CIM Diagnostics Model White Paper Version 1.0

+ White Paper
DSP2000 Status: Informational
Copyright © 2004 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management
and interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent
with this purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the
particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights,
including provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to
the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent
right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or
claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever,
for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance on the standard
or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party
implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and
shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication,
and shall be indemnified and held harmless by any party implementing the standard from any and all claims of
infringement by a patent owner for such implementations.

CIM Diagnostic Model White Paper
CIM Version 2.9

Document Version 1.0 December 14, 2004

Abstract

Diagnostics is a critical component of systems management. Diagnostic services are used
in problem containment to maintain availability, achieve fault isolation for system
recovery, establish system integrity during boot, increase system reliability, and perform
routine preventive maintenance. The goal of the Common Diagnostic Model (CDM) is to
define industry-standard building blocks, based on and consistent with the DMTF
Common Information Model (CIM), that enable seamless integration of vendor-supplied
diagnostic services into system and SAN management frameworks.

In this paper, the motivation behind the CDM is presented. In addition, the core
architecture of the CDM is presented in the form of a diagnostic schema. The original
version of the schema (CIM version 2.3) is presented, with extensions introduced
beginning with CIM 2.7. Proper usage of the schema extensions is presented in a tutorial
manner. Future direction for the CDM is discussed to further illustrate the motivations

April 6, 2005 2

CIM Diagnostics Model White Paper Version 1.0

driving CDM development, including interoperability, self-management, and self-healing
of computer resources.

April 6, 2005 3

CIM Diagnostics Model White Paper Version 1.0

Change History

Version 0.1 Russ Carr Initial: Intro Draft & outline

Version 0.2 Russ Carr Team reviewed sections: 1-2.2

Version 0.3 Russ Carr

Ray Pedersen

Michael Kehoe

Barbara Craig

Reorganized & revised sections 2.3-2.7

- sections 2.3, 2.6, & 2.7

- section 2.4

- section 2.5

Version 0.4 Ray Pedersen Modifies outline, content largely
unchanged.

Version 0.5 Ray Pedersen

Michael Kehoe

Rob Branch

Content clarification and corrections

Version 0.6 Ray Pedersen Cleanup for tm-diag final review

Version 0.7 Ray Pedersen Added “Who Should Read the Paper”

Added some terms and conventions

Updated with tm-diag feedback

Version 0.8 Ray Pedersen Updated with comments from tm-diag
and sysdev reviews.

Version 0.9 Ray Pedersen First ballot feedback.

Version 0.91 Rob Branch Minor content corrections and
clarifications

Version 0.92 Ray Pedersen Cleanup for CIM 2.8 review.

Version 0.93 Ray Pedersen Cleanup for CIM 2.8 review.

Version 0.94 Ray Pedersen Cleanup for CIM 2.8 review.

Incorporate new CRs for LogOptions
and ConcreteJob.

Version 0.95 Ray Pedersen Update for CIM 2.9

New Logging mechanism.

Version 1.0 Ray Pedersen Submitted to SysDev for Review

April 6, 2005 4

CIM Diagnostics Model White Paper Version 1.0

TABLE OF CONTENTS

ABSTRACT... 2

CHANGE HISTORY .. 4

1 INTRODUCTION.. 8

1.1 Overview.. 8

1.2 Goals .. 8
1.2.1 Manageability through Standardization.. 9
1.2.2 Interoperability ... 9
1.2.3 Diagnostic Effectiveness .. 9
1.2.4 Global Access ... 9
1.2.5 Life-Cycle Applicability... 10

1.3 Who Should Read This Paper ... 10

1.4 CDM Versions... 10

1.5 Background Reference Material ... 10

1.6 Terminology .. 10

1.7 Conventions Used in This Document .. 11

2 MODELING DIAGNOSTICS.. 12

2.1 Consumer-Provider Protocol... 12

2.2 Implementation-Neutral Modeling ... 12

2.3 Backward Compatibility.. 12

2.4 Diagnostics Are Services .. 13

2.5 Diagnostics Are Applied to Managed Elements... 13

2.6 Generic Framework ... 14
2.6.1 Diagnostic Control.. 14
2.6.2 Diagnostic Logging and Reporting Assumptions ... 14
2.6.3 Localization .. 14

3 CDMV1... 16

3.1 Overview.. 16

3.2 Model Components... 17
3.2.1 The DiagnosticTest Class ... 17

April 6, 2005 5

CIM Diagnostics Model White Paper Version 1.0

3.2.2 The DiagnosticSetting Class... 17
3.2.3 The DiagnosticResult Class.. 18

3.3 CDMV1 Usage .. 19
3.3.1 Settings Protocol... 19
3.3.2 Looping... 20
3.3.3 Result Persistence ... 21
3.3.4 LogOptions for Typed Messages.. 21
3.3.5 Diagnostic Results .. 22

3.3.5.1 Monitoring Diagnostic Test Progress ... 22
3.3.5.2 Using Typed Messages in TestResults[].. 22

4 CDMV2... 24

4.1 Overview.. 25

4.2 Model Components... 25
4.2.1 Diagnostic Service.. 25
4.2.2 Diagnostic Jobs.. 26
4.2.3 Diagnostic Logs.. 27

4.2.3.1 DiagnosticRecord ... 28
4.2.4 HelpService .. 30

4.3 CDMV2 Usage .. 31
4.3.1 CDM Client Protocol.. 31

4.3.1.1 Query for Services .. 31
4.3.1.2 Configure the Service ... 31

4.3.1.2.1 Settings .. 31
4.3.1.2.2 Capabilities .. 31
4.3.1.2.3 Characteristics.. 32
4.3.1.2.4 Affected Resources .. 32
4.3.1.2.5 Dependencies ... 32

4.3.1.3 Execute the Service .. 32
4.3.1.3.1 Starting a Job ... 32

4.3.1.4 Monitor and Control the Service .. 33
4.3.1.5 Complete the Service.. 33

4.3.2 Correlation of Records.. 34
4.3.2.1 CDM Key Structure.. 35

4.3.2.1.1 ConcreteJob Key.. 35
4.3.2.1.2 DiagnosticRecord Key ... 35

4.3.3 Using the Physical Model for FRU Identification .. 36

5 FUTURE DEVELOPMENT .. 37

5.1 Interoperability... 37

5.2 CIM Indications.. 37

5.3 Interactive Testing.. 37

5.4 Diagnostics DTD/XSL .. 38

5.5 Services .. 38
5.5.1 Daemons ... 38

April 6, 2005 6

CIM Diagnostics Model White Paper Version 1.0

5.5.2 Exercisers ... 38
5.5.3 Executives... 38

5.6 Logging .. 39

5.7 Self Healing and Autonomic Healthcare .. 39

April 6, 2005 7

CIM Diagnostics Model White Paper Version 1.0

1 Introduction
The Common Diagnostic Model (CDM) is an architecture and methodology for
exposing system diagnostic instrumentation through standard CIM interfaces. The CDM
schema was introduced in CIM version 2.3 as a simple set of classes representing tests,
test settings, and results. Through subsequent implementation, a number of opportunities
for improvement were identified in the original model. In addition, CIM has matured, the
schema has been extended, and some of these changes are being applied to the CDM to
improve versatility and extendibility. A number of major changes occurred as part of the
CIM 2.9 release, and phasing over to the new schema will be completed with CIM 3.0.

The CDM version introduced in CIM 2.3 is being referred to as CDMV1 to distinguish it
from new concepts introduced in CIM 2.9. CDMV2 encompasses these concepts and will
be the only version supported in CIM 3.0.

The purpose of this paper is to describe the CDM schema as it appears in CIM 2.9,
distinguish between CDMV1 and CDMV2, and describe future development. The paper
provides guidance, where appropriate, to client and provider implementers to reinforce
the standardization goal. Guidance for diagnostic test developers is not within the scope
of this paper and is being documented by the CDM Industry Group1.

1.1 Overview
The term diagnostics has been used to describe a variety of problem-determination and
prevention tools, including exercisers, excitation/response tests, information gatherers,
configuration tools, and predictive failure techniques. This paper adopts a general
interpretation of this term and addresses all forms of diagnostic tools that would be used
in OS-present and pre-boot environments. The focus is on the CDM, the enabling
infrastructure.

The OS-present environment presents a formidable set of challenges to diagnostics
programmers. They must deal with system status and information hidden behind
proprietary APIs and undocumented incantations. Although CIM remedies this situation,
diagnostics programmers are also faced with OS barriers between user space and the
target of their efforts, making it difficult, often impossible, to manipulate the hardware
directly. The CDM eases this situation through a standardized approach to diagnostics
that uses the more sophisticated aspects of CIM—the ability to manipulate manageable
system components by invoking methods.

1.2 Goals

The goals of the CDM are:

•

•

Manageability through Standardization

Interoperability

1 The CDM Industry Group is an ad hoc committee of industry CDM promoters that is developing a set of
CDM implementation guidelines. See http://www.intel.com/design/servers/CDM/index.htm.

