
 - Not a DMTF Standard

 1

Document Number: DSP0226 2

Date: 2014-06-16 3

Version: 1.2.0b 4

Web Services for Management (WS-5

Management) Specification 6

Document Type: Specification 7

Document Status: Work in Progress 8

Document Language: en-US 9

Web Services for Management (WS-Management) Specification DSP0226

2 Work in Progress - Not a DMTF Standard Version 1.2.0b

Copyright Notice 10

Copyright © 2006–2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

 32

http://www.dmtf.org/about/policies/disclosures.php

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 3

CONTENTS 33

Foreword .. 7 34

1 Scope ... 9 35

2 Normative References ... 9 36

3 Terms and Definitions .. 11 37

4 Symbols and Abbreviated Terms ... 14 38

5 Addressing ... 15 39
5.1 Management Addressing .. 15 40
5.2 Versions of Addressing .. 23 41
5.3 Requirements for Compatibility ... 24 42
5.4 Use of Addressing in WS-Management .. 26 43

6 WS-Management Control Headers.. 43 44
6.1 wsman:OperationTimeout ... 43 45
6.2 wsman:MaxEnvelopeSize ... 44 46
6.3 wsman:Locale ... 45 47
6.4 wsman:OptionSet .. 46 48
6.5 wsman:RequestEPR ... 49 49

7 Resource Access ... 50 50
7.1 General .. 50 51
7.2 Addressing Uniformity ... 52 52
7.3 Get ... 53 53
7.4 Put ... 55 54
7.5 Delete .. 58 55
7.6 Create .. 60 56
7.7 Fragment-Level Access ... 63 57
7.8 Fragment-Level Get .. 65 58
7.9 Fragment-Level Put ... 67 59
7.10 Fragment-Level Delete .. 69 60
7.11 Fragment-Level Create ... 70 61

8 Enumeration of Datasets ... 72 62
8.1 General .. 72 63
8.2 Enumerate ... 74 64
8.3 Filter Interpretation .. 81 65
8.4 Pull ... 83 66
8.5 Release ... 87 67
8.6 Ad-Hoc Queries and Fragment-Level Enumerations .. 89 68
8.7 Enumeration of EPRs .. 90 69
8.8 Renew ... 91 70
8.9 GetStatus... 93 71
8.10 EnumerationEnd .. 93 72

9 Custom Actions (Methods) ... 94 73

10 Notifications (Eventing) .. 95 74
10.1 General .. 95 75
10.2 Subscribe... 96 76
10.3 GetStatus... 116 77
10.4 Unsubscribe... 117 78
10.5 Renew ... 118 79
10.6 SubscriptionEnd .. 119 80
10.7 Acknowledgement of Delivery ... 121 81
10.8 Refusal of Delivery .. 122 82
10.9 Dropped Events ... 123 83
10.10 Access Control .. 124 84

Web Services for Management (WS-Management) Specification DSP0226

4 Work in Progress - Not a DMTF Standard Version 1.2.0b

10.11 Implementation Considerations ... 125 85
10.12 Advertisement of Notifications ... 125 86

11 Metadata and Discovery .. 125 87

12 Security .. 128 88
12.1 General .. 128 89
12.2 Security Profiles .. 129 90
12.3 Security Considerations for Event Subscriptions .. 129 91
12.4 Including Credentials with a Subscription ... 131 92
12.5 Correlating Events with a Subscription ... 131 93
12.6 Transport-Level Authentication Failure ... 131 94
12.7 Security Implications of Third-Party Subscriptions .. 131 95

13 Transports and Message Encoding ... 132 96
13.1 SOAP ... 132 97
13.2 Lack of Response .. 133 98
13.3 Replay of Messages .. 133 99
13.4 Encoding Limits ... 133 100
13.5 Binary Attachments ... 134 101
13.6 Case-Sensitivity ... 134 102

14 Faults ... 135 103
14.1 Introduction .. 135 104
14.2 Fault Encoding .. 135 105
14.3 NotUnderstood Faults ... 136 106
14.4 Degenerate Faults ... 137 107
14.5 Fault Extensibility .. 137 108
14.6 Master Faults ... 138 109

ANNEX A (informative) Notational Conventions ... 158 110
A.1 XML Namespaces ... 158 111

ANNEX B (normative) Conformance .. 160 112

ANNEX C (normative) HTTP(S) Transport and Security Profile .. 161 113
C.1 General .. 161 114
C.2 HTTP(S) Binding ... 161 115
C.3 HTTP(S) Security Profiles ... 162 116
C.4 IPSec and HTTP ... 167 117

ANNEX D (informative) XPath Support .. 169 118
D.1 General .. 169 119
D.2 Level 1 ... 170 120
D.3 Level 2 ... 172 121

