

2 Document Number: DSP1030

Date: 2009-06-22

Version: 1.0.0

Battery Profile

1

3

4

6 **Document Type: Specification**

7 Document Status: DMTF Standard

8 Document Language: E

9

10 Copyright Notice

11 Copyright © 2007, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

- 12 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
- management and interoperability. Members and non-members may reproduce DMTF specifications and
- documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
- time, the particular version and release date should always be noted.
- 16 Implementation of certain elements of this standard or proposed standard may be subject to third party
- 17 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
- 18 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
- 19 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
- 20 inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
- any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
- 22 disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
- 23 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
- party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
- owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
- withdrawn or modified after publication, and shall be indemnified and held harmless by any party
- 27 implementing the standard from any and all claims of infringement by a patent owner for such
- 28 implementations.
- 29 For information about patents held by third-parties which have notified the DMTF that, in their opinion,
- 30 such patent may relate to or impact implementations of DMTF standards, visit
- 31 http://www.dmtf.org/about/policies/disclosures.php.

Table of Contents

1	For	reword	5
5	Intro	roduction	6
3	1	Scope	7
7	2	Normative References	
3	_	2.1 Approved References	
)		2.2 Other References	
)	3	Terms and Definitions	
	4	Symbols and Abbreviated Terms	
	5	Synopsis	
	6	Description	
	-	·	
	7	Implementation Requirements	
		7.1 CIM_Battery7.2 CIM_Battery.BatteryStatus Value Formulation	
		7.2 ClM_Battery.Chemistry Value Formulation (Optional)	
		7.3 Clivi_Battery.Criemistry value Formulation (Optional)	
		7.5 Modeling a Battery Temperature Sensor (Optional)	
		7.6 Managing the Battery's State (Optional)	
	8	Methods	
	0	8.1 Method: CIM_Battery.RequestStateChange()	
		8.2 Profile Conventions for Operations	
		8.3 CIM_AssociatedBattery	
		8.4 CIM_ElementCapabilities	
		8.5 CIM_EnabledLogicalElementCapabilities	
		8.6 CIM_Battery	
		8.7 CIM_SystemDevice	
	9	Use Cases	
	_	9.1 Object Diagrams	
		9.2 Recharge a Battery	
		9.3 Recalibrate Battery Thresholds	
		9.4 Determine Additional Information for the Health of a Battery Using a Sensor	
	10	CIM Elements	19
		10.1 CIM_AssociatedBattery	
		10.2 CIM_Battery	20
		10.3 CIM_ElementCapabilities	21
		10.4 CIM_EnabledLogicalElementCapabilities	21
		10.5 CIM_NumericSensor	
		10.6 CIM_RegisteredProfile	
		10.7 CIM_Sensor	
		10.8 CIM_SystemDevice	
	INA	INEX A (informative) Change Log	23

74

75	List of Figures	
76	Figure 1 – Class Diagram	10
77	Figure 2 – Instance Diagram 1	17
78	Figure 3 – Instance Diagram 2	18
79	Figure 4 – Instance Diagram 3	18
80	Figure 5 – Instance Diagram 4	18
81		
82	List of Tables	
83	Table 1 – Related Profiles	g
84	Table 2 – BatteryStatus Value Description	10
85	Table 3 – RequestedState Values	12
86	Table 4 – EnabledState Values	
87	Table 5 - CIM_Battery.RequestStateChange() Method: Return Code Values	
88	Table 6 - CIM_Battery.RequestStateChange() Method: Parameters	
89	Table 7 – Operations: CIM_AssociatedBattery	
90	Table 8 – Operations: CIM_ElementCapabilities	
91	Table 9 – Operations: CIM_EnabledLogicalElementCapabilities	
92	Table 10 – Operations: CIM_Battery	
93	Table 11 – Operations: CIM_SystemDevice	
94	Table 12 – CIM Elements: Battery Profile	
95	Table 13 - Class: CIM_AssociatedBattery	
96	Table 14 - Class: CIM_Battery	
97	Table 15 – Class: CIM_ElementCapabilities	
98	Table 16 - Class: CIM_EnabledLogicalElementCapabilities	
99	Table 17 - Class: CIM_NumericSensor	
100	Table 18 – Class: CIM_RegisteredProfile	
101	Table 19 - Class: CIM_Sensor	
102	Table 20 – Class: CIM_SystemDevice	22