April 6, 2005 8

http://www.intel.com/design/servers/CDM/index.htm

CIM Diagnostics Model White Paper Version 1.0

Diagnostic Effectiveness •

•

•

Global Access

Life-Cycle Applicability

1.2.1 Manageability through Standardization
Faced with the requirement to deliver diagnostic tools to their customers, chip and
adapter developers have to deal with a variety of proprietary APIs, report formats, and
deployment scenarios. The CDM specifies a common methodology, with CIM at its core,
which results in a “one size fits all” diagnostic package. Diagnostic management
applications can obtain information about which diagnostic services are available,
configure and invoke diagnostics, monitor diagnostic progress, control diagnostic
execution, and query CIM for information that the diagnostic service gathers. If the CDM
methodology is followed, these standard diagnostic packages can be seamlessly
incorporated into applications that are implemented as CIM clients. The diagnostic
programmer, relieved from the effort associated with satisfying multiple interfaces, can
spend more time improving the effectiveness of the tools.

1.2.2 Interoperability
CIM is platform-neutral. Although implementations of CIM (clients, object managers,
and providers) do not have to be platform-neutral, that is the goal. To the extent that CIM
implementations promote interoperability, so does the CDM. CDM clients and providers
can be portable, not only between customers, but also across platforms and in
heterogeneous environments.

1.2.3 Diagnostic Effectiveness
Surrounding the CDM infrastructure are the diagnostic tools themselves. When
developed to the CDM, the tools become less difficult to deploy and the effectiveness of
the entire package can improve. Several factors are at play. Ease of deployment through
standardization and interoperability increases availability, thus expanding coverage. Tool
developers have the entire WBEM instrumentation database to draw on in their problem-
determination and resolution efforts. The CDM also goes beyond WBEM in
recommending techniques to vendors that lead to integration of diagnostics into device
drivers, thus gaining access to more details of the device being diagnosed.

1.2.4 Global Access
WBEM provides a framework for managing system elements across distributed
environments, enabling the CDM to potentially service systems without regard to locale.
This potential facilitates cost-effective serviceability scenarios and warranty-expense
reduction.

April 6, 2005 9

CIM Diagnostics Model White Paper Version 1.0

1.2.5 Life-Cycle Applicability
The CDM is designed to be applicable at all stages in a product’s life cycle, from system
development and testing to manufacturing, end users, service, and warranty repair.

1.3 Who Should Read This Paper
This paper was prepared to help CDM client and provider developers understand the CIM
components of the Common Diagnostic Model and other areas of the model that fulfill
the requirements of a comprehensive problem-determination methodology for modern
computer systems. Anyone planning to create CDM-compliant diagnostic tools should
read it.

This paper presupposes the availability and similar study of the CIM 2.9 schema,
represented by the MOF files. Some detailed information in these files will not be
covered in its entirety in this paper.

This paper deals primarily with the CDM architecture. The CDM also includes
implementation standards to promote OEM/vendor interoperability and code reuse.
Industry promoters of this technology are preparing a CDM Implementation Guide,
which is released at version 1.0 at the writing of this paper. It is available at the link in
section 1.5. This document also addresses issues related to compliance. Tools are being
developed to verify CDM compliance, and procurement processes will likely include
such testing.

1.4 CDM Versions
CDM version 1.0 (CDMV1) was introduced in CIM 2.3. It has been enhanced in
subsequent versions of the CIM schema. The model components peculiar to CDMV1 will
be deprecated prior to the introduction of CIM 3.0, at which time support for CDMV1
clients and providers will be discontinued.

CDM version 2.0 (CDMV2) was introduced with CIM 2.9. The settings/test/results
concept is still present, but it is modeled using services, jobs, and logs.

1.5 Background Reference Material
The following background reference material is available:

Original white paper, A Diagnostic Model in CIM, at
http://www.dmtf.org/educ/whit.html

•

CIM Tutorial at http://www.dmtf.org/spec/cim_tutorial/ •

CIM Schema at http://www.dmtf.org/standards/index.php •

CDM Implementation Guide at
http://www.intel.com/design/servers/CDM/index.htm

•

1.6 Terminology

April 6, 2005 10

http://www.dmtf.org/educ/whit.html
http://www.dmtf.org/spec/cim_tutorial/
http://www.dmtf.org/standards/index.php
http://www.intel.com/design/servers/CDM/index.htm

CIM Diagnostics Model White Paper Version 1.0

Term Definition

CDM Common Diagnostic Model

CDMV1 Version 1 of the CDM (based on CIM 2.3)

CDMV2 Version 2 of the CDM (based on CIM 2.9)

CIM Common Information Model

CIMOM CIM Object Manager

CR (CIM) Change Request

DBCS Double Byte Character Set

FRU Field Replaceable Unit

ME ManagedElement

MOF Managed Object Format

MSE ManagedSystemElement (the class or its children)

NLS National Language Support

RAS Reliability, Availability, and Serviceability

SAN Storage Area Network

UML Unified Modeling Language

WBEM Web Based Enterprise Management

XML Extensible Markup Language

1.7 Conventions Used in This Document
Classes and properties are written using capitalized words without spaces, as in
ManagedElement (contrast with “managed element,” which is the generic form).

The Bold attribute is added for visual impact with no other implied meaning.

Methods include parentheses () for quick identification, as in RunTest().
Arrays include brackets [] for identification, as in TestResults[].

A colon between class names is interpreted as “derived from,” as in ConcreteJob : Job.

A “dot” between a class name and a property name is interpreted as “containing the
property,” as in Capabilities.InstanceID. (InstanceID is a property of the Capabilities
class.)

The prefix “CIM_” is often omitted from class names for brevity and readability.

April 6, 2005 11

CIM Diagnostics Model White Paper Version 1.0

2 Modeling Diagnostics
The Common Diagnostic Model (CDM) extends the CIM schema to cover the
management of diagnostics, including diagnostic tests, executives, monitoring agents,
and analysis tools. The objective of diagnostic integration into CIM is to provide a
framework in which industry-standard building blocks that contribute to the ability to
diagnose and predict the system’s health can seamlessly integrate into enterprise
management applications and policies. This chapter discusses the modeling concepts that
are relevant to implementing diagnostics with CIM.

2.1 Consumer-Provider Protocol
A CIM diagnostic solution has two components: diagnostic consumers (or CDM clients)
and diagnostic providers. Diagnostic providers register the classes, properties, methods,
and indications that they support with the CIM object manager (CIMOM). When a
management client queries CIM for diagnostics supported on a given managed element,
CIM returns the instances of the diagnostic services associated with that managed
element. This action establishes communication between the discovered diagnostic
providers and the management client. The management client can now query CIM for
properties, enable indications, or execute methods according to the WBEM standard and
the diagnostic protocol conventions described in this document. The conventions that
diagnostic consumers and providers must follow include naming of keys, consistent
manipulation of properties, adherence to life-cycle attributes of objects, and
synchronization of object references.

2.2 Implementation-Neutral Modeling
The diagnostic model is implementation neutral. It does not assume any of the following
provider implementation approaches:

• Whether the provider is re-entrant or for exclusive use

• Whether the provider is implemented in-process and blocks until the method
requested completes, or is implemented out-of-process so that more than one
method can be executed at a time by the same provider

• Whether the provider is implemented as an “always resident” service, or loads
a separate instance for each request and unloads when complete

• Whether a provider reuses objects, or creates and destroys them for each use

• Whether more than one provider is used to implement the diagnostic service

• Whether the diagnostic provider supports indications

2.3 Backward Compatibility
The CIM 2.9 diagnostic model (CDMV2) creates some parallel semantics to the CDMV1
and extends the model to provide additional semantics. To make these extensions cleanly,
some parts of the diagnostic model were deprecated in favor of more scalable approaches.

April 6, 2005 12

CIM Diagnostics Model White Paper Version 1.0

These deprecations will be supported in the CIM schema until version 3.0. Provider
developers should implement the new CIM 2.9 semantics, avoiding any use of the
deprecations. Clients, however, may need to support both the CDMV1 and CDMV2
semantics for backward compatibility until the transition to CIM 3.0 is complete.

2.4 Diagnostics Are Services
Diagnostics are more than just test applications. Diagnostics create controlled stimuli and
monitor, gather, record, and analyze information about detected faults, state, status,
performance, and configuration. Because of its diverse uses, diagnostics is best modeled
as a service that launches or enables the components necessary to implement the
diagnostic actions requested by the client.

These diagnostic components may be implemented as test applications, monitoring
daemons, enablers for built-in diagnostic capabilities, or proxies to some other
instrumentation that is implemented outside of WBEM.

2.5 Diagnostics Are Applied to Managed Elements
Diagnostics are applied to managed elements. “Applied” means that a test checks a
managed element, a diagnostic daemon monitors a managed element, diagnostic
instrumentation is built into the managed element, and so on. One of the goals of CIM-
based diagnostics is the packaging of diagnostics with the vendor’s deliverable or Field
Replaceable Unit (FRU). Thus diagnostics are often applied at the FRU level of
granularity.

Diagnostic services are commonly applied to:

• Logical Devices: Most vendor-supplied diagnostics are for add-on peripherals
such as adapters and storage media. In this case clear correspondence exists
between the diagnostic’s scope and a CIM-defined logical device class.