ANNEX E (normative) Selector Filter Dialect ... 175 122

ANNEX F (informative) Identify XML Schema .. 177 123

ANNEX G (informative) Resource Access Operations XML Schema and WSDL 180 124

ANNEX H (informative) Enumeration Operations XML Schema and WSDL ... 185 125

ANNEX I (informative) Notification OperationsXML Schema and WSDL .. 194 126

ANNEX J (informative) Addressing XML Schema .. 202 127

ANNEX K (informative) WS-Management XML Schema ... 205 128

ANNEX L (informative) Change Log ... 215 129

 130

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 5

Figures 131

Figure 1 – Message Information Header Blocks ... 19 132

 133

Tables 134

Table 1 – Relationship Type .. 20 135

Table 2 – Interoperability Requirements ... 24 136

Table 3 – WSA Versions in Exchanges ... 25 137

Table 4 – wsa:Action URI Descriptions ... 41 138

Table 5 – wsman:AccessDenied ... 138 139

Table 6 – wsa:ActionNotSupported ... 139 140

Table 7 – wsman:AlreadyExists .. 139 141

Table 8 – wsmen:CannotProcessFilter ... 140 142

Table 9 – wsman:CannotProcessFilter ... 140 143

Table 10 – wsman:Concurrency .. 141 144

Table 11 – wsme:DeliveryModeRequestedUnavailable .. 141 145

Table 12 – wsman:DeliveryRefused .. 142 146

Table 13 – wsa:DestinationUnreachable ... 142 147

Table 14 – wsman:EncodingLimit .. 143 148

Table 15 – wsa:EndpointUnavailable .. 143 149

Table 16 – wsman:EventDeliverToUnusable .. 144 150

Table 17 – wsme:EventSourceUnableToProcess ... 145 151

Table 18 – wsmen:FilterDialectRequestedUnavailable ... 145 152

Table 19 – wsme:FilteringNotSupported ... 145 153

Table 20 – wsmen:FilteringNotSupported ... 146 154

Table 21 – wsme:FilteringRequestedUnavailable ... 146 155

Table 22 – wsman:FragmentDialectNotSupported ... 147 156

Table 23 – wsman:InternalError .. 147 157

Table 24 – wsman:InvalidBookmark ... 148 158

Table 25 – wsmen:InvalidEnumerationContext ... 148 159

Table 26 – wsme:InvalidExpirationTime .. 149 160

Table 27 – wsmen:InvalidExpirationTime .. 149 161

Table 28 – wsme:InvalidMessage ... 150 162

Table 29 – wsa:InvalidMessageInformationHeader .. 150 163

Table 30 – wsman:InvalidOptions ... 151 164

Table 31 – wsman:InvalidParameter ... 151 165

Table 32 – wsmt:InvalidRepresentation .. 151 166

Table 33 – wsman:InvalidSelectors ... 152 167

Table 34 – wsa:MessageInformationHeaderRequired .. 153 168

Table 35 – wsman:NoAck .. 153 169

Table 36 – wsman:QuotaLimit ... 153 170

Table 37 – wsman:SchemaValidationError ... 154 171

Web Services for Management (WS-Management) Specification DSP0226

6 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 38 – wsmen:TimedOut .. 154 172

Table 39 – wsman:TimedOut .. 154 173

Table 40 – wsme:UnableToRenew ... 155 174

Table 41 – wsme:UnsupportedExpirationType ... 155 175

Table 42 – wsmen:UnsupportedExpirationType ... 155 176

Table 43 – wsman:UnsupportedFeature ... 156 177

Table 44 – wsme:UnsupportedExpirationType ... 156 178

Table 45 – wsmen:UnableToRenew ... 157 179

Table 46 – wsa:InvalidMessage .. 157 180

Table 47 – wsme:CannotProcessFilter ... 157 181

Table A-1 – Prefixes and XML Namespaces Used in This Specification .. 159 182

Table C-1 – Basic Authentication Sequence ... 163 183

Table C-2 – Digest Authentication Sequence ... 164 184

Table C-3 – Basic Authentication over HTTPS Sequence .. 164 185

Table C-4 – Digest Authentication over HTTPS Sequence .. 164 186

Table C-5 – HTTPS with Client Certificate Sequence ... 165 187

Table C-6 – Basic Authentication over HTTPS with Client Certificate Sequence 165 188

Table C-7 – SPNEGO Authentication over HTTPS Sequence ... 166 189

Table C-8 – SPNEGO Authentication over HTTPS with Client Certificate Sequence 167 190

Table D-1 – XPath Level 1 Terminals ... 171 191

Table D-2 – XPath Level 2 Terminals ... 173 192

 193

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 7

Foreword 194

The Web Services for Management (WS-Management) Specification (DSP0226) was prepared by the 195
WS-Management sub-group of the WBEM Infrastructure & Protocols Working Group. 196

This International Standard makes use of functionality similar to the following W3C 197
Recommendations: 198

 Web Services Eventing (WS-Eventing) 199

 Web Services Transfer (WS-Transfer) 200

 Web Services Enumeration (WS-Enumeration) 201

These W3C Recommendations were not available at the time WS-Management was defined, and 202
similar functionality was incorporated directly into provisions of the WS-Management specification. 203
Future revisions of WS-Management might incorporate these functions by External Reference to 204
these W3C Recommendations 205

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and 206
systems management and interoperability. 207

Acknowledgements 208

The authors wish to acknowledge the following people. 209

Editors: 210

 Keith Bankston - Microsoft 211

 Larry Lamers - VMware 212

Authors: 213

 Akhil Arora – Sun Microsystems 214

 Vince Brunssen – IBM 215

 Nathan Burkhart – Microsoft 216

 Mark Carlson – Sun Microsystems 217

 Josh Cohen – Microsoft 218

 Doug Davis – IBM 219

 Jim Davis – WBEM Solutions 220

 Tony Dicenzo – Oracle 221

 Mike Dutch – Symantec 222

 Zulah Eckert – BEA Systems 223

 George Ericson – EMC 224

 Wassim Fayed – Microsoft 225

 Chris Ferris – IBM 226

 Bob Freund – Hitachi Ltd. 227

 Eugene Golovinsky – BMC Software 228

 Yasuhiro Hagiwara – NEC 229

 Steve Hand – Olocity 230

 Jackson He – Intel 231

 David Hines – Intel 232

 Reiji Inohara – NEC 233

 Christane Kämpfe – Fujitsu-Siemens Computers 234

 Paul Knight – Nortel Networks 235

 Vincent Kowalski – BMC Software 236

 Heather Kreger – IBM 237

Web Services for Management (WS-Management) Specification DSP0226

8 Work in Progress - Not a DMTF Standard Version 1.2.0b

 Vishwa Kumbalimutt – Microsoft 238

 Sunil Kunisetty – Oracle 239

 Richard Landau – Dell 240

 Paul Lipton – CA 241

 James Martin – Intel 242

 Raymond McCollum – Microsoft 243

 Milan Milenkovic – Intel 244

 Jeff Mischkinsky – Oracle 245

 Paul Montgomery – AMD 246

 Jishnu Mukurji – HP 247

 Bryan Murray – HP 248

 Alexander Nosov – Microsoft 249

 Abhay Padlia – Novell 250

 Gilbert Pilz – Oracle 251

 Roger Reich – Symantec 252

 Brian Reistad – Microsoft 253

 Larry Russon – Novell 254

 Tom Rutt – Fujitsu Ltd. 255

 Jeffrey Schlimmer – Microsoft 256

 Dr. Hemal Shah – Broadcom 257

 Sharon Smith – Intel 258

 Enoch Suen – Dell 259

 Vijay Tewari – Intel 260

 William Vambenepe – HP 261

 Andrea Westerinen – CA, Inc. 262

 Kirk Wilson – CA, Inc. 263

 Dr. Jerry Xie – Intel 264
Contributors: 265

 Paul C. Allen – Microsoft 266

 Rodrigo Bomfim – Microsoft 267

 Don Box – Microsoft 268

 Jerry Duke – Intel 269

 David Filani – Intel 270

 Kirill Gavrylyuk – Microsoft 271

 Omri Gazitt – Microsoft 272

 Frank Gorishek – AMD 273

 Lawson Guthrie – Intel 274

 Arvind Kumar – Intel 275

 Brad Lovering – Microsoft 276

 Pat Maynard – Intel 277

 Steve Millet – Microsoft 278

 Matthew Senft – Microsoft 279

 Barry Shilmover – Microsoft 280

 Tom Slaight – Intel 281

 Marvin Theimer – Microsoft 282

 Dave Tobias – AMD 283

 John Tollefsrud – Sun 284

 Anders Vinberg – Microsoft 285

 Megan Wallent – Microsoft 286

 287

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 9

Web Services for Management (WS-Management) 288

Specification 289

1 Scope 290

The Web Services for Management (WS-Management) Specification describes a Web services 291
protocol based on SOAP for use in management-specific domains. These domains include the 292
management of entities such as PCs, servers, devices, Web services and other applications, and 293
other manageable entities. Services can expose only a WS-Management interface or compose the 294
WS-Management service interface with some of the many other Web service specifications. 295