Foreword 103 104 The Battery Profile (DSP1030) was prepared by the Desktop and Mobile Working Group. 105 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. 106 **Acknowledgments** 107 The authors wish to acknowledge the following people. 108 109 **Editor:** 110 Jon Hass - Dell **Contributors:** 111 Aaron Merkin - IBM 112 113 Bob Blair - AMD David Hines - Intel 114 115 Hemal Shah - Broadcom 116 Jon Hass - Dell 117 Khachatur Papanyan - Dell RadhaKrishna Dasari - Dell 118

Scott Lenharth - Dell

120	Introduction

121	This document defines the classes used to describe the batteries in a managed system. Also included are
122	descriptions of association classes that describe the relationship of the battery to the battery's physical
123	aspects, such as FRU data, to sensors monitoring the battery, and to DMTF profile version information.
124	The information in this specification is intended to be sufficient for a provider or consumer of this data to
125	identify unambiguously the classes, properties, methods, and values that are mandatory to be instantiated
126	and manipulated to represent and manage batteries of managed systems and subsystems modeled using
127	the DMTF CIM core and extended model definitions.
128	The target audience for this specification is implementers who are writing CIM-based providers or
129	consumers of management interfaces representing the component described in this document.

Battery Profile

131	1	Scope
132 133 134 135	to re	Battery Profile extends the management capabilities of referencing profiles by adding the capability epresent batteries for manageability. The battery as a logical device is modeled as referencing the very physical package for physical asset information, the sensor for sensor-reading information, and profile registration for the schema implementation version information.
136	2	Normative References
137 138 139	refe	following referenced documents are indispensable for the application of this document. For dated erences, only the edition cited applies. For undated references, the latest edition of the referenced ument (including any amendments) applies.
140	2.1	Approved References
141 142		TF DSP0004, CIM Infrastructure Specification 2.3, ://www.dmtf.org/standards/published_documents/DSP0004_2.3.pdf
143 144		TF DSP0200, CIM Operations over HTTP 1.3, ://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
145 146		TF DSP1001, Management Profile Specification Usage Guide 1.0, ://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf
147 148		TF DSP1009, Sensors Profile1.0, ://www.dmtf.org/standards/published_documents/DSP1009_1.0.pdf
149 150		TF DSP1011, Physical Asset Profile 1.0, ://www.dmtf.org/standards/published_documents/DSP1011_1.0.pdf
151 152		TF DSP1033, Profile Registration Profile 1.0, :://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf
153	2.2	Other References
154 155		/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, :://isotc.iso.org/livelink/livelink.exe?func=ll&objld=4230456&objAction=browse&sort=subtype
156	3	Terms and Definitions
157	For	the purposes of this document, the following terms and definitions apply.
158 159 160	3.1 can	d for statements of possibility and capability, whether material, physical, or causal
161	3.2	
162 163		not d for statements of possibility and capability, whether material, physical, or causal

- 164 **3.3**
- 165 conditional
- 166 indicates requirements strictly to be followed in order to conform to the document when the specified
- 167 conditions are met
- 168 **3.4**
- 169 **mandatory**
- 170 indicates requirements strictly to be followed in order to conform to the document and from which no
- 171 deviation is permitted
- 172 **3.5**
- 173 **may**
- 174 indicates a course of action permissible within the limits of the document
- 175 **3.6**
- 176 need not
- indicates a course of action permissible within the limits of the document
- 178 **3.7**
- 179 optional
- 180 indicates a course of action permissible within the limits of the document
- 181 **3.8**
- 182 referencing profile
- a profile that owns the definition of this class and can include a reference to this profile in its "Approved
- 184 References" section
- 185 **3.9**
- 186 shall
- 187 indicates requirements strictly to be followed in order to conform to the document and from which no
- 188 deviation is permitted
- 189 **3.10**
- 190 shall not
- 191 indicates requirements strictly to be followed in order to conform to the document and from which no
- 192 deviation is permitted
- 193 **3.11**
- 194 should
- 195 indicates that among several possibilities, one is recommended as particularly suitable, without
- mentioning or excluding others, or that a certain course of action is preferred but not necessarily required
- 197 **3.12**
- 198 should not
- 199 indicates that a certain possibility or course of action is deprecated but not prohibited
- 200 3.13
- 201 unspecified
- 202 indicates that this profile does not define any constraints for the referenced CIM element

4 Symbols and Abbreviated Terms

The following symbols and abbreviations are used in this document.

205 **4.1**

203

- 206 CIM
- 207 Common Information Model
- 208 **4.2**
- 209 FRU
- 210 Field Replaceable Unit

211 5 Synopsis

- 212 **Profile Name:** Battery
- 213 **Version:** 1.0.0
- 214 Organization: DMTF
- 215 **CIM Schema Version:** 2.22
- 216 **Central Class:** CIM_Battery
- 217 **Scoping Class:** CIM_ComputerSystem
- The Battery Profile extends the management capability of the referencing profiles to describe and set the
- 219 logical properties of the battery. Such properties include the description of the battery's charge status and
- the time it takes for the battery charge to be depleted. The profile also describes operations such as
- 221 recharging the battery.