• Collections: Some vendors may choose to apply diagnostics to a collection that
represents the aggregated functionality of a managed element. This is supported in
CIM by CIM_Collection, which describes an aggregation of managed elements.
Because CIM_Collection is a managed element, it can be associated to a
diagnostic service.

• Systems: Not all diagnostic use cases have coverage that corresponds to logical
devices or simple collections of distinguishable CIM-modeled devices. Some
diagnostic services are best applied to a system as a single functional unit or as a
collection of miscellaneous devices that are scoped to it as a FRU. Some
examples are:

 System stress tests and monitors that measure aggregate system health

 Miscellaneous, non-modeled, or baseboard devices that are often best
viewed as part of a system-level FRU

 Controllers that are part of an internal system bus structure and may
not be independently diagnosable but must be tested by proxy through

April 6, 2005 13

CIM Diagnostics Model White Paper Version 1.0

another logical device. In this case, the controller is an embedded,
indistinguishable component that contributes to the overall system
health.

• Other Services: Diagnostic services may also be applied to other non-diagnostic
services. These diagnostics may be used to ensure the reliability of the associated
service.

2.6 Generic Framework
Diagnostic services share the semantics of the CIM model regardless of whether the
service launches tests, starts a monitoring agent, or enables instrumentation. They share
the same mechanisms for publishing, method execution, parameter passing, message
logging, and reporting FRU information.

The diagnostic model also leverages other areas of the CIM model to provide extended
diagnostic capabilities rather than introducing diagnostic-centric mechanisms. Examples
are the “jobs” model for monitoring, the “log” model for capturing information, and
effective use of the logical and physical models.

2.6.1 Diagnostic Control
CDM clients may need to control and monitor the status and progress of the diagnostics
elements that the service provider launches to implement a service request. Clients
achieve this control and monitoring capability in a generic manner by using the CIM job
and process model. The elements launched by the diagnostic service can be collectively
controlled and monitored through an instance of ConcreteJob that is returned by the
diagnostics start method in the diagnostic service.

2.6.2 Diagnostic Logging and Reporting Assumptions
Diagnostics require the ability to record information about detected faults, state, status,
performance, and configuration of the diagnostic components and the managed elements.
This information can be gathered dynamically at checkpoints while the diagnostic service
is active (for concurrent analysis) or after the service is complete (for post-mortem
analysis). In CIM 2.9, diagnostics use a log to record relevant information from
diagnostic service applications, agents, and instrumentation.

In the future, the diagnostic model will connect with planned service models that
standardize error codes, indications, and trouble tickets in order to integrate CIM
diagnostics into WBEM-based industry standard diagnostic policies and RAS use cases.
See the DMTF Support WG and CompTIA initiatives for further information.

2.6.3 Localization
Localization refers to the support of various geographical, political, or cultural region
preferences, or locales. A client may be in a different country from the system it is
querying and would prefer to be able to communicate with the system using its own

April 6, 2005 14

CIM Diagnostics Model White Paper Version 1.0

locale. Inherent differences, such as language, phraseology, and currency, must be
considered.

Prior to version 2.9, CIM provided no localization support. Because diagnostics relies on
precise reporting of system status and problem data in a user-centric environment,
localization is critical. CIM 2.9 introduced schema extensions to allow a client to query a
diagnostic service for supported locales and to specify a locale through a
DiagnosticSetting object. The change was written as generically as possible, specifically
supporting diagnostics with the intent that it be generalized for broader use in the future.

A new class, CIM_LocalizationCapabilities : CIM_Capabilities was introduced with
properties publishing the supported input and output locals. A Locales[] property was
added to the DiagnosticSetting class (for passing to the service) and the
DiagnosticServiceRecord class (for local identification of the resultant logs).

April 6, 2005 15

CIM Diagnostics Model White Paper Version 1.0

3 CDMV1
The DiagnosticTest, DiagnosticSetting, and DiagnosticResult classes have been the core
of the diagnostic model since CIM 2.3. This section describes this original CDM model,
which will be supported until CIM 3.0, along with the minor enhancements made to it in
subsequent versions of the CIM schema. The following UML diagram shows the
properties and methods relevant to CDM clients and providers in CDMV1.

The CDMV1 Diagnostics Model

Service

(See Core Model)

1

(See Core Model)

LogicalElement

Dependency

*

ManagedSystemElement

(See Core Model)

*
(See Core Model)

ManagedElement

DiagnosticTest

Characteristics: uint16[]
OtherCharacteristicDescription : string
IsInUse : boolean
ResourcesUsed: uint16[]

RunTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] Setting: ref DiagnosticSetting, [OUT] Result: ref DiagnosticSetting)
 :uint32
ClearResults([IN]SystemElement: ref ManagedSystemElement,
 [OUT] ResultsNotCleared: string[]) : uint32
DiscontinueTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] DiagnosticResult ref DiagnosticResult,
 [OUT] TestingStopped : boolean) : uint32

Setting

(See Core Model)

DiagnosticSetting

SettingID: string [key]
TestWarningLevel:uint16
ReportSoftErrors: boolean
ReportStatusMessages: boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResult

ExecutionID: string [Key]
TimeStamp: datetime
IsPackage: boolean
TestStartTime: datetime
TestCompletionTime: datetime
TestState: uint16
OtherStateDescription: string
EstimatedTimeOfPerforming : uint32
TestResults: string[]
PercentComplete: uint8
TestWarningLevel : uint16
ReportSoftErrors : boolean
ReportStatusMessages : boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResultForMSE

*

*

DiagnosticResultForTest

w 1

DiagnosticTestForMSE

*

*

DiagnosticTestInPackage

*

*

DiagnosticResultInPackage

*

*

SoftwareElement

(See Application Model)

DiagnosticTestSoftware

*

*

DiagnosticSettingForTest

*

*

3.1 Overview
Although some new features have been added in updates to the CIM schema, the
behavior of CDMV1 remains largely unchanged from its introduction in CIM 2.3.
Diagnostic tests pass in DiagnosticSettings, which act like parameters; tests produce a
DiagnosticResult, which is a summary report of the test session. The semantics around
these classes have not changed. The classes have, however, been enhanced with new

April 6, 2005 16

CIM Diagnostics Model White Paper Version 1.0

features and some minor changes to support integration with the Job model (CDMV2).
These changes are included in the following descriptions.

3.2 Model Components
This section contains descriptions of the classes added to CIM to support version 1 of the diagnostic model.

3.2.1 The DiagnosticTest Class
DiagnosticTest is the only diagnostic service class supported in CDMV1. All diagnostic
services must be developed in the context of a test. Several deprecations are noted in the
following paragraphs. These deprecated features, which are part of the CDMV1 model,
will be supported until CIM 3.0.

Note: Diagnostic services are always considered to be enabled and started. The state
controls provided in EnabledLogicalElement are not supported and the service state
attributes will be set to their default values. RunTest() can always be invoked and
will return the appropriate non-zero return code if the service is not available.

A CDM client uses the properties included in the DiagnosticTest class to determine the
general effects associated with running the test. For example, if a test is going to destroy
data or monopolize a resource, the client needs to be aware of this and inform the user or
make adjustments to the environment.

The methods defined for the test class are included to start the test, stop it prior to normal
completion, and clear any stored results that are no longer needed

Even though DiagnosticTest can be directly instantiated, users of the model should
subclass and prefix the class name with a unique identifier, including a vendor ID (for
example, IBMSG_, for IBM Server Group).

If input parameters are necessary, a DiagnosticSetting instance is created and passed to
the test. Results produced by a test are recorded in an instance of the DiagnosticResult
class and linked to the test by an instance of DiagnosticResultForTest.

DiagnosticTestInPackage was originally introduced to allow modeling of packages
(suites) of tests. This concept introduced many modeling problems and was abandoned.
This association class is deprecated in CIM 2.7.

3.2.2 The DiagnosticSetting Class
DiagnosticSetting is derived from CIM_Setting and is used to contain the default and
run-specific settings for a given test. Diagnostic service providers publish default settings
in an instance of this class (associated to the service by an instance of DefaultSetting),
and CDM clients create a new instance and populate it with these defaults with, possibly,
user modifications. This new setting object is then passed as an input parameter to
RunTest(). For all properties except SettingID, LoopParameter, and the deprecated
ReportSoftErrors and ReportStatusMessages, the values set by a test client in a
DiagnosticSetting object are "qualified" by corresponding properties in
DiagnosticServiceCapabilities. If the capabilities do not include support for a particular
setting, the client must maintain the default for that setting.

April 6, 2005 17

CIM Diagnostics Model White Paper Version 1.0

CIM 2.7 added loop controls in the setting class. With this addition, it is possible to loop
a test (if supported) under control of a counter, timer, and other loop terminating
facilities.

CIM 2.9 added support for specification of the nature of data being logged by the test
through the addition of the LogOptions enumeration. This support eliminates the need for
some settings that were part of the initial diagnostics model, so these properties are
deprecated.