A crucial application for these services is in the area of systems management. To promote 296
interoperability between management applications and managed resources, this specification 297
identifies a core set of Web service specifications and usage requirements that expose a common set 298
of operations central to all systems management. This includes the ability to do the following: 299

 Get, put (update), create, and delete individual resource instances, such as settings and 300
dynamic values 301

 Enumerate the contents of containers and collections, such as large tables and logs 302

 Subscribe to events emitted by managed resources 303

 Execute specific management methods with strongly typed input and output parameters 304

In each of these areas of scope, this specification defines minimal implementation requirements for 305
conformant Web service implementations. An implementation is free to extend beyond this set of 306
operations, and to choose not to support one or more of the preceding areas of functionality if that 307
functionality is not appropriate to the target device or system. 308

This specification intends to meet the following requirements: 309

 Constrain Web services protocols and formats so that Web services can be implemented 310
with a small footprint in both hardware and software management services. 311

 Define minimum requirements for compliance without constraining richer implementations. 312

 Ensure backward compatibility and interoperability with WS-Management version 1.0 and 313
1.1. 314

 Ensure composability with other Web services specifications. 315

2 Normative References 316

The following referenced documents are indispensable for the application of this document. For dated 317
references, only the edition cited applies. For undated references, the latest edition of the referenced 318
document (including any amendments) applies. 319

IETF RFC 2616, R. Fielding et al, Hypertext Transfer Protocol (HTTP 1.1), June 1999, 320
http://tools.ietf.org/html/rfc2616 321

IETF, RFC 3986, T. Berners-Lee et al, Uniform Resource Identifiers (URI): Generic Syntax, August 322
1998, http://tools.ietf.org/html/rfc3986 323

IETF, RFC 4122, P. Leach et al, A Universally Unique Identifier (UUID) URN Namespace, July 2005, 324
http://tools.ietf.org/html/rfc4122 325

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4122

Web Services for Management (WS-Management) Specification DSP0226

10 Work in Progress - Not a DMTF Standard Version 1.2.0b

IETF RFC 4178, L. Zhu et al, The Simple and Protected Generic Security Service Application 326
Program Interface (GSS-API) Negotiation Mechanism, October 2005, http://tools.ietf.org/html/rfc4178 327

IETF, RFC 4559, K. Jaganathan et al, SPNEGO-based Kerberos and NTLM HTTP Authentication in 328
Microsoft Windows, June 2006, http://www.ietf.org/rfc/rfc4559.txt 329

IETF RFC 5646, A. Phillips et al, Tags for Identifying Languages, September 2009, 330
http://tools.ietf.org/rfc/rfc5646.txt 331

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 332
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 333

OASIS, A. Nadalin et al, Web Services Security Username Token Profile 1.0, March 2004, 334
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf 335

OASIS, A. Nadalin et al, Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), 336
March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-337
1.0.pdf 338

OASIS, S. Anderson et al, Web Services Trust Language (WS-Trust), December 2005, 339
http://schemas.xmlsoap.org/ws/2005/02/trust 340

The Unicode Consortium, The Unicode Standard Version 3.0, January 2000, 341
http://www.unicode.org/book/u2.html 342

The Unicode Consortium, Byte Order Mark (BOM) FAQ, 343
http://www.unicode.org/faq/utf_bom.html#BOM 344

W3C, M. Gudgin, et al, SOAP Version 1.2 Part 1: Messaging Framework, June 2003, 345
http://www.w3.org/TR/soap12-part1/ 346

W3C, M. Gudgin, et al, SOAP Version 1.2 Part 2: Adjuncts, June 2003, 347
http://www.w3.org/TR/2003/REC-soap12-part2-20030624 348

W3C, M. Gudgin, et al, SOAP Message Transmission Optimization Mechanism (MTOM), 349
November 2004, http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/ 350

W3C, J. Clark et al, XML Path Language Version 1.0 (XPath 1.0), November 1999, 351
http://www.w3.org/TR/1999/REC-xpath-19991116 352

W3C, J. Cowan et al, XML Information Set Second Edition (XML Infoset), February 2004, 353
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/ 354

W3C, H. Thompson et al, XML Schema Part 1: Structures (XML Schema 1), October 2004, 355
http://www.w3.org/TR/xmlschema-1/ 356

W3C, P. Biron et al, XML Schema Part 2: Datatypes (XML Schema 2), October 2004, 357
http://www.w3.org/TR/xmlschema-2/ 358

ISO/IEC 40240:2011 Information technology -- W3C Web Services Addressing 1.0 – Core, 359
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58365 360

ISO/IEC 40250:2011 Information technology -- W3C Web Services Addressing 1.0 -- SOAP Binding, 361
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58375 362
ISO/IEC 40260:2011 Information technology -- W3C Web Services Addressing 1.0 – Metadata, 363
http://www.iso.org/iso/catalogue_detail?csnumber=58385 W3C, Extensible Markup Language 364
(XML) 1.0, W3C Recommendation, October 2000, http://www.w3.org/TR/2000/REC-xml-20001006 365

W3C, Namespaces in XML, W3C Recommendation, January 1999, 366
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 367

W3C, E. Christensen et al, Web Services Description Language Version 1.1 (WSDL/1.1), March 368
2001, http://www.w3.org/TR/wsdl 369

http://tools.ietf.org/html/rfc4178
http://www.ietf.org/rfc/rfc4559.txt
http://tools.ietf.org/rfc/rfc5646.txt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust
http://www.unicode.org/book/u2.html
http://www.unicode.org/faq/utf_bom.html#BOM
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58365
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=58375
http://www.iso.org/iso/catalogue_detail?csnumber=58385
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/wsdl

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 11

W3C, S. Boag et al, XQuery 1.0: An XML Query Language (XQuery 1.0), January 2007, 370
http://www.w3.org/TR/2007/REC-xquery-20070123/ 371

3 Terms and Definitions 372

For the purposes of this document, the following terms and definitions apply. The fact that a 373
normative term such as "shall", “shall not”, “should”, “should not”, “may”, or “need not” may be used in 374
text which does not have an associated rule number does not mean that the text is not normative. 375

3.1 376

can 377

used for statements of possibility and capability, whether material, physical, or causal 378

3.2 379

cannot 380

used for statements of possibility and capability, whether material, physical, or causal 381

3.3 382

conditional 383

indicates requirements to be followed strictly to conform to the document when the specified 384
conditions are met 385

3.4 386

mandatory 387

indicates requirements to be followed strictly to conform to the document and from which no deviation 388
is permitted 389