222

Table 1 – Related Profiles

Profile Name	Organization	Version	Relationship	Behavior
Physical Asset	DMTF	1.0	Optional	
Profile Registration	DMTF	1.0	Mandatory	
Sensor	DMTF	1.0	Optional	

223 6 Description

224 The Battery Profile describes the necessary set of logical values for managing battery devices. The 225 properties in the Battery class provide the status of the battery as well as the estimation for its charge duration. Additionally, Battery class properties describe the physical characteristics of the battery such as 226 227 its chemistry, voltages, and lifetime. The capabilities to disable, enable, recharge, and establish charge 228 thresholds for a battery are advertised through the CIM EnabledLogicalElementCapabilities instance. 229 When a battery has an associated sensor, a CIM_Battery instance is associated to a CIM_Sensor 230 instance through the CIM_AssociatedSensor class. The battery's physical description, such as FRU 231 information, is represented by an instance of the CIM PhysicalPackage class through the CIM Realizes 232 association. The managed system element that the battery is providing power for is represented by the 233 CIM_Battery instance associated to a CIM_ManagedSystemElement sub-class instance through the 234 CIM AssociatedBattery association. The version of the Battery Profile implemented is represented through the CIM RegisteredProfile class. 235

Figure 1 represents the class schema for the *Battery Profile*. For simplicity, the prefix CIM_ has been removed from the names of the classes.

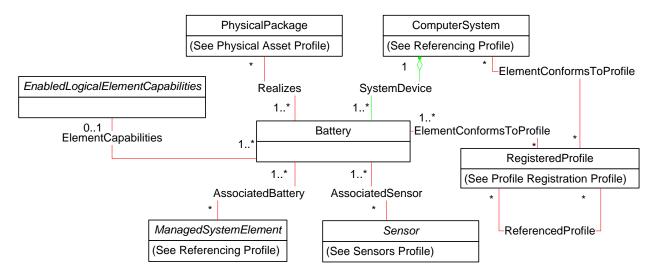


Figure 1 - Class Diagram

7 Implementation Requirements

This section details the requirements related to the arrangement of instances and properties of instances for implementations of this profile.

243 **7.1 CIM_Battery**

236

237

238

239

240

245

246

247

248

249

244 At least one instance of CIM_Battery shall be instantiated.

7.2 CIM_Battery.BatteryStatus Value Formulation

Table 2 describes the mapping between the values of the CIM_Battery.BatteryStatus property and the corresponding description of the status of the battery. The CIM_Battery.BatteryStatus property shall match one of the values that are specified in Table 2.

Table 2 – BatteryStatus Value Description

Value	Description	Extended Description
2	Unknown	The battery status is not known.
3	Fully Charged	The battery is fully charged.
4	Low	The battery charge is low.
5	Critical	The battery charge is nearly empty.
6	Charging	The battery is being charged.
10	Undefined	There is no information on the battery status.
12	Learning	The battery is undergoing a learning cycle to recalibrate low- and high-charge capacity thresholds.
13	Overcharged	The battery is more than fully charged.

250 7.3 CIM_Battery.Chemistry Value Formulation (Optional)

- The CIM_Battery.Chemistry property shall have one of the following values: 1 (Other), 2 (Unknown), 3
- 252 (Lead Acid), 4 (Nickel Cadmium), 5 (Nickel Metal Hydride), 6 (Lithium-ion), 7 (Zinc air), or 8 (Lithium
- 253 Polymer).

262

254 7.4 CIM_AssociatedBattery (Optional)

- The CIM AssociatedBattery class is used to associate the battery to the component that uses or requires
- the battery. If a component that uses or requires the battery is represented by the instance of a subclass
- 257 of CIM ManagedSystemElement, then the CIM AssociatedBattery class shall be used.
- When no instance of CIM_AssociatedBattery references the instance of CIM_Battery, the battery
- 259 represented by CIM_Battery supplies power to the whole managed system. In this case, the
- 260 CIM_ComputerSystem instance and the CIM_Battery instance shall be associated only through an
- 261 instance of CIM_SystemDevice.