3.2.3 The DiagnosticResult Class
The DiagnosticResult class monitors test progress and receives result data from a specific
test instance. When a client executes the RunTest method, a reference to an instance of
the result class is returned. If the test finishes quickly or if it must run synchronously, the
result object is not useful for monitoring test progress (through the PercentComplete
property). However, if the test is capable of running asynchronously (on its own thread)
and publishes its progress, the client can poll this property and relay a progress indication
to the user. In addition to PercentComplete, the TestState property can give some
progress indication. If TestState is set to any of the completed states ("Passed", "Failed"
or "Stopped"), a PercentComplete value less than 100% might indicate an abnormal
termination or some setting that shortened or truncated the test (for example,
HaltOnError). After the test is complete, the client can read the TestResults property and
format the outcome of the test for the user.

Note: Because it is useful to have a record of the settings that produced a particular
result, the DiagnosticSetting property values that were passed to RunTest() are
copied to the result object when it is created.

The ExecutionID key property distinguishes between multiple executions of a test on the
same managed element.

EstimatedTimeOfPerforming is the estimated number of seconds that should be needed to
perform the diagnostic test associated with this result. After the test has completed, the
actual elapsed time can be determined by subtracting the TestStartTime from the
TestCompletionTime.

Note: A similar property is defined in the association DiagnosticTestForMSE. The
difference between the two properties is that the value stored in the association is a
generic test execution time for the element and the test. The value in
DiagnosticResult is the estimated time that this instance with the given settings would
take to run the test. A CIM consumer can compare this value with the value in the
association DiagnosticTestForMSE to determine the impact their settings have had on
test execution. To get an estimate of time remaining to complete the test, a client
could add this value to the start time, and then subtract the current time.

In CIM 2.7, properties were added to record error codes and the number of times that a
code was generated. These error codes may be used for variety of purposes, such as fault
database indexing, field service trouble ticketing, product quality tracking, part failure
history, and so on. The format of these codes is vendor specific. It is recommended that

April 6, 2005 18

CIM Diagnostics Model White Paper Version 1.0

hard errors and correctable or recoverable errors be given different codes so that clients
with knowledge of the error codes can evaluate correctable, recoverable, and hard errors
independently.

Also in CIM 2.7, the addition of looping controls led to the need to count the number of
loop iterations that passed and failed. This information is relevant in analyzing transitory
failures. For example, if all the errors occurred in just one of 100 iterations, the device
may be viewed as OK or marginal, to be monitored further rather than failed.

3.3 CDMV1 Usage
The following descriptions refer to model components that were added for CDMV2 but
can also be viewed as CDMV1 extensions. These extensions were added over a period
covering multiple CIM versions, and early implementations may not have applied these
scenarios because the model was not complete. All of the referenced components appear
finally in CIM 2.9.

3.3.1 Settings Protocol
To control the operation of a diagnostic service, a CDM provider must satisfy a number
of requirements for supporting the diagnostics schema. For each test, the provider
publishes a single instance of DiagnosticCapabilties (CIM 2.9) to indicate what features
are selectable in a DiagnosticsSetting object. It should provide default settings for the
service in an instance of DiagnosticSetting and link the default settings object to the
diagnostic service object using the DefaultSetting association. Additionally, a
DiagnosticSettingForTest association may be created between this object and the
DiagnosticTest object to which the default applies.

Note: DiagnosticSettingForTest is not needed if the recommended implementation is
followed. The CDM client should create a new instance of DiagnosticSetting that
combines the default property values with user input; this is the Setting object passed
to the RunTest method. DiagnosticSettingForTest is deprecated in CIM 2.9.

Any CDM client can query the CIMOM for DiagnosticTest instances. After selecting a
test to run, the client should check for its default settings and capabilities by querying for
the DefaultSetting and ElementCapabilities association instances, and filtering for the
instance that references the selected test. The client creates an instance of
DiagnosticSetting and populates it with the default settings and any modifications made
by the user, taking into account the published capabilities for that test.

Either the preferred RunDiagnostic() method in DiagnosticService (added in CIM 2.9) or
the deprecated RunTest() method in DiagnosticTest can be used to start a diagnostic test.
In either case, a reference to the newly created instance of DiagnosticSetting is passed as
a parameter to the method call. If a setting reference is not passed, the CDM provider
should use the default setting values.

The diagnostic model uses settings to specify the parameters that are standard to all CIM
diagnostic services. The diagnostic setting model does not use any of the methods defined

April 6, 2005 19

CIM Diagnostics Model White Paper Version 1.0

in the Setting class. Instead, the diagnostic model passes test settings to the diagnostic
service as a parameter to the run method.

When a test's RunTest() method is called, the test provider creates an instance of
DiagnosticResult. The provider then copies each of the properties in the
DiagnosticSetting instance into the DiagnosticResult object, thus preserving a record of
the settings used for that test execution. When the test has started, a reference to the
DiagnosticResult is returned to the client. The client may then use it to check on test
progress (PercentComplete, TestState), as well as on the actual results in TestResults[].

3.3.2 Looping
Initially, no test looping capability was included in the model. Looping was left to the
client to repeatedly execute the RunTest method. CIM 2.7 added properties to
DiagnosticSetting to allow specification of looping parameters to a diagnostic provider.
These properties are actually arrays of controls that may be used alone or in combination
to achieve the desired iteration effect.

The LoopControlParameter property is an array of strings that provide parameter values
to the control mechanisms specified in LoopControl. This property has a positional
correspondence to the LoopControl array property. Each string value is interpreted based
on its corresponding control mechanism. Four types of controls are specified in CIM 2.7:

• Loop continuously

• Loop for N iterations

• Loop for N seconds

• Loop until greater than N hard errors occur

For example, if a client wants to run a test 10,000 times or for 30 minutes, whichever
comes first, it could set both count and timer controls into the LoopControl array to
achieve the logical OR of these controls. In another example, if a client wants to run a
test 1000 times or until 5 hard errors occur, then two elements are set in this array, one of
'Count' and one of 'ErrorCount'. In the LoopControlParameter array, "1000" would be in
the first element and "4" in the second element.

If the LoopControl array is empty, no looping takes place. Also, if one element is
'Continuous,' no other array elements have any effect, and the client must determine when
to stop the test.

In the case of a looped diagnostic, the result that is persisted should contain a summary,
and not necessarily a report of each iteration result (depending on LogOptions selected).
Following is an example of what a client might expect to see for diagnostic result
information, per result type:

Single Iteration Result “Test <test name> [passed | failed with error %s].”
Looping Summary Result “Test <test name> ran <N> times: passes = <j>;

failures = <k>.”

April 6, 2005 20

CIM Diagnostics Model White Paper Version 1.0

3.3.3 Result Persistence
Each time a diagnostic test is launched, an instance of DiagnosticResult is created.
Originally, CDM placed no policy or control over result object persistence, which was
left as an implementation detail. Some situations (such as abnormal termination) could
lead to an accumulation of old, unneeded results. The potential for this type of problem is
exacerbated by the introduction of looping.

In general, CDM clients should implement a persistence policy and handle storage of
results as needed. Providers should be required to persist results only long enough for
clients to secure them. This time can vary, however, depending on the environment in
which the testing is being performed and unexpected events that may occur. A new
setting property in CIM 2.7 allows a CDM client to specify how long a provider must
persist DiagnosticResults after the running of a DiagnosticTest. This ResultPersistence
property is now part of the DiagnosticSetting and DiagnosticResult classes. For each
running of a diagnostic test, the client may now specify whether and how long a provider
must persist the results of running the test, after the test's completion. In typical use, a
client makes one of the following choices:

Do not persist results (ResultPersistence = 0x0): The client is not interested in the
results or is able to capture the results prior to completion of the test. The provider
has no responsibility to maintain any related result objects after test completion.

•

•

•

Persist results for some number of seconds (ResultPersistence = <non-zero>): The
client needs the results persisted for the specified number of seconds, after which
the provider may delete them. The client may delete the results prior to the
timeout value being reached.

Persist results forever (ResultPersistence = 0xFFFFFFFF): A maximum timeout
value prohibits the provider from deleting the referenced result. The client is
responsible for deleting them.

Note: No default timeout value exists for this property. However, a five-minute (300-
second) timeout, for example, might allow a client enough time to reconnect and
query for results if it were accidentally disconnected from a session.

3.3.4 LogOptions for Typed Messages
In CIM 2.3, a client could instruct a test provider to enable or disable only two types of
result messages destined for the DiagnosticResult.TestResults[] property: soft errors and
status messages. This mechanism allowed a client rudimentary control over the amount
and type of information returned from a test session.

In CIM 2.9, the DiagnosticSetting.LogOptions property was added to greatly extend the
list of message types that the client could specify. The set of supported message types is
extensible; see the MOF for the most current list.

The CDM provider indicates that it supports various types of messages by setting values
in the DiagnosticServiceCapabilities.SupportedLogOptions array. A client then selects
what messages it wants captured by listing those types in the LogOptions parameters of

April 6, 2005 21

CIM Diagnostics Model White Paper Version 1.0

the DiagnosticSetting class. The log options are independent and may be used in
combinations to achieve the desired report. The default behavior is for an option to be
off/disabled.