3.5 390

may 391

indicates a course of action permissible within the limits of the document 392

3.6 393

need not 394

indicates a course of action permissible within the limits of the document 395

3.7 396

optional 397

indicates a course of action permissible within the limits of the document 398

3.8 399

shall 400

indicates requirements to be followed strictly to conform to the document and from which no deviation 401
is permitted 402

3.9 403

shall not 404

indicates requirements to be followed strictly to conform to the document and from which no deviation 405
is permitted 406

3.10 407

should 408

indicates that among several possibilities, one is recommended as particularly suitable, without 409
mentioning or excluding others, or that a certain course of action is preferred but not necessarily 410
required 411

http://www.w3.org/TR/2007/REC-xquery-20070123/

Web Services for Management (WS-Management) Specification DSP0226

12 Work in Progress - Not a DMTF Standard Version 1.2.0b

3.11 412

should not 413

indicates that a certain possibility or course of action is deprecated but not prohibited 414

3.12 415

client 416

the application that uses the Web services defined in this document to access the management 417
service 418

3.13 419

consumer 420

the Web service that is requesting the data enumeration from the data source 421

3.14 422

data source 423

a Web service that supports traversal using enumeration contexts via the Enumerate operation 424
defined in this specification 425

3.15 426

delivery mode 427

the mechanism by which notification messages are delivered from the source to the sink 428

3.16 429

enumeration context 430

a session context that represents a specific traversal through a logical sequence of XML element 431
information items using the Pull operation defined in this specification 432

3.17 433

event sink 434

a Web service that receives notifications 435

3.18 436

event source 437

a Web service that sends notifications and accepts requests to create subscriptions 438

3.19 439

managed resource 440

an entity that can be of interest to an administrator 441

It may be a physical object, such as a laptop computer or a printer, or an abstract entity, such as a 442
service. 443

3.20 444

notification 445

a message sent to indicate that an event has occurred 446

3.21 447

push mode 448

a delivery mechanism where the source sends event messages to the sink as individual, unsolicited 449
SOAP messages 450

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 13

3.22 451

resource 452

a Web service that is addressable by an endpoint reference and accessed using the operations 453
defined in this specification. This resource can be represented by an XML document. The XML 454
document may be a representation of managed resource 455

3.23 456

resource class 457

an abstract representation (type) of a managed resource 458

A resource class defines the representation of management-related operations and properties. An 459
example of a resource class is the description of operations and properties for a set of laptop 460
computers. 461

3.24 462

resource factory 463

a Web service that is capable of creating new resources using the Create operation defined in this 464
specification 465

3.25 466

resource instance 467

an instantiation of a resource class 468

An example is the set of management-related operations and property values for a specific laptop 469
computer. 470

3.26 471

selector 472

a resource-relative name and value pair that acts as an instance-level discriminant when used with 473
the WS-Management default addressing model 474

A selector is essentially a filter or "key" that identifies the desired instance of the resource. A selector 475
may not be present when service-specific addressing models are used. 476

The relationship of services to resource classes and instances is as follows: 477

 A service consists of one or more resource classes. 478

 A resource class may contain zero or more instances. 479

If more than one instance for a resource class exists, they are isolated or identified through parts of 480
the SOAP address for the resource, such as the ResourceURI and SelectorSet fields in the default 481
addressing model. 482

3.27 483

service 484

an application that provides management services to clients by exposing the Web services defined in 485
this document 486

Typically, a service is equivalent to the network "listener," is associated with a physical transport 487
address, and is essentially a type of manageability access point. 488

3.28 489

subscriber 490

a Web service that sends requests to create, renew, and/or delete subscriptions 491

3.29 492

subscription manager 493

a Web service that accepts requests to manage, get the status of, renew, and/or delete subscriptions 494
on behalf of an event source 495

Web Services for Management (WS-Management) Specification DSP0226

14 Work in Progress - Not a DMTF Standard Version 1.2.0b

4 Symbols and Abbreviated Terms 496

The following symbols and abbreviations are used in this document. 497

4.1 498

BNF 499

Backus-Naur Form (http://foldoc.org/foldoc/?Backus-Naur+Form) 500

4.2 501

BOM 502

byte-order mark 503

4.3 504

CQL 505

CIM Query Language 506

4.4 507

EPR 508

Endpoint Reference 509

4.5 510

GSSAPI 511

Generic Security Services Application Program Interface 512

4.6 513

SOAP 514

Simple Object Access Protocol 515

4.7 516

SPNEGO 517

Simple and Protected GSSAPI Negotiation Mechanism 518

4.8 519

SQL 520

Structured Query Language 521

4.9 522

URI 523

Uniform Resource Identifier 524

4.10 525

URL 526

Uniform Resource Locator 527

4.11 528

UTF 529

UCS Transformation Format 530

4.12 531

UUID 532

Universally Unique Identifier 533

4.13 534

WSDL 535

http://foldoc.org/foldoc/?Backus-Naur+Form

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 15

Web Services Description Language 536

4.14 537

WS-Man 538

Web Services Management 539

5 Addressing 540

WS-Management relies on a SOAP-based addressing mechanism (like the one defined in 5.1) to 541
define references to other Web service endpoints and to define some of the headers used in SOAP 542
messages. This addressing mechanism is semantically equivalent and fully wire-compatible with the 543
version of WS-Addressing referenced in WS-Management 1.0. Therefore, this change to WS-544
Management is fully backward compatible with existing WS-Management implementations. 545

Clause 5.2 specifies how more than one addressing version may be used with WS-Management, 546
such as the version defined in 5.1 or the W3C Recommendation version of addressing. In this 547
specification, unless explicitly referring to a particular version, the term "Addressing" refers generically 548
to either version of addressing as defined in 5.2. 549

Multiple addressing models may be used with any of the addressing versions described in 5.2. 550
Implementations may implement any of the following addressing models: 551

 basic addressing as defined in 5.1 552

 the Default Addressing Model as defined in 5.4.2 553

 new addressing models that are not defined in this specification. These addressing models 554
may impose additional restrictions or requirements for addressing. 555

5.1 Management Addressing 556

The features defined in this clause provide a transport-neutral mechanism to address Web services 557
and messages. Specifically, this clause defines XML elements to identify Web service endpoints and 558
to secure end-to-end endpoint identification in messages. This enables messaging systems to 559
support message transmission through networks that include processing nodes such as endpoint 560
managers, firewalls, and gateways in a transport-neutral manner. 561

5.1.1 Introduction 562

This clause defines two interoperable constructs, endpoint references and message information 563
headers, that convey information that is typically provided by transport protocols and messaging 564
systems. These constructs normalize this underlying information into a uniform format that can be 565
processed independently of transport or application. 566

A Web service endpoint is an entity, processor, or resource that can be referenced and can be 567
targeted for Web service messages. Endpoint references convey the information needed to identify 568
and reference a Web service endpoint, and they may be used in several different ways: 569