7.5 Modeling a Battery Temperature Sensor (Optional)

- This section describes constraints for representing a battery temperature sensor. These constraints are in
- addition to the constraints described in the <u>Sensors Profile</u>.
- A battery discrete temperature sensor shall be represented by the CIM_Sensor class associated to the
- 266 CIM Battery instance using the CIM AssociatedSensor class. The CIM Sensor.Type property shall
- 267 match 2 (Temperature).
- A battery analog temperature sensor shall be represented by the CIM_NumericSensor class associated
- to the CIM_Battery instance using the CIM_AssociatedSensor class. The CIM_NumericSensor instance
- shall comply with the following requirements:
- CIM_NumericSensor.Type matches 2 (Temperature).
- CIM_NumericSensor.BaseUnits matches 2 (Degrees C), 3 (Degrees F), or 4 (Degrees K)
- CIM NumericSensor.RateUnits matches 0 (None)
- 274 An implementation may instantiate other CIM_Sensor or CIM_NumericSensor instances that are
- associated to the CIM_Battery instance, which represents other types of sensors. For example, a battery
- analog power production sensor may be associated to the CIM Battery instance for the purposes of
- representing the power output of the battery.

278 7.6 Managing the Battery's State (Optional)

- 279 This section describes the management of the battery's state. Battery state management consists of the
- 280 CIM Battery.RequestStateChange() method being supported (see section 8.1) and the
- 281 CIM_Battery.RequestedState property having a value other than 12 (Not Applicable).

282 7.6.1 Battery State Management Support

- 283 When no instance of CIM EnabledLogicalElementCapabilities is associated with the CIM Battery
- instance, battery state management shall not be supported.
- 285 When a CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_Battery instance
- but the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is an
- empty array, battery state management shall not be supported.
- When a CIM_EnabledLogicalElementCapabilities instance is associated with the CIM_ Battery instance
- and the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is not
- an empty array, battery state management shall be supported.

7.6.2 CIM_Battery.RequestedState

291

294

295

296

297 298

299

300

301

302

303

304

305

306

307

308

309

310

311

314

When state management is supported, the RequestedState property shall be supported. When state management is unspecified, the RequestedState property may be supported.

The CIM_Battery.RequestedState property shall be set to the value of the RequestedState parameter of the CIM_Battery.RequestStateChange() method, if the method is executed and is supported. The CIM_Battery.RequestedState property shall match one of the values that are specified in Table 3. After the RequestStateChange() method has successfully executed, RequestedState and EnabledState shall have equal values, with the exception of the transitional requested states 7 (Test) and 11 (Reset). The value of the RequestedState property may also change as a result of a request for change to the battery's enabled state by a non-CIM implementation.

Table 3 – RequestedState Values

Value	Description	Extended Description
0	Unknown	The battery state is indeterminate.
2	Enabled	The battery shall be made ready to provide power.
3	Disabled	The battery shall be made not ready to provide power.
7	Test	The battery shall begin undergoing the learning cycle process; low and high voltage thresholds will be calculated.
11	Reset	The battery shall begin recharging.
12	Not Applicable	State management is not supported.

7.6.3 CIM_Battery.EnabledState

Table 4 describes the mapping between the values of the CIM_Battery. EnabledState property and the corresponding description of the state of the battery. The CIM_Battery. EnabledState property shall match one of the values that are specified in Table 4. When the RequestStateChange() method executes but does not complete successfully, and the battery is in an indeterminate state, the CIM_Battery. EnabledState property shall have value of 5 (Not Applicable). The value of the EnabledState property may also change as a result of a change to the battery's enabled state by a non-CIM implementation.

Table 4 - EnabledState Values

Value	Description	Extended Description
0	Unknown	The battery state is indeterminate.
2	Enabled	The battery shall be available to provide power.
3	Disabled	The battery shall not be available to provide power.
5	Not Applicable	State management is not supported.

7.6.4 CIM_EnabledLogicalElementCapabilities

The CIM_EnabledLogicalElementCapabilities class is used for advertising the capabilities of the CIM_Battery instance.

7.6.4.1 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported

- The CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is an array that
- contains the supported requested states for the instance of CIM_Battery. The value of the
- 317 CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property shall be an empty array or
- contain any combination of the following values: 2 (Enabled), 3 (Disabled), 7 (Test), 11 (Reset), and 12
- 319 (Not Applicable).

7.6.4.2 CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported

- 321 The CIM_EnabledLogicalElementCapabilities.ElementName property may be modifiable by a client, or it
- 322 may have a fixed value.

320

326

331

337

340

354

- 323 The CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property shall have a value of
- 324 TRUE when the implementation supports client modification of the associated instance of the
- 325 CIM_Battery.ElementName property.