3.3.5 Diagnostic Results
In CDMV1, DiagnosticResults are used for two purposes: monitoring test execution
status and recording test results.

3.3.5.1 Monitoring Diagnostic Test Progress
In CDMV1, tests log information to DiagnosticResult.TestResults[]. The client can
monitor diagnostic test information, dynamically and upon test completion, by polling the
DiagnosticResult class and looking at this property to see the messages coming from the
test. This approach requires the diagnostic provider to create a unique instance of the
DiagnosticResult class and return a reference to that instance to the client. This instance
permits the client to query the DiagnosticResult class while the diagnostic test is running.

The following example illustrates how clients can effectively monitor test status and
progress:

1. The CDM provider creates a diagnostic result object before starting its
diagnostic test. All key properties are filled out, and the settings that will be
applied to the test are copied into this result object.

2. The CDM provider creates the associations DiagnosticResultForMSE and
DiagnosticResultForTest so that the client can identify the results that are
related to a particular test running on a particular device.

3. The CDM provider sets the property TestState to InProgress and sets the
current date and time in the TestStartTime property just prior to calling the
test.

4. For tests that run more than a few seconds, an internal communication
mechanism between the test and the provider is established so that the
provider can update the PercentComplete and the TestResults properties while
the test is running. The client can then monitor the test progress.

5. After the test completes, the provider sets the TestCompletionTime property
to the current date and time and finishes filling out the TestResults[] array
with messages and a results summary. Finally, the provider sets the TestState
property to the appropriate value: “Passed”, “Failed”, or “Stopped”.

3.3.5.2 Using Typed Messages in TestResults[]
The CIM 2.3 System MOF specifies that each string entry in the TestResults array in the
DiagnosticResult class should be prefixed with a “message header.” In CIM 2.9, the
description of the TestResults array is modified to specify that the message type must be
prefixed to each message header. This modification allows results to be sorted and
searched by message type. The message type naming convention corresponds to the value

April 6, 2005 22

CIM Diagnostics Model White Paper Version 1.0

of the LogOption that enables logging of the particular message. The CDMV1 message
header has the following format:

 LogOption|DateTime|TestName|TestMessage

The parts of this header are defined as follows:

• The delimiter “|” separates each part of this header.

• LogOption is a string identical to the LogOption value in DiagnosticSetting that
was used to enable logging this message.

• DateTime is the time stamp for the message (CIM data type).

• TestName is the internal test name or current internal subtest name that sent the
message.

• TestMessage is the free form string that is the “test result.”

April 6, 2005 23

CIM Diagnostics Model White Paper Version 1.0

4 CDMV2
Version 1 of the CDM provides a very simple structure for discovering diagnostic tests,
running and monitoring them, and reporting results. This simplicity introduced
limitations by not using the functionality built into other areas of CIM. Version 2 of the
CDM (CDMV2) introduces a more robust model for diagnostic tools. While CDMV1
was based on a simple settings/tests/results model, CDMV2 supports a more flexible and
extendable model based on settings/services/jobs/logs.

The following UML diagram represents the model components unique to the CDM. You
can find other components (for example, ConcreteJob and Log) by searching the online
documentation at www.dmtf.org.

This document corresponds to CIM 2.9. Always refer to the latest online diagrams and
MOF files for the most current version of the model.

The CDMV2 Diagnostics Model

DiagnosticTest

Characteristics : uint16[] {enum}
OtherCharacteristicDescription : string

Service
(See Core Model)

(See Core Model)
LogicalElement

ManagedSystemEleme
nt(See Core Model)

(See Core Model)
ManagedElement

Setting
(See Core Model)

DiagnosticSetting

SettingID : string {key}

HaltOnError : boolean
QuickMode : boolean
PercentOfTestCoverage : uint8 {units}
LoopControlParameter : string[]
LoopControl : uint16[] {enum}

OtherLoopControlDescriptions : string[]
ResultPersistence : uint32 {units}
LogOptions : uint16 [] {enum}
OtherLogOptionsDescriptions: string []
LogStorage : uint16 [] {enum}
OtherLogStorageDescriptions : string[]
VerbosityLevel : uint16[] {enum}
Locales : string []

(See Core Model)
EnabledLogicalElement

DiagnosticService

RunDiagnostics(
[IN] ManagedElement : ref CIM_ManagedElement
[IN} DiagSetting : ref CIM_DiagnosticSetting
[IN] JobSetting : ref CIM_JobSettingData
[OUT] Job : ref CIM_ConcreteJob
) : uint32

Capabilitiies
(See Core Model)

DiagnosticServiceCabilities

SupportedServiceModes: uint16[] {enum}
OtherSupportedServiceModesDescriptions : string []
SupportedLoopControl : uint16[] {enum}
OtherSupportedLoopControlDescriptions : string []
SupportedLogOptions : uint16[] {enum}
OtherSupportedLogOptionDescriptions : string []
SupportedLogStorage : uint16[] {enum}
OtherSupportedLogStorageDescriptions : string []
SupportedExecutionControls : uint16[] {enum}
SupportedTestWarnings : uint16[] {enum}
OtherSupportedExecutionControlsDescriptions : string []
SupportedVerbosityLevels : uint16 [] {enum}

DiagnosticRecord

InstanceID : string {key}
ServiceName : string {required}
ManagedElementName : string {required}
ExpirationDate : datetime {required}
RecordType : uint16 {enum}
OtherRecordTypeDescription : string

RecordForLog
(See logs)

DiagnosticSettingRecord

LogOptions : uint16[]
OtherLogOptionsDescriptions: string[]
HaltOnError : boolean
QuickMode : boolean
PercentOfTestCoverage : uint8 {max (100), min (0),
uints (percent)}
LoopControlParameter : string []
LoopControl : uint16[] {enum}
OtherLoopControlDescriptions : string []
ResultPersistence : uint32
VerbosityLevel : uint16 {enum}

DiagnosticServiceRecord

ErrorCode : string[]
ErrorCount : string[]
LoopsFailed : uint32
LoopsPassed : uint32

AvailableDiagnostic
Service

*

*

IsInUse : boolean {D}
ResourcesUsed : uint16[] {enum, D}

RunTest(
 [IN] SystemElement : ref ManagedSystemElement,
 [IN] Setting : ref DiagnosticSetting,
 [OUT] Result : ref DiagnosticSetting) : uint32{D}
ClearResults(
 [IN]SystemElement : ref ManagedSystemElement,
 [OUT] ResultsNotCleared : string[]) : uint32 {D}
DiscontinueTest(
 [IN] SystemElement : ref ManagedSystemElement,
 [IN] DiagnosticResult ref DiagnosticResult ,
 [OUT] TestingStopped : boolean) : uint32 {D}

TestWarningLevel :uint16 {enum, D}
ReportSoftErrors : boolean {D}
ReportStatusMessages : boolean {D}

OtherLoopControlDescription : string {D}

April 6, 2005 24

http://www.dmtf.org/

CIM Diagnostics Model White Paper Version 1.0

4.1 Overview
The CDMV2 schema can be partitioned into several major conceptual areas:

• Settings are enhanced and extended with capabilities (discussed in section 4.3).

• Diagnostic services allow extending beyond DiagnosticTest.

• Jobs provide control and monitoring of the diagnostic services launched. (The
ConcreteJob class is not shown in the preceding diagram because it has no
diagnostics-specific subclasses. See the System Model schema for ConcreteJob.)

• Logs replace DiagnosticResults as the mechanism for recording information
gathered by the DiagnosticService. (The Log class is not shown in the preceding
diagram because it has no diagnostics-specific subclasses. Diagnostics use an
aggregation of records to record results.)

4.2 Model Components
This section contains descriptions of the classes added to CIM to support version 2 of the diagnostic model.

4.2.1 Diagnostic Service
The CIM_DiagnosticService class was introduced in CIM 2.9 to accommodate the
anticipated extension of the CDM to include additional diagnostic service types.
Diagnostic services that are distinct in their intent and requirements should be represented
by unique subclasses. CDMV2 currently defines only one subclass of DiagnosticService:
DiagnosticTest. Other subclasses that have been discussed are exercisers, informational,
monitors, and out-of-band test executives.

The AvailableDiagnosticService : ServiceAvailableToElement class associates the
diagnostic service with the managed element that it tests, monitors, or exercises. The
managed elements most often targeted by diagnostic services are logical elements such as
adapters, storage media, and systems, which are realized by the physical model. The
physical model contains asset information about these devices and aggregates them into
FRUs.

A primary function of the diagnostic service is to publish information about the device(s)
that it services and the effects that running the service has on the rest of the system.

The diagnostic service publishes the following information:

• Name and description of the diagnostic service instance

• Characteristics unique to the diagnostic service type

• Diagnostic capabilities implemented by the diagnostic service

• Default settings that the diagnostic service applies

• Effects on other managed elements

April 6, 2005 25

CIM Diagnostics Model White Paper Version 1.0

The diagnostic service also provides a method for launching the diagnostic processes that
implement the service. The RunDiagnostic() method starts a diagnostic for the specified
ManagedElement (which is defined using the ManagedElement input parameter). How
the test should execute (that is, its settings) is defined in a DiagnosticSetting object. A
reference to a setting object is specified using the DiagSetting input parameter. The
capabilities for the diagnostic service indicate what settings and other options are
supported.