 Endpoint references are suitable for conveying the information needed to access a Web 570
service endpoint. 571

 Endpoint references are also used to provide addresses for individual messages sent to 572
and from Web services. 573

To deal with the latter use case, this clause defines a family of message information headers that 574
allows uniform addressing of messages independent of underlying transport. These message 575
information headers convey end-to-end message characteristics including addressing for source and 576
destination endpoints as well as message identity. 577

Web Services for Management (WS-Management) Specification DSP0226

16 Work in Progress - Not a DMTF Standard Version 1.2.0b

EXAMPLE: The following example illustrates the use of these mechanisms in a SOAP 1.2 message being sent 578
from http://business456.example/client1 to http://fabrikam123.example/Purchasing. 579

Lines (002) to (014) represent the header of the SOAP message where the mechanisms defined in this clause 580
are used. The body is represented by lines (015) to (017). 581

Lines (003) to (013) contain the message information header blocks. Specifically, lines (003) to (005) specify the 582
identifier for this message, lines (006) to (008) specify the endpoint from where the message originated, and 583
lines (009) to (011) specify the endpoint to which replies to this message should be sent as an Endpoint 584
Reference. Line (012) specifies the address URI of the ultimate receiver of this message. Line (013) specifies an 585
Action URI identifying expected semantics. 586

(001) <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 587
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 588
(002) <S:Header> 589
(003) <wsa:MessageID> 590
(004) uuid:6B29FC40-CA47-1067-B31D-00DD010662DA 591
(005) </wsa:MessageID> 592
(006) <wsa:From> 593
(007) <wsa:Address>http://business456.example/client1</wsa:Address> 594
(008) </wsa:From> 595
(009) <wsa:ReplyTo> 596
(010) <wsa:Address>http://business456.example/client1</wsa:Address> 597
(011) </wsa:ReplyTo> 598
(012) <wsa:To>http://fabrikam123.example/Purchasing</wsa:To> 599
(013) <wsa:Action>http://fabrikam123.example/SubmitPO</wsa:Action> 600
(014) </S:Header> 601
(015) <S:Body> 602
(016) ... 603
(017) </S:Body> 604
(018) </S:Envelope> 605

5.1.2 Endpoint References 606

This clause defines the syntax of an Endpoint Reference (EPR). 607

5.1.2.1 Format of Endpoint References 608

This clause defines an XML representation for an endpoint reference as both an XML type 609
(wsa:EndpointReferenceType) and as an XML element (<wsa:EndpointReference>). 610

The wsa:EndpointReferenceType type is used wherever a Web service endpoint is referenced. The 611
following describes the contents of this type: 612

<wsa:EndpointReference> 613
 <wsa:Address>xs:anyURI</wsa:Address> 614
 <wsa:ReferenceProperties>... </wsa:ReferenceProperties> ? 615
 <wsa:ReferenceParameters>... </wsa:ReferenceParameters> ? 616
 <wsa:PortType>xs:QName</wsa:PortType> ? 617
 <wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ? 618
 <wsp:Policy> ... </wsp:Policy>* 619
</wsa:EndpointReference> 620

The following describes the attributes and elements listed in the preceding schema overview: 621

wsa:EndpointReference 622

This represents some element of type wsa:EndpointReferenceType. This example uses the 623
predefined <wsa:EndpointReference> element, but any element of type 624
wsa:EndpointReferenceType may be used. 625

http://fabrikam123.example/Purchasing

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 17

wsa:EndpointReference/wsa:Address 626

This required element (of type xs:anyURI) specifies the address URI that identifies the endpoint. 627
This address may be a logical address or identifier for the service endpoint. 628

wsa:EndpointReference/wsa:ReferenceProperties/ 629

This optional element contains any number of individual reference properties that are associated 630
with the endpoint to facilitate a particular interaction. Reference properties are XML elements that 631
are required to properly interact with the endpoint. Reference properties are provided by the issuer 632
of the endpoint reference and are otherwise assumed to be opaque to consuming applications. 633

NOTE: The use of reference properties is deprecated; reference parameters should be used instead. 634

wsa:EndpointReference/wsa:ReferenceProperties/{any} 635

Each child element of ReferenceProperties represents an individual reference property. 636

wsa:EndpointReference/wsa:ReferenceParameters/ 637

This optional element contains any number of individual parameters that are associated with the 638
endpoint to facilitate a particular interaction. Reference parameters are XML elements that are 639
required to properly interact with the endpoint. Reference parameters are also provided by the 640
issuer of the endpoint reference and are otherwise assumed to be opaque to consuming 641
applications. 642

See 5.4 for some WS-Management-specific reference parameters. 643

wsa:EndpointReference/wsa:ReferenceParameters/{any} 644

Each child element of ReferenceParameters represents an individual reference parameter. 645

wsa:EndpointReference/wsa:PortType 646

This optional element (of type xs:QName) specifies the value of the primary portType of the 647
endpoint being conveyed. 648

NOTE: The use of wsa:PortType is deprecated. 649

wsa:EndpointReference/wsa:ServiceName 650

This optional element (of type xs:QName) specifies the <wsdl:service> definition that contains a 651
WSDL description of the endpoint being referenced. The service name provides a link to a full 652
description of the service endpoint. An optional non-qualified name identifies the specific port in 653
the service that corresponds to the endpoint. 654

NOTE: The use of wsa:ServiceName is deprecated. 655

wsa:EndpointReference/wsa:ServiceName/@PortName 656

This optional attribute (of type xs:NCName) specifies the name of the <wsdl:port> definition that 657
corresponds to the endpoint being referenced. 658

wsa:EndpointReference/wsp:Policy 659

This optional element specifies a policy that is relevant to the interaction with the endpoint. 660

NOTE: The use of wsp:Policy is deprecated. 661

wsa:EndpointReference/{any} 662

This is an extensibility mechanism to allow additional elements to be specified. 663

Web Services for Management (WS-Management) Specification DSP0226

18 Work in Progress - Not a DMTF Standard Version 1.2.0b

wsa:EndpointReference/@{any} 664

This is an extensibility mechanism to allow additional attributes to be specified. 665

EXAMPLE: The following example illustrates an endpoint reference. This element references the URI 666
"http://www.fabrikam123.example/acct": 667

<wsa:EndpointReference xmlns:wsa="..." xmlns:fabrikam="..."> 668
 <wsa:Address>http://www.fabrikam123.example/acct</wsa:Address> 669
</wsa:EndpointReference> 670