7.6.4.3 CIM EnabledLogicalElementCapabilities.ElementNameMask

- 327 The CIM_EnabledLogicalElementCapabilities.ElementNameMask property provides the regular
- 328 expression that expresses the limits of the CIM_EnabledLogicalElementCapabilities.ElementName
- 329 property. The CIM_EnabledLogicalElementCapabilities. ElementNameMask property shall have a value
- as described in DSP1001.

7.6.4.4 CIM_EnabledLogicalElementCapabilities.MaxElementNameLen

- The CIM_EnabledLogicalElementCapabilities.MaxElementNameLen property shall be implemented when
- the CIM_EnabledLogicalElementCapabilities.ElementNameEditSupported property has a value of TRUE.
- 334 The CIM_EnabledLogicalElementCapabilities.MaxElementNameLen property shall indicate the maximum
- length of a string that the implementation will accept as a value for the
- 336 CIM_EnabledLogicalElementCapabilities.ElementName property of the associated CIM_Battery instance.

8 Methods

This section details the requirements for supporting intrinsic operations and extrinsic methods for the CIM elements defined by this profile.

8.1 Method: CIM_Battery.RequestStateChange()

- Invocation of the CIM_Battery.RequestStateChange() method will change the battery status and/or state
- to the value specified in the RequestedState parameter. The CIM Battery.RequestedState property and
- 343 CIM Battery. EnabledState property shall be affected by the invocation of the RequestStateChange()
- method as specified in sections 7.6.3 and 7.6.2. The "Enabled"/"Disabled" values of the RequestedState
- parameter correspond to turning on/off the battery represented by the instance of CIM Battery. The
- 346 "Reset" value of the RequestedState parameter corresponds to requesting the battery to perform a
- 347 recharge operation. The "Test" value of the RequestedState parameter corresponds to requesting the
- 348 battery to perform a recalculation of charge thresholds.
- 349 The RequestStateChange() method's detailed requirements are specified in Table 5 and Table 6. The
- 350 return code values specified in Table 5 shall be returned by the RequestStateChange() method when the
- 351 execution behavior of the method matches the description in Table 5. Table 6 specifies
- 352 RequestStateChange() method parameters. The RequestedState parameter shall be required by the
- 353 RequestStateChange() method.

Table 5 – CIM Battery.RequestStateChange() Method: Return Code Values

Value	Description
0	Initiation of the state change request was successful.
1	Method is not supported in the implementation.
2	Error Occurred
4096	Job started: REF returned to started CIM_ConcreteJob

355

360

365

Table 6 - CIM_Battery.RequestStateChange() Method: Parameters

Qualifiers	Name	Туре	Description/Values
IN, REQ	RequestedState	uint16	Valid state values:
			2 (Enabled)
			3 (Disabled)
			7 (Test)
			11 (Reset)
OUT	Job	CIM_ConcreteJob REF	Return if job started
IN, REQ	TimeoutPeriod	Datetime	Client-specified maximum amount of time the transition to a new state is supposed to take:
			0 or NULL – No time requirements
			<interval> – Maximum time allowed</interval>

356 8.1.1 CIM_Battery.RequestStateChange() Conditional Support

When the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property contains at least one value, the CIM_Battery.RequestStateChange() method shall be implemented and supported. The CIM_Battery.RequestStateChange() method shall not return a value of 1 (Unsupported).

8.2 Profile Conventions for Operations

- For each profile class (including associations), the implementation requirements for operations, including those in the following default list, are specified in class-specific subclauses of this clause.
- 363 The default list of operations is as follows:
- GetInstance
 - Associators
- 4 AssociatorNames
- References
- ReferenceNames
- EnumerateInstances

371 **8.3 CIM_AssociatedBattery**

- Table 7 lists implementation requirements for operations. If implemented, these operations shall be
- implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 7, all operations in
- the default list in 8.2 shall be implemented as defined in DSP0200.
- NOTE: Related profiles may define additional requirements on operations for the profile class.

376

Table 7 – Operations: CIM_AssociatedBattery

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

8.4 CIM_ElementCapabilities

Table 8 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 8, all operations in the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

NOTE: Related profiles may define additional requirements on operations for the profile class.

382

383

384

385

386 387

388

377

378

379

380 381

Table 8 - Operations: CIM_ElementCapabilities

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

8.5 CIM_EnabledLogicalElementCapabilities

Table 9 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 9, all operations in the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.

NOTE: Related profiles may define additional requirements on operations for the profile class.

Table 9 – Operations: CIM_EnabledLogicalElementCapabilities

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None

8.6 CIM_Battery

Table 10 lists implementation requirements for operations. If implemented, these operations shall be

- implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 10, all operations
- in the default list in 8.2 shall be implemented as defined in <u>DSP0200</u>.
- 393 NOTE: Related profiles may define additional requirements on operations for the profile class.