Note: Diagnostic services are always considered to be enabled and started. The state
controls provided in EnabledLogicalElement are not supported and the service state
attributes will be set to their default values. RunDiagnostic() can always be invoked
and will return the appropriate non-zero return code if the service is not available.

The ServiceAffectsElement class (not shown in the CDMV2 diagram) represents an
association between a service and the managed elements that may be affected by its
execution. This association indicates that running the service will pose some burden on
the managed element that may affect performance, throughput, availability, and so on.
This association contains an enumeration, ElementEffects, describing the effect of the
service on its associated managed element. The defined values are "Exclusive Use",
"Performance Impact", and "Element Integrity”, replacing the functionality of the
DiagnosticTest.ResourcesUsed[] property deprecated in CIM 2.7.

ServiceServiceDependency (not shown in the CDMV2 diagram) is an association
between two services, indicating that the antecedent service is required to be present,
required to have completed, or must be absent for the dependent Service to provide its
functionality. As an example, one could “order” testing using this association. The actual
dependency is published through the TypeOfDependency property specifying "Service
Must Have Completed", "Service Must Be Started", or "Service Must Not Be Started".

DiagnosticServiceCapabilities describes the abilities, limitations and potential for use of
various service parameters and features implemented by the diagnostic service provider.

4.2.2 Diagnostic Jobs
ConcreteJob : Job, introduced in CIM 2.7, provides the properties and methods needed
for controlling a diagnostic component (for example, test application) that was launched
by the diagnostic service. It also includes most of the monitoring properties relevant to
diagnostics, such as percent complete, error code, and job status.

CDM’s use of the ConcreteJob class produces implementations that separate the service
monitoring and control functions from the results logging and service publication classes.

The DiagnosticService.RunDiagnostic() method starts a diagnostic job. This method is
invoked with the managed element and settings references as parameters and returns a
reference to the instance of ConcreteJob, created to monitor the service.

The ConcreteJob class represents the currently executing service. It is associated with the
DiagnosticService that created it through the OwningJobElement association.
ConcreteJob contains the following functionality:

April 6, 2005 26

CIM Diagnostics Model White Paper Version 1.0

1. The job state can be queried.

2. Jobs can be suspended and resumed by invoking the RequestStateChange method
of the ConcreteJob class (added in CIM 2.8).

3. Jobs can be associated with specific MEs using the AffectedJobElement
association. Within this association is the ElementEffects property. A diagnostic
service, when represented by a job, can indicate it is affecting multiple MEs, and
indicate the nature of that effect.

The ManagedSystemElement.OperationalStatus[] property indicates the current status of
the job. Values are generally used in combinations to reveal diagnostic services status:

• OK – Job is running.

• Stopped/OK – Job is suspended.

• Stopped/Completed/OK – Job is complete and operation passed.

• Stopped/Completed/Error – Job is complete and operation failed.

• Stopped/Completed/Degraded – Job “died”.

• Aborted – Job stopped by a KillJob method call.

• Supporting Entity in Error –Job may be "OK" but another element, on which it
depends, is in error. An example is a network service or endpoint that cannot
function due to lower layer networking problems.

4.2.3 Diagnostic Logs
The ultimate goal of running a diagnostic service is to collect information about the
health of a managed element. Clients specify how this information needs to be recorded
in order to be useful in the problem-determination process. Logged information may be
analyzed by a client dynamically for fault containment and system-recovery purposes, but
in many situations the information is gathered for post-mortem analysis in message logs
for use by field service technicians or quality assurance personnel. Examples of relevant
information include:

• Fault Analysis: Diagnostic error codes, error frequency, warnings, test time,
resource allocation, and percent completion may all be relevant when analyzing
failures.

• Tracking FRU Health: Diagnostics can query the system to acquire FRU
information relevant to diagnostics, such as health history, replacement
information, and fault signatures.

• Reproducing Failures: Diagnostics can query the system to get configuration
and state information from the managed elements to which they are applied, from
those elements that are impacted by the diagnostic, and from elements that impact
the diagnostic itself.

Introduced as a superclass to MessageLog in CIM 2.9, CIM_Log is derived from
EnabledLogicalElement and associated to ManagedSystemElement through the

April 6, 2005 27

CIM Diagnostics Model White Paper Version 1.0

UseOfLog association. It has other associations to various storage/file classes and to the
RecordForLog class.

CIM_MessageLog (now a child of CIM_Log) was designed to act both as a container for
freeform records with methods for managing them and as an aggregation point for
LogRecord objects. Having separate classes for these two log mechanisms was more
object-oriented, so RecordLog was introduced as a peer of MessageLog. RecordLog is
strictly an aggregation point, having no extrinsic methods. This class fits the diagnostic
model in a more efficient manner, as will be shown.

An empty subclass of RecordLog, DiagnosticsLog, was added to allow the development
of a consolidated record management methodology for diagnostics. A common set of
providers for this log and its associated records should be used to control functions such
as record persistence, query support, and overall data integrity in a consistent manner.

4.2.3.1 DiagnosticRecord
CIM_RecordForLog : CIM_ManagedElement is an abstract parent of LogRecord and
DiagnosticRecord, introduced in CIM 2.9 to allow these record classes to have a different
key structures. LogRecord remains Weak to MessageLog (via the RecordInLog
aggregation) and has the propagated keys from MessageLog. DiagnosticRecord has the
simpler, preferred, InstanceID key and uses the (non-Weak) LogManagesRecord
aggregation, defined at the CIM_Log level.

The CDMV2 Logging Model

April 6, 2005 28

CIM Diagnostics Model White Paper Version 1.0

MaxNumberOfRecords : uint64
CurrentNumberOfRecords : uint64

ClearLog () : uint32 {enum}

Log

(See Core Model)
EnabledLogicalElement

InstanceID : string {key}

RecordLog

DiagnosticLog

RecordFormat : string
RecordData : string
Locale : string

RecordForLog

*
1

LogManagesRecord

(See Core Model)
ManagedElement

RecordApplies
ToElement

DiagnosticRecord

InstanceID : string {key}
ServiceName : string {required}
ManagedElementName : string {required}
ExpirationDate : datetime {required}
RecordType : uint16 {enum}
OtherRecordTypeDescription : string

CreationClassName : string {key}
RecordID : string {key}
MessageTimestamp : datetime {key}

LogRecord
MessageLog

CreationClassName : string {key}
Name : string {override, key}

RecordInLog

*w

1

DiagnosticSettingRecord

LogOptions : uint16[]
OtherLogOptionsDescriptions: string[]
HaltOnError : boolean
QuickMode : boolean
PercentOfTestCoverage : uint8 {max (100), min (0),
uints (percent)}
LoopControlParameter : string []
LoopControl : uint16[] {enum}
OtherLoopControlDescriptions : string []
ResultPersistence : uint32
VerbosityLevel : uint16 {enum}

DiagnosticServiceRecord

ErrorCode : string[]
ErrorCount : string[]
LoopsFailed : uint32
LoopsPassed : uint32

DataFormat : string {D}

CIM 2.9 subclasses RecordForLog with DiagnosticRecord and its two children
(DiagnosticServiceRecord and DiagnosticSettingRecord) in order to add some properties
unique to diagnostic services and to segregate the Settings (stored in the DiagnosticResult
object in CDMV1).

DiagnosticRecord contains the following properties:

InstanceID is the only key for this class. Its value should have source
correspondence (constructed identically) with the ConcreteJob.InstanceID value
(and an index) so that any client knowledgeable of the InstanceID value can data
mine a log after all the diagnostic applications and the diagnostic Job objects have
expired. Note that because the ConcreteJob.InstanceID must be globally unique,
the diagnostic session’s RecordID will also be globally unique if this
recommendation is followed. See section 4.3.2.1.

•

•

•

ServiceName is a required string property that identifies which service created
the record. To ensure that ServiceName is unique, its value should be set to the
value of the Name property of the DiagnosticService that caused the record to be
created.

ManagedElementName is a required string property that identifies which
managed element is related to the record. To ensure that ManagedElementName

April 6, 2005 29

CIM Diagnostics Model White Paper Version 1.0

is unique, its value should be set to the value of the ElementName property of the
ManagedElement that caused the record to be created.

ExpirationDate is the datetime when this record should be deleted by the log
provider. It is calculated using the ResultPersistence setting property. If a
ResultPersistence value is not provided, the ExpirationDate value should be set to
the current datetime. After the date has expired, the instance should be deleted as
soon as possible.

•

•

•

RecordType specifies the nature of the data being entered into the
DiagnosticServiceRecord. The value of this property should match one of the
values indicated in the DiagnosticSetting.LogOptions property that enabled the
diagnostics to log messages of the corresponding type (note the
ModelCorrespondence).

Locale specifies the language used in creating the log data.

DiagnosticServiceRecord contains some additional properties relating to error codes and
looping.

DiagnosticSettingRecord captures the settings that were used in running the service
(equivalent to DiagnosticResult in CDMV1).