5.1.2.2 Binding Endpoint References 671

When a message needs to be addressed to the endpoint, the information contained in the endpoint 672
reference is mapped to the message according to a transformation that is dependent on the protocol 673
and data representation used to send the message. Protocol-specific mappings (or bindings) define 674
how the information in the endpoint reference is copied to message and protocol fields. This clause 675
defines the SOAP binding for endpoint references. This mapping may be explicitly replaced by other 676
bindings (defined as WSDL bindings or as policies); however, in the absence of an applicable policy 677
stating that a different mapping is to be used, the SOAP binding defined here is assumed to apply. To 678
ensure interoperability with a broad range of devices, all conformant implementations shall support 679
the SOAP binding. 680

The SOAP binding for endpoint references is defined by the following two rules: 681

: The wsa:Address element in the endpoint reference shall be copied in the wsa:To R5.1.2.2-1682

header field of the SOAP message. 683

: Each Reference Property and Reference Parameter element becomes a header R5.1.2.2-2684

block in the SOAP message. The elements of each Reference Property or Reference Parameter 685
(including all of its child elements, attributes, and in-scope namespaces) shall be added as a 686
header block in the new message. 687

EXAMPLE: The following example shows how the default SOAP binding for endpoint references is used to 688
construct a message addressed to the endpoint: 689

<wsa:EndpointReference xmlns:wsa="..." xmlns:fabrikam="..."> 690
 <wsa:Address>http://www.fabrikam123.example/acct</wsa:Address> 691
 <wsa:ReferenceParameters> 692
 <fabrikam:CustomerKey>123456789</fabrikam:CustomerKey> 693
 <fabrikam:ShoppingCart>ABCDEFG</fabrikam:ShoppingCart> 694
 </wsa:ReferenceParameters> 695
</wsa:EndpointReference> 696

According to the mapping rules stated before, the address value is copied in the "To" header and the 697
"CustomerKey" element should be copied literally as a header in a SOAP message addressed to this 698
endpoint. The SOAP message would look as follows: 699

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 700
 xmlns:wsa="..." xmlns:fabrikam="... "> 701
 <S:Header> 702
 ... 703
 <wsa:To>http://www.fabrikam123.example/acct</wsa:To> 704
 <fabrikam:CustomerKey>123456789</fabrikam:CustomerKey> 705
 <fabrikam:ShoppingCart>ABCDEFG</fabrikam:ShoppingCart> 706
 ... 707
 </S:Header> 708
 <S:Body> 709
 ... 710
 </S:Body> 711

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 19

</S:Envelope> 712

5.1.3 Message Information Headers 713

This clause defines the syntax of a message information header. 714

The message information headers collectively augment a message with the headers shown in 715
Figure 1. These headers enable the identification and location of the endpoints involved in an 716
interaction. The basic interaction pattern from which all others are composed is "one way". In this 717
pattern a source sends a message to a destination without any further definition of the interaction. 718

"Request Reply" is a common interaction pattern that consists of an initial message sent by a source 719
endpoint (the request) and a subsequent message sent from the destination of the request back to 720
the source (the reply). A reply can be an application message, a fault, or any other message. 721

The message information header blocks provide end-to-end characteristics of a message that can be 722
easily secured as a unit. The information in these headers is immutable and not intended to be 723
modified along the message path. 724

Figure 1 shows the contents of the message information header blocks: 725

 <wsa:MessageID> xs:anyURI </wsa:MessageID> 726
 <wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo> 727
 <wsa:To>xs:anyURI</wsa:To> 728
 <wsa:Action>xs:anyURI</wsa:Action> 729
 <wsa:From>endpoint-reference</wsa:From> 730
 <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo> 731
 <wsa:FaultTo>endpoint-reference</wsa:FaultTo> 732

Figure 1 – Message Information Header Blocks 733

The following describes the attributes and elements listed in Figure 1: 734

wsa:MessageID 735

This optional element (of type xs:anyURI) uniquely identifies this message in time and space. This 736
element shall be present if wsa:ReplyTo or wsa:FaultTo is present. No two messages with a 737
distinct application intent may share a wsa:MessageID value. A message may be retransmitted for 738
any purpose (including communications failure) and may use the same wsa:MessageID value. 739
The value of this header is an opaque URI whose interpretation beyond equivalence is not defined 740
in this specification. If a reply is expected, this property shall be present. 741

wsa:RelatesTo 742

This optional (repeating) element indicates how this message relates to another message, in the 743
form of a URI-QName pair. The child of this element (which is of type xs:anyURI) contains the 744
wsa:MessageID of the related message or the following well-known URI that means "unspecified 745
message": 746

http://schemas.xmlsoap.org/ws/2004/08/addressing/id/unspecified 747

A reply message shall contain a wsa:RelatesTo header consisting of wsa:Reply and the 748
wsa:MessageID value of the request message. 749

wsa:RelatesTo/@RelationshipType 750

This optional attribute (of type xs:QName) conveys the relationship type as a QName. When 751
absent, the implied value of this attribute is wsa:Reply. 752

Web Services for Management (WS-Management) Specification DSP0226

20 Work in Progress - Not a DMTF Standard Version 1.2.0b

This specification has one predefined relationship type, as shown in Table 1: 753

Table 1 – Relationship Type 754

QName Description

wsa:Reply Indicates that this is a reply to the message identified by the URI.

wsa:ReplyTo 755

This optional element (of type wsa:EndpointReferenceType) provides an endpoint reference that 756
identifies the intended receiver for replies to this message. This element shall be present if a reply 757
is expected. If this element is present, wsa:MessageID shall be present. If a reply is expected, a 758
message shall contain a wsa:ReplyTo header. The sender shall use the contents of the 759
wsa:ReplyTo to formulate the reply message as defined in 5.1.3.1. If the wsa:ReplyTo header is 760
absent, the contents of the wsa:From header may be used to formulate a message to the source. 761
This header may be absent if the message has no meaningful reply. 762

wsa:From 763

This optional element (of type wsa:EndpointReferenceType) provides a reference to the endpoint 764
where the message originated. 765

wsa:FaultTo 766

This optional element (of type wsa:EndpointReferenceType) provides an endpoint reference that 767
identifies the intended receiver for faults related to this message. If this element is present, 768
wsa:MessageID shall be present. When formulating a fault message as defined in 5.1.3.1, the 769
sender shall use the contents of this header to formulate the fault message. If this header is 770
absent, the sender should use the contents of the wsa:ReplyTo header to formulate the fault 771
message. If both the wsa:FaultTo and wsa:ReplyTo header are absent, the sender may use the 772
contents of the wsa:From header to formulate the fault message. 773

wsa:To 774

This required element (of type xs:anyURI) provides the address of the intended receiver of this 775
message. 776

wsa:Action 777

This required element (of type xs:anyURI) uniquely identifies the semantics implied by this 778
message. It is recommended that the value of this header be a URI identifying an input, output, or 779
fault message within a WSDL port type. An action may be explicitly or implicitly associated with 780
the corresponding WSDL definition. Finally, if in addition to the wsa:Action header, a SOAP Action 781
URI is encoded in a request, the URI of the SOAP Action shall either be the same as the one 782
specified by the wsa:Action header, or set to "". 783