394

395

407

389

Table 10 – Operations: CIM_Battery

Operation	Requirement	Messages
ModifyInstance	Optional. See section 8.6.1.	None

8.6.1 CIM_Battery — ModifyInstance

- 396 This section details the requirements for the ModifyInstance operation applied to an instance of
- 397 CIM_Battery. The ModifyInstance operation may be supported. See section 8.6.1.1.

398 8.6.1.1 CIM_Battery.ElementName

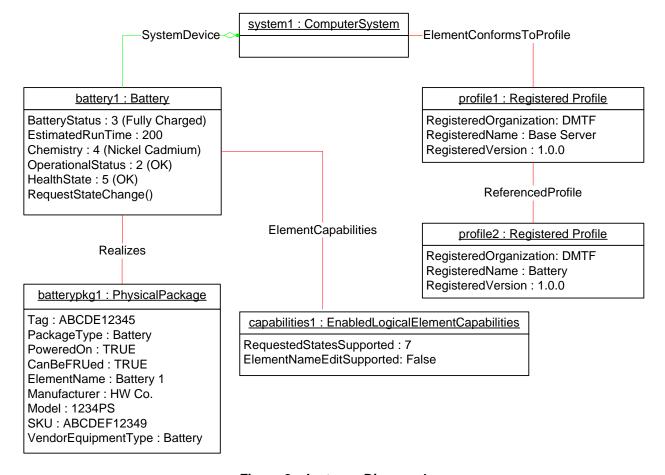
- When the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance
- 400 that is associated with the CIM_Battery instance has a value of TRUE, the implementation shall allow the
- 401 ModifyInstance operation to change the value of the ElementName property of the CIM_Battery instance.
- The ModifyInstance operation shall enforce the length restriction specified in the MaxElementNameLen
- 403 property of the CIM_EnabledLogicalElementCapabilities instance.
- When the ElementNameEditSupported property of the CIM_EnabledLogicalElementCapabilities instance
- 405 has a value of FALSE, the implementation shall not allow the ModifyInstance operation to change the
- value of the ElementName property of the CIM Battery instance.

8.7 CIM_SystemDevice

- 408 Table 11 lists implementation requirements for operations. If implemented, these operations shall be
- implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 11, all operations
- in the default list in 8.2 shall be implemented as defined in DSP0200.
- 411 NOTE: Related profiles may define additional requirements on operations for the profile class.

412 Table 11 – Operations: CIM SystemDevice

Operation	Requirement	Messages
Associators	Unspecified	None
AssociatorNames	Unspecified	None
References	Unspecified	None
ReferenceNames	Unspecified	None


413 9 Use Cases

415

414 This section contains object diagrams and use cases for the *Battery Profile*.

9.1 Object Diagrams

- 416 Figure 2 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance,
- 417 battery1, is associated with a computer system, system1. The battery is operating but is only partially
- 418 charged, battery1's physical package information is represented as well.
- Because battery1 does not have the CIM_AssociatedBattery association reference, battery1 is available
- 420 to supply power to system1, which is denoted by the CIM SystemDevice association, system1 is also the
- 421 scoping instance for battery1. Thus, following the CIM ElementConformsToProfile association to profile1
- 422 and then the referenced CIM ReferencedProfile association to a CIM RegisteredProfile instance with the
- 423 RegisteredName property set to "Battery", the client can retrieve profile2. profile2 shows the version of
- 424 the current *Battery Profile* implementation.
- 425 For simplicity, the prefix CIM_ has been removed from the class names in the figure.

426 427

Figure 2 – Instance Diagram 1

Figure 3 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance, battery1, is associated with a sensor, sensor1. The battery is fully charged but is degraded. Following the CIM_AssociatedSensor association to sensor1, the CurrentState property value indicates that the temperature sensor is in a bad state.

Version 1.0.0 DMTF Standard 17

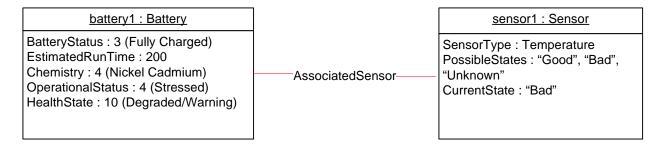


Figure 3 – Instance Diagram 2

Figure 4 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance, battery1, is associated with a sensor, sensor1. The battery is fully charged and is operating. Following the CIM_AssociatedSensor association to sensor1, the CurrentState property value indicates that the voltage sensor is in a good state.