4.2.4 HelpService
HelpService was added in CIM 2.8 to fill a need for diagnostic online help. It was added
to the schema as a child of CIM_Service so that it is readily useful to other parts of the
model -. HelpService has properties that describe the nature of the available help
documents and a method to request needed documents. Diagnostic services may publish
any form of help, but some implementation recommendations are being developed by the
CDM Industry Group.

CIM_ServiceAvailableToElement should be used to associate the diagnostic service to its
help information.

April 6, 2005 30

CIM Diagnostics Model White Paper Version 1.0

4.3 CDMV2 Usage
The following sections describe, at a high level, how the CDMV2 classes should be used to develop
effective diagnostic applications in a CIM environment.

4.3.1 CDM Client Protocol
This section describes the process by which a CDM client configures, initiates, monitors,
controls, and completes a diagnostic service.

4.3.1.1 Query for Services
Clients query the CIMOM for the diagnostic services that are associated with the
managed elements of interest that are scoped to the hosting system. This system scope
could be a computer system, unitary device, or represent a network of remotely
controlled systems.

Because services and managed elements are related through an association, the client
may start its instance query with

the service, traversing the association to find the managed element •

•

•

the association, then retrieving the antecedent and dependent classes

the managed element, traversing the association back to the service

4.3.1.2 Configure the Service
After the applicable services are enumerated, the client discovers the configuration
parameters for each service. (This discovery can occur for all services up front or
individually when a service is invoked.)

4.3.1.2.1 Settings
Settings are the runtime parameters that apply to diagnostic services, defined in the
DiagnosticSetting : Setting class. Diagnostic services may or may not support all the
settings properties, and this support is published using Capabilities (see the following
section).

A diagnostic service should publish its default settings with an instance of
DiagnosticSetting, associated by an instance of DefaultSetting. Clients combine these
defaults with user modifications (if supported in Capabilities) into a new instance of
DiagnosticSetting to be used as an input parameter when invoking the RunDiagnostic()
method. Passing a null reference instructs the service to use its default settings.

4.3.1.2.2 Capabilities
Capabilities are “abilities and/or potential for use” and, for the diagnostic model, are
defined by the DiagnosticServiceCapabilities class. Capabilities are the means by which a
service publishes its level of support for key components of the diagnostic model. CIM
clients use capabilities to filter settings and execution controls that are made available to

April 6, 2005 31

CIM Diagnostics Model White Paper Version 1.0

users. For example, if a service does not publish a capability for the setting “Quick
Mode,” the client application might “gray out” this option to the user.

Clients use the ElementCapabilities association to obtain instances of
DiagnosticServiceCapabilities.

4.3.1.2.3 Characteristics
Characteristics[] is a property of the DiagnosticTest class that publishes certain
information about the inherent nature of the test to the client. It is a statement of the
operational modes and potential consequences of running the service. For example,
“IsDestructive” indicates that, if this test is started, it will cause some negative system
consequences. These consequences can usually be deduced by considering the service,
the device upon which the service is acting, and the “affected resources” (see the
following section).

Clients should examine the Characteristics[] array and use this information to configure
the user session and avoid situations that would undermine the problem-determination
goals.

4.3.1.2.4 Affected Resources
CDMV1 relies on the ResourcesUsed property of the DiagnosticTest class to publish the
system resources that will be affected or consumed by invoking the test. CDMV2 uses
the ServiceAffectsElement association to indicate the managed elements affected by the
diagnostic service and the ElementEffects[] property of this class to describe the actual
effect. Clients should traverse this association to determine the system consequences of
starting the test.

4.3.1.2.5 Dependencies
A service may depend on other system activity for its successful execution. A diagnostic
test example is a NIC device under test that depends on TCP/IP being started. It also may
be important to “order” certain tests (for example, an SCSI interface test prior to an SCSI
device test). The ServiceServiceDependency association and its TypeOfDependency
property are used to publish these dependencies.

4.3.1.3 Execute the Service
After the client considers all the system ramifications discussed in the preceding section
and chooses a service to run, it commences the service action by invoking the
RunDiagnostic() method of the DiagnosticService class. The diagnostic service provider
receives references to the settings and managed element objects to be used in running the
service, creates an instance of ConcreteJob, and returns a reference to it.

4.3.1.3.1 Starting a Job
A diagnostic job is launched in the following manner:

1. When its RunDiagnostic() method is called, the diagnostic service provider
creates an instance of ConcreteJob, creates a globally unique InstanceID key

April 6, 2005 32

CIM Diagnostics Model White Paper Version 1.0

(see section 4.3.2.1), and returns a reference to the job object as an output
parameter.

2. The diagnostic service provider creates the associations AffectedJobElement
and OwningJobElement so that the client can identify which diagnostic
service owns the job and what effects the job will have on various managed
elements.

3. The Job.DeleteOnCompletion property may be initialized to the value “False”
to prevent fast-executing jobs from being deleted before a client can query for
results.

4.3.1.4 Monitor and Control the Service
The client can use the job object to monitor and control the running of the service with
the following properties and methods:

• ConcreteJob.JobState—property that communicates the current state of the job.
Values are "New", "Starting", "Running", "Suspended", Shutting Down",
"Completed", "Terminated", "Killed", "Exception", and "Service".

• ConcreteJob.RequestStateChange()—method used to change the JobState.
Options are "Start", "Suspend", "Terminate", "Kill", and "Service".

• Job.PercentComplete—property that communicates the progress of the job

• Job.KillJob()—A method that kills this job and any underlying processes, and
removes any dangling associations. This method is deprecated in CIM 2.8 in favor
of RequestStateChange().

• Job.ElapsedTime—The time interval that the job has been executing or the total
execution time if the job is complete

• Job.ErrorCode—A vendor specific error code. This property is set to zero if the
job completes without error.

4.3.1.5 Complete the Service
A client can use the preceding controls to terminate a service or the service may complete
normally when its work is done. The client monitors the controls to determine when the
service is completed.

The outcome of running a service is generally presented as a series of messages and data
blocks that the client can use in the problem-determination process. In CDMV1, this
information was returned in the TestResults[] array of the DiagnosticResult class. In
CDMV2, the Log class is used. Service providers instantiate subclasses of
DiagnosticRecord for logging data that the service executable returns. These are
aggregated to a log with the LogManagesRecord association. A client may attempt to
read these records by traversing the UseOfLog and LogManagesRecord associations.

April 6, 2005 33

CIM Diagnostics Model White Paper Version 1.0

4.3.2 Correlation of Records
When information is recorded in a shared log, the life cycle of objects and the ability to
distinguish related objects through keys, tags, and instances of associations becomes
critical. The following diagram illustrates the relationships between objects in a re-entrant
CDM service provider environment that uses a shared log. It shows a single client
initiating two diagnostic services on the same device.

Legend:

Solid Arrows – Instantiations

Line Arrows – Associations

Callouts – In = ConcreteJob.InstanceIDn, IIDn = DiagnosticRecord.InstanceIDn

Client

DiagnosticService

DiagnosticsLogJob1
(I1)

Job2
(I2)

Run1 Run2

MSE
Diagnostic

Service Record
Diagnostic

Service Record
Diagnostic

Service Record
Diagnostic

Service Record
Diagnostic

Service Record
Diagnostic

Service Record
Diagnostic

ServiceRecord

IID1=I2:0

IID2=I1:0

IID3=I2:1

IID4=I1:1

ID5=I1:2

IID6=I2:2

IID7=I1:3

Results Query

UseOfLog

OwningJobElement

AffectedJobElement LogManagesRecord

AvailableDiagnosticService

UseOfLog

The instances for the first request are shown using solid boxes, and the instances for the
second request are shown using striped boxes. This diagram also depicts a shared log.
Note that the diagnostic model does not dictate whether the message log is shared, unique
to each request, or external to the diagnostic service provider. It is recommended,
however, that a diagnostic log be firmly associated with the managed element and service
that caused it to exist. In this way, a client can more easily query for all records that
persist for a particular managed element or service.

The process flows as follows:

April 6, 2005 34

CIM Diagnostics Model White Paper Version 1.0

1. The client queries for available services and decides to run two instances of a
service on a managed element.

2. The client invokes RunDiagnostic() with the appropriate settings and receives a
reference to Job1 (InstanceID = I1).

3. The service provider traverses the UseOfLog association to find which log to use.
The service is begun and Job1 is used for client/service communication.

4. Similar actions take place for the second service instance and Job2 (InstanceID =
I2) is created.

Note that it is an implementation detail whether there are two instances of the
service provider running or the provider is able to handle multiple requests of this
kind.

5. Two keyed jobs are running, generating keyed log records. The next section
addresses these keys and how they should be constructed.

6. When a service completes, the job associated with it is deleted. The results of the
tests are obtained from the log and its aggregated DiagnosticServiceRecords.

4.3.2.1 CDM Key Structure
Keeping object references distinct is critical in this environment. Object references
include key values for uniqueness, and a convention for key construction is often required
to guarantee this uniqueness.