The dispatching of incoming messages is based on two message properties. The mandatory wsa:To 784
and wsa:Action header identify the target processing location and the verb or intent of the message. 785

Due to the range of network technologies currently in wide-spread use (for example, NAT, DHCP, 786
and firewalls), many deployments cannot assign a meaningful global URI to a given endpoint. To 787
allow these "anonymous" endpoints to initiate message exchange patterns and receive replies, 788
Addressing defines the following well-known URI for use by endpoints that cannot have a stable, 789
resolvable URI: 790

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 791

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 21

Requests whose wsa:ReplyTo, wsa:From and/or wsa:FaultTo headers use this address shall provide 792
some out-of-band mechanism for delivering replies or faults (for example, returning the reply on the 793
same transport connection). This mechanism may be a simple request/reply transport protocol (for 794
example, HTTP GET or POST). This URI may be used as the wsa:To header for reply messages and 795
should not be used as the wsa:To header in other circumstances. 796

5.1.3.1 Formulating a Reply Message 797

The reply to an Addressing compliant request message shall be constructed according to the rules 798
defined in this clause. 799

EXAMPLE 1: The following example illustrates a request message using message information header blocks in a 800
SOAP 1.2 message: 801

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 802
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 803
 xmlns:f123="http://www.fabrikam123.example/svc53"> 804
 <S:Header> 805
 <wsa:MessageID>uuid:aaaabbbb-cccc-dddd-eeee-ffffffffffff 806
 </wsa:MessageID> 807
 <wsa:ReplyTo> 808
 <wsa:Address>http://business456.example/client1</wsa:Address> 809
 </wsa:ReplyTo> 810
 <wsa:To S:mustUnderstand="1">mailto:joe@fabrikam123.example</wsa:To> 811
 <wsa:Action>http://fabrikam123.example/mail/Delete</wsa:Action> 812
 </S:Header> 813
 <S:Body> 814
 <f123:Delete> 815
 <maxCount>42</maxCount> 816
 </f123:Delete> 817
 </S:Body> 818
</S:Envelope> 819

EXAMPLE 2: The following example illustrates a reply message using message information header blocks in a 820
SOAP 1.2 message: 821

<S:Envelope 822
 xmlns:S="http://www.w3.org/2003/05/soap-envelope" 823
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 824
 xmlns:f123="http://www.fabrikam123.example/svc53"> 825
 <S:Header> 826
 <wsa:MessageID> 827
 uuid:aaaabbbb-cccc-dddd-eeee-wwwwwwwwwww 828
 </wsa:MessageID> 829
 <wsa:RelatesTo> 830
 uuid:aaaabbbb-cccc-dddd-eeee-ffffffffffff 831
 </wsa:RelatesTo> 832
 <wsa:To> 833
 http://business456.example/client1 834
 </wsa:To> 835
 <wsa:Action>http://fabrikam123.example/mail/DeleteAck</wsa:Action> 836
 </S:Header> 837
 <S:Body> 838
 <f123:DeleteAck/> 839
 </S:Body> 840
</S:Envelope> 841

5.1.3.2 Associating Action with WSDL Operations 842

Web Services for Management (WS-Management) Specification DSP0226

22 Work in Progress - Not a DMTF Standard Version 1.2.0b

Addressing defines two mechanisms, explicit association and default action pattern, to associate an 843
action with input, output, and fault elements within a WSDL port type. 844

5.1.3.2.1 Explicit Association 845

The action may be explicitly associated using the wsa:Action attribute. 846

EXAMPLE: Consider the following WSDL excerpt: 847

<definitions targetNamespace="http://example.com/stockquote" ...> 848
 ... 849
 <portType name="StockQuotePortType"> 850
 <operation name="GetLastTradePrice"> 851
 <input message="tns:GetTradePricesInput" 852
 wsa:Action="http://example.com/GetQuote"/> 853
 <output message="tns:GetTradePricesOutput" 854
 wsa:Action="http://example.com/Quote"/> 855
 </operation> 856
 </portType> 857
 ... 858
</definitions> 859

The action for the input of the GetLastTradePrice operation within the StockQuotePortType is explicitly defined to 860
be http://example.com/GetQuote. The action for the output of this same operation is http://example.com/Quote. 861

5.1.3.2.2 Default Action Pattern 862

In the absence of the wsa:Action attribute, the following pattern is used to construct a default action 863
for inputs and outputs. The general form of an action URI is as follows: 864

targetNamespace/portTypeName/(inputName|outputNname) 865

The "/" is a literal character to be included in the action. The values of the properties are as follows: 866

 targetNamespace is the target namespace (/definition/@targetNamespace). If target 867
namespace ends with a "/" an additional "/" is not added. 868

 portTypeName is the name of the port type (/definition/portType/@name). 869

 (inputName|outputName) is the name of the element as defined in Section 2.4.5 of 870
WSDL 1.1. 871

For fault messages, this pattern is not applied. Instead, the following URI is the default action URI for 872
fault messages: 873

http://schemas.xmlsoap.org/ws/2004/08/addressing/fault 874

EXAMPLE: Consider the following WSDL excerpt: 875

<definitions targetNamespace="http://example.com/stockquote" ...> 876
 ... 877
 <portType name="StockQuotePortType"> 878
 <operation name="GetLastTradePrice"> 879
 <input message="tns:GetTradePricesInput" name="GetQuote"/> 880
 <output message="tns:GetTradePricesOutput" name="Quote"/> 881
 </operation> 882
 </portType> 883
 ... 884
</definitions> 885

targetNamespace = http://example.com/stockquote 886

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 23

portTypeName = StockQuotePortType 887

inputName = GetQuote 888

outputName = Quote 889

Applying the preceding pattern with these values produces the following: 890

input action = http://example.com/stockquote/StockQuotePortType/GetQuote 891

output action = http://example.com/stockquote/StockQuotePortType/Quote 892

WSDL defines rules for a default input or output name if the name attribute is not present. Consider 893
the following example: 894

EXAMPLE: The following is a WSDL excerpt: 895

<definitions targetNamespace="http://example.com/stockquote" ...> 896
 ... 897
 <portType name="StockQuotePortType"> 898
 <operation name="GetLastTradePrice"> 899
 <input message="tns:GetTradePricesInput"/> 900
 <output message="tns:GetTradePricesOutput"/> 901
 </operation> 902
 </portType> 903
 ... 904
</definitions> 905

targetNamespace = http://example.com/stockquote 906

portTypeName = StockQuotePortType 907

According to the rules defined in 2.4.5 of WSDL, if the name attribute is absent for the input of a 908
request response operation, the default value is the name of the operation with "Request" appended. 909

inputName = GetLastTradePriceRequest 910

Likewise, the output defaults to the operation name with "Response" appended. 911

outputName = GetLastTradePriceResponse 912

Applying the previous pattern with these values produces the following: 913

input action = http://example.com/stockquote/StockQuotePortType/GetLastTradePriceRequest 914

output action = http://example.com/stockquote/StockQuotePortType/GetLastTradePriceResponse 915