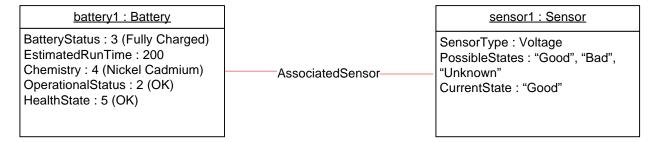


Figure 4 – Instance Diagram 3

Figure 5 represents a possible instantiation of the *Battery Profile*. In this instantiation, a battery instance, battery1, is associated with capabilities, capabilities1. battery1 is charging. Its RequestedState property has a value of 11 (Reset), which indicates that a recharge was initiated. The BatteryStatus property has a value of 6 (Charging), which indicates that the recharge is still active. The battery can be recharged, using the RequestStateChange() method, because the value of the RequestedStatesSupported property of capabilities1 is 11 (Reset).

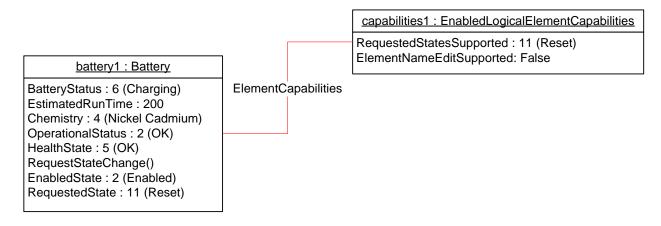


Figure 5 – Instance Diagram 4

9.2 Recharge a Battery

448

450

451 452

453

454

455

456

457

458

459

460 461

462

463

464

465

466

468

469

470

471

472

473

475

476

477

- 449 A client can recharge a battery as follows:
 - 1) Find the instance of CIM_EnabledLogicalElementCapabilities that is associated with the instance of CIM_Battery through an instance of CIM_ElementCapabilities. If the instance is not found, the battery cannot be recharged.
 - 2) Retrieve the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property. If the property is a non-empty array that contains the value 11 (Reset), execute the RequestStateChange() method with the value of the RequestedState parameter set to 11 (Reset), which will begin a recharge of the battery represented by this instance.

9.3 Recalibrate Battery Thresholds

- A client can recalibrate battery thresholds as follows:
 - 1) Find the instance of CIM_EnabledLogicalElementCapabilities that is associated with the instance of CIM_Battery through an instance of CIM_ElementCapabilities. If the instance is not found, the battery thresholds cannot be recalibrated.
 - 2) Retrieve the value of the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property. If the property is a non-empty array that contains the value 7 (Test), execute the RequestStateChange() method with the value of the RequestedState parameter set to 7 (Test), which will begin a recalibration of the battery represented by this instance.

9.4 Determine Additional Information for the Health of a Battery Using a Sensor

- A client can determine the health of a battery using a sensor as follows:
 - Find the instance of CIM_Sensor or CIM_NumericSensor that is associated with the instance of CIM_Battery through an instance of CIM_AssociatedSensor. If the instance is not found, the battery properties CIM_Battery.BatteryStatus, CIM_Battery.HealthState, and CIM_Battery.OperationalStatus provide the only health information for the battery.
 - 2) Retrieve the value of the CIM_Sensor.CurrentState property or the CIM_NumericSensor.CurrentState property.

474 10 CIM Elements

Table 12 shows the instances of CIM Elements for this profile. Instances of these CIM Elements shall be implemented as described in Table 12.

Table 12 – CIM Elements: Battery Profile

Element Name	Requirement	Description		
Classes				
CIM_AssociatedBattery	Optional	See sections 7.4 and 10.1.		
CIM_Battery	Mandatory	See sections 7.1 and 10.2.		
CIM_ElementCapabilities	Optional	See section 10.3.		
CIM_EnabledLogicalElementCapabilities	Optional	See sections 7.6.4 and 10.4.		
CIM_NumericSensor	Optional	See sections 7.5 and 10.5.		
CIM_RegisteredProfile	Mandatory	See section 10.6.		
CIM_Sensor	Optional	See sections 7.5 and 10.7.		
CIM_SystemDevice	Mandatory	See section 10.8.		

10.1 CIM_AssociatedBattery

478

482

483

The CIM_AssociatedBattery class is used to associate an instance of CIM_Battery with a device represented by an instance of the CIM_ManagedSystemElement subclass that uses or requires the

battery. Table 13 contains the requirements for elements of this class.