4.3.2.1.1 ConcreteJob Key
The ConcreteJob class contains a single opaque key, InstanceID. The MOF description
provides the following guidance for its construction:

“The InstanceID must be unique within a namespace. In order to ensure uniqueness, the
value of InstanceID SHOULD be constructed in the following manner: <Vendor
ID><ID>. <Vendor ID> MUST include a copyrighted, trademarked or otherwise unique
name that is owned by the business entity or a registered ID that is assigned to the
business entity that is defining the InstanceID. (This is similar to the <Schema
Name>_<Class Name> structure of Schema class names.) The purpose of <Vendor ID>
is to ensure that <ID> is truly unique across multiple vendor implementations. If such a
name is not used, the defining entity MUST assure that the <ID> portion of the Instance
ID is unique when compared with other instance providers. For DMTF defined instances,
the <Vendor ID> is 'CIM'. <ID> MUST include a vendor specified unique identifier.”

4.3.2.1.2 DiagnosticRecord Key
The DiagnosticRecord class has a single key, InstanceID. It is constructed identically to
the ConcreteJob InstanceID key. It is further specified in the Diagnostics Profile
Specification that:

“In order to ensure uniqueness and provide for efficient mining of DiagnosticRecords
that correspond a particular diagnostic ConcreteJob, the RecordID key SHOULD be

April 6, 2005 35

CIM Diagnostics Model White Paper Version 1.0

constructed using the following preferred algorithm:
<ConcreteJob.InstanceID>:<n>, where < ConcreteJob.InstanceID> is
<OrgID>:<LocalID> as described in ConcreteJob and <n> is an increment value that
provides uniqueness. <n> SHOULD be set to "0" for the first record created by the job,
and incremented for each subsequent record.”

4.3.3 Using the Physical Model for FRU Identification
The CDM client is ultimately responsible for obtaining and analyzing state and FRU
information. Providers can help through local schema extensions, giving in-house
providers a boost in performance and possibly fault-analysis capabilities. Such extensions
are nonstandard so they cannot be depended upon when leveraging industry providers.
The client must be prepared to provide the minimum capabilities of error analysis and
FRU reporting. This means providing the ability to trace the test associations to the
physical model as far as it is implemented on the system.

The client first queries the association DiagnosticServiceForME, which associates the
diagnostic test to either UnitaryComputerSystem (in which case, the client is done tracing
the association) or a type of logical device that could be under NetworkAdapter,
Controller, MediaAccessDevice, or StorageExtent.

If the diagnostic test is associated to a type of logical device, the client needs to query the
Realizes association that associates the given logical device to an instance of the static
class PhysicalElement that contains the part information. Finally, the client queries the
aggregation association FRUPhysicalElements that associates the PhysicalElement to the
field replaceable unit, FRU class, which contains field replaceable unit information.

It is also recommended that diagnostic services assist with FRU reporting and additional
fault information when the test knows about the physical device under test or can obtain
fault data. The “Hardware Configuration” record type may be used to post known FRU
information to the message log.

April 6, 2005 36

CIM Diagnostics Model White Paper Version 1.0

5 Future Development
At the time of this writing, CDM has defined and mostly implemented two versions,
CDMV1 and CDMV2. Support for CDMV1 will be dropped with CIM 3.0. CDMV2 will
continue to be extended and enhanced; no plan exists at this time for a CDMV3.

5.1 Interoperability
Diagnostic services are often complex and could require some client awareness of the
nature of the service and the best way to make use of the results obtained by running the
service. This situation can be an impediment to the level of interoperability that the
DMTF would like to achieve.

First, the DMTF must develop a mechanism for making the services self-describing so
that a general, unaware client can (programmatically) understand the purpose and scope
of the service. Then, the results obtained by running the service must be able to be
interpreted without any prior knowledge of the meaning of messages and codes.
Standards need to be developed and integrated with new and existing schema (for
example, CIM Error) to achieve these goals.

5.2 CIM Indications
Indications are useful for generating accurate progress indications, communicating
current status, alerting on error, and so on. Because CIM Indications are not supported in
WMI, the diagnostic modeling group delayed consideration of these features. As
CIMOMs that support the current model become more pervasive, DMTF will add the
functions that rely on indications into the CDM.

5.3 Interactive Testing
Some diagnostic use cases require interactive job control. For example:

• A test that requires operator intervention (for example, “Insert loopback plug.”)

• Special cases where a diagnostic might want to request information from the
diagnostic service before executing the start diagnostic method

• Interactive debug sessions requiring prompts and responses

The diagnostic model currently contains a DiagnosticTest.Characteristics = “Interactive”
value but does not define a mechanism for a client to communicate with the test through
the diagnostic service provider. Without such a mechanism, implementing interactive
tests that could be managed by WBEM standard client applications is impossible. DMTF
has discussed extending jobs to provide support for such interactive tests in a future
version of the CIM schema.

Because not all diagnostic providers are expected to support interactivity, a mechanism is
necessary to publish the interactive capabilities that the diagnostic service supports, such
as:

April 6, 2005 37

CIM Diagnostics Model White Paper Version 1.0

• No interactivity

• Simple query— The query is a simple message in which the user can select only
OK or Cancel. An example use case would be a message to the user to insert a
loop-back plug before proceeding with running the test.

• Query with data—The query displays instructions to the user to set a value to pass
back to the test. The user types in the value and selects OK, which causes the
client to write the parameter into the message box property and resume execution
of the test. An example use case is an interactive debug mode within the
diagnostic test, which would allow debug command parameters to be passed back
to the tests through a message box.

5.4 Diagnostics DTD/XSL
The CDM client and its GUI program currently handle formatting of the data that is
returned from running diagnostic services. It would be desirable, in some environments,
to produce a standard form of the output, regardless of the source and user interface. This
is most easily achieved by defining a Data Type Definition (DTD) or and eXtensible
Style Language (XSL) style sheet.

5.5 Services
CIM 2.8 added a superclass to DiagnosticTest in anticipation of additional services that
would have different property and method requirements from a standard test. New
service types have been identified, but not yet added to the model.

5.5.1 Daemons
In the problem determination environment, daemons are monitor programs that run in the
background and look for the existence or emergence of a problem. They are interested in
resource contention and over-consumption, predictive failure analysis indications, and
any published support for system health events. When the daemon discovers a potential
or existing problem, it can alert an administrator and initiate some corrective action.

5.5.2 Exercisers
Exercisers are programs written to stress system components to either expose early
failures or to cause intermittent problems to occur more often for the purpose of problem
determination. They are useful in manufacturing, burn-in, and active debug session
environments.

5.5.3 Executives
An executive service is a means to start up external control programs through CIM.

April 6, 2005 38

CIM Diagnostics Model White Paper Version 1.0

April 6, 2005 39

5.6 Logging
Enabling the direction of selected message types to one or more destinations with various
message-logging mechanisms should be more efficient and versatile than the current
practice. The ability to specify not just a LogType but also its "logical/physical"
destination will be a major improvement over the present schema. However, this change
has been delayed until a future version of the CIM schema to fully comprehend the issues
of directing messages to third-party providers such as a system event log. It is anticipated
that any of the LogOption values (message types) will be able to be specified more than
once, in order to direct the same message to more than one message log destination.

5.7 Self Healing and Autonomic Healthcare
The ultimate goal of the CDM is to provide an infrastructure that supports “self-healing”
systems. Using the base built in the first and second versions, an AI-based data consumer
could use the diagnostic results with other CIM data to provide a “self-healing” function.

End of Document

	Abstract
	Change History
	Introduction
	Overview
	Goals
	Manageability through Standardization
	Interoperability
	Diagnostic Effectiveness
	Global Access
	Life-Cycle Applicability

	Who Should Read This Paper
	CDM Versions
	Background Reference Material
	Terminology
	Conventions Used in This Document

	Modeling Diagnostics
	Consumer-Provider Protocol
	Implementation-Neutral Modeling
	Backward Compatibility
	Diagnostics Are Services
	Diagnostics Are Applied to Managed Elements
	Generic Framework
	Diagnostic Control
	Diagnostic Logging and Reporting Assumptions
	Localization

	CDMV1
	Overview
	Model Components
	The DiagnosticTest Class
	The DiagnosticSetting Class
	The DiagnosticResult Class

	CDMV1 Usage
	Settings Protocol
	Looping
	Result Persistence
	LogOptions for Typed Messages
	Diagnostic Results
	Monitoring Diagnostic Test Progress
	Using Typed Messages in TestResults[]

	CDMV2
	Overview
	Model Components
	Diagnostic Service
	Diagnostic Jobs
	Diagnostic Logs
	DiagnosticRecord

	HelpService

	CDMV2 Usage
	CDM Client Protocol
	Query for Services
	Configure the Service
	Settings
	Capabilities
	Characteristics
	Affected Resources
	Dependencies

	Execute the Service
	Starting a Job

	Monitor and Control the Service
	Complete the Service

	Correlation of Records
	CDM Key Structure
	ConcreteJob Key
	DiagnosticRecord Key

	Using the Physical Model for FRU Identification

	Future Development
	Interoperability
	CIM Indications
	Interactive Testing
	Diagnostics DTD/XSL
	Services
	Daemons
	Exercisers
	Executives

	Logging
	Self Healing and Autonomic Healthcare