Table 13 - Class: CIM_AssociatedBattery

Properties	Requirement	Description
Antecedent	Mandatory	Key This property shall be a reference to an instance of CIM_Battery.
		Cardinality 1*
Dependent	Mandatory	Key This property shall reference the instance of a subclass of CIM_ManagedSystemElement that represents the element that uses or requires the battery.
		Cardinality *

10.2 CIM_Battery

The CIM_Battery class is used to represent the battery. Table 14 contains the requirements for elements of this class.

486 **Table 14 – Class: CIM_Battery**

Properties	Requirement	Description
SystemCreationClassName	Mandatory	Key
SystemName	Mandatory	Key
CreationClassName	Mandatory	Key
DeviceID	Mandatory	Key
BatteryStatus	Mandatory	See section 7.2.
OperationalStatus	Mandatory	None
HealthState	Mandatory	None
EnabledState	Mandatory	See section 7.6.3.
RequestedState	Mandatory	See section 7.6.2.
ElementName	Mandatory	Pattern ".*"
Chemistry	Optional	See section 7.3.
MaxRechargeCount	Optional	None
RechargeCount	Optional	None
ExpectedLife	Optional	None
EstimatedRunTime	Optional	None
TimeToFullCharge	Optional	None
MaxRechargeTime	Optional	None

10.3 CIM_ElementCapabilities

- 488 The CIM_ElementCapabilities class is used to associate an instance of
- 489 CIM_EnabledLogicalElementCapabilities with an instance of CIM_Battery. Table 15 contains the
- 490 requirements for elements of this class.

487

491

492

495

496

497

498

499

Table 15 - Class: CIM_ElementCapabilities

Properties	Requirement	Notes
ManagedElement	Mandatory	Key This property shall be a reference to an instance of CIM_Battery. Cardinality 1*
Capabilities	Mandatory	Key This property shall be a reference to the CIM_EnabledLogicalElementCapabilities instance. Cardinality 1

10.4 CIM_EnabledLogicalElementCapabilities

The CIM_EnabledLogicalElementCapabilities class represents the capabilities of the battery. Table 16 contains the requirements for elements of this class.

Table 16 - Class: CIM_EnabledLogicalElementCapabilities

Properties	Requirement	Notes
InstanceID	Mandatory	Key
RequestedStatesSupported	Mandatory	See section 7.6.4.1.
ElementNameEditSupported	Mandatory	See section 7.6.4.2.
ElementNameMask	Mandatory	See section 7.6.4.3.
MaxElementNameLen	Conditional	See section 7.6.4.4.

10.5 CIM NumericSensor

The CIM_NumericSensor class is defined by the <u>Sensors Profile</u>. The requirements denoted in Table 17 are in addition to those mandated by the <u>Sensors Profile</u>. See section 2.1.

Table 17 - Class: CIM_NumericSensor

Properties	Requirement	Description
SensorType	Mandatory	Matches 2 (Temperature)
BaseUnits	Mandatory	Matches 2 (Degrees C), 3 (Degrees F), or 4 (Degrees K)
RateUnits	Mandatory	Matches 0 (None)

10.6 CIM_RegisteredProfile

The CIM_RegisteredProfile class is defined by the <u>Profile Registration Profile</u>. The requirements denoted in Table 18 are in addition to those mandated by the <u>Profile Registration Profile</u>. See section 2.1.

Table 18 - Class: CIM_RegisteredProfile

Properties	Requirement	Description
RegisteredName	Mandatory	Matches "Battery"
RegisteredVersion	Mandatory	Matches "1.0.0"
RegisteredOrganization	Mandatory	Matches 2 (DMTF)

10.7 CIM_Sensor

500

503

504

507

508

512

The CIM_Sensor class is defined by the <u>Sensors Profile</u>. The requirements denoted in Table 19 are in addition to those mandated by the <u>Sensors Profile</u>. See section 2.1.

Table 19 – Class: CIM_Sensor

Properties	Requirement	Description
SensorType	Mandatory	Matches 2 (Temperature)

10.8 CIM_SystemDevice

The CIM_SystemDevice class is used to associate an instance of CIM_Battery with the CIM_ComputerSystem instance of which the CIM_Battery instance is a member. Table 20 contains the requirements for elements of this class.

Table 20 – Class: CIM_SystemDevice

Properties	Requirement	Description
GroupComponent	Mandatory	Key This property shall be a reference to the CIM_ComputerSystem instance of which a CIM_Battery instance is a member. Cardinality 1
PartComponent	Mandatory	Key This property shall be a reference to an instance of CIM_Battery. Cardinality 1*

513 ANNEX A
514 (informative)
515 Change Log

Version	Date	Description
1.0.0e	5/1/2007	Preliminary Standard
1.0.0	5/13/2009	DMTF Standard Release