5.2 Versions of Addressing 916

To maintain compatibility with implementations of previous versions of WS-Management, this protocol 917
accommodates messages formatted by those previous versions. However, WS-Management 1.2 and 918
1.1 also allow for the optional use of the WS-Addressing W3C Recommendation. 919

The following abbreviations are used for clarity and brevity. 920

 "WSMA" refers to the version of Management Addressing as specified in 5.1. 921

 "WSA-Rec" refers to the WS-Addressing W3C Recommendation. 922

 "WS-Man 1.0" refers to the WS-Management Specification 1.0 and implementations 923
compatible with that specification. 924

Web Services for Management (WS-Management) Specification DSP0226

24 Work in Progress - Not a DMTF Standard Version 1.2.0b

 "WS-Man 1.2" refers to this specification and implementations compatible with this 925
specification. 926

 “Addressing Anonymous URI” refers to the anonymous URI that is defined by the version of 927
Addressing currently in use. The anonymous URI defined by WSA-Rec is 928
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous. The anonymous URI 929
defined by WSMA is http://www.w3.org/2005/08/addressing/anonymous. 930

NOTE: Some information in this clause is implementation advice to clients on algorithms for efficient 931
communication with unknown services. This informative advice should not be construed to place normative 932
requirements on the behavior of compliant clients or services. 933

5.2.1 Technical Differences 934

The WSMA and WSA-Rec specifications reference different XML namespaces. An endpoint sending 935
Web service messages shall use, for the Addressing SOAP headers, one namespace or the other; a 936
receiving endpoint may recognize one namespace or both namespaces. Existing implementations of 937
WS-Man 1.0 are limited to recognizing only the WSMA namespace. Interactions between WS-Man 938
1.0 and WS-Man 1.2 or 1.1 implementations will have to allow for these limitations. 939

5.3 Requirements for Compatibility 940

To maximize interoperability of WS-Management implementations, WS-Man 1.0 , WS-Man 1.1, and 941
WS-Man 1.2 clients and services need to be able to exchange messages. These requirements are 942
summarized in Table 2. 943

Table 2 – Interoperability Requirements 944

Interoperability
Requirements between
WS-Management
Versions WS-Man 1.0 Service WS-Man 1.1 Service WS-Man 1.2 Service

WS-Man 1.0 client It works. WS-Man 1.0 client needs to
be able to access WS-Man
1.1 service, but some
negotiation might be needed.

It works, but some
negotiations might be
needed.

WS-Man 1.1 client WSMan 1.1 client needs
to be able to access 1.0
service.

It works, but some
negotiations might be
needed.

It works, but some
negotiations might be
needed.

WS-Man 1.2 client It works, but some
negotiations are
required.

It works, but some
negotiations are required.

It works.

Homogeneous pairings of compliant clients and services (that is, a version 1.0 client with a version 945
1.0 service, or a version 1.2 client with a version 1.2 service) can exchange messages in accordance 946
with their respective specifications. To ensure reliable communications, heterogeneous pairings need 947
to meet certain requirements and implement certain sequencing strategies. 948

In particular, clients and services that implement WS-Man 1.0 can use only WSMA in any exchanges; 949
therefore, all exchanges with version 1.0 endpoints use only WSMA. This conclusion is summarized 950
in Table 3. 951

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 25

Table 3 – WSA Versions in Exchanges 952

Interoperable Version of
Addressing WS-Man 1.0 Service

WS-Man 1.1 or WS-Man 1.2
Service

WS-Man 1.0 client WSMA WSMA

WS-Man 1.1 or WS-Man 1.2 client WSMA WSMA or WSA-Rec

5.3.1 Discovery or Negotiation 953

If it is possible for a client to determine the capabilities of the service with respect to WSA, such 954
discovery is more efficient than negotiating the WSA version. For instance, if a service supports 955
Identify, then a client can determine in advance the WS-Man protocol, as well as an Addressing 956
version or versions supported by the service. For this reason, support of Identify is mandatory in this 957
specification when WSA-Rec is used. 958

Identify would be used as follows: 959

 The client sends the service an Identify message. 960

 If the service does not support Identify, the client can conclude that the service is a WS-961
Man 1.0 implementation and only supports WSMA. 962

 If the service successfully processes the Identify message, the client examines the versions 963
of Addressing by looking at the AddressingVersionURI element (as defined in clause 11), if 964
present, and can choose the appropriate version. 965

 If the Identify response message does not contain any Addressing versions, then there is 966
no way for the client to know which version of Addressing to use and it would need to use 967
one of the strategies described in 5.3.2. 968

In any case, to avoid unnecessary re-discovery or re-negotiation, a WS-Man 1.1 or 1.2 client should 969
retain information about the capabilities of service endpoints where practical. 970

5.3.2 Client Negotiation Strategies 971

A compliant WS-Man 1.0 client will use only WSMA in message exchanges. A WS-Man 1.1 or WS-972
Man 1.2 client, however, may use either WSMA or WSA-Rec in message exchanges. If a WS-Man 973
client does not know the WSA version capabilities of a service, it may use different strategies when 974
initially contacting the service. The client may begin a message exchange with either version of WSA, 975
using WSA-Rec or WSMA in the request message. The message exchange would proceed as 976
follows: 977

 Strategy type 1: A client sends the request using WSA-Rec. The WSA-Rec SOAP headers 978
need to be marked with a mustUnderstand=”1” attribute to ensure that a fault will be 979
generated if the receiver does not support the WSA-Rec version of Addressing. The client 980
can then retry the operation using WSMA. 981

 Strategy type 2: A client sends the request using WSMA. Both WS-Man 1.0 services and 982
WS-Man versions 1.1 and later services respond to the request using WSMA. 983

5.3.3 Initiating Message Exchanges 984

Outgoing messages initiated by a WS-Man implementation need to use the same version of 985
Addressing that was used in the Endpoint Reference to which those messages are being sent. For 986
example, if a Subscribe request message uses WSA-Rec in the SOAP headers (for example, for the 987
wsa:To and wsa:ReplyTo), but uses WSMA for the NotifyTo EPR, then the Subscribe response will 988
be sent using WSA-Rec, but the events will be sent using WSMA. 989

Web Services for Management (WS-Management) Specification DSP0226

26 Work in Progress - Not a DMTF Standard Version 1.2.0b

5.3.4 Normative Rules 990

: If a WS-Man service supports WSA-Rec, then it shall also support the Identify R5.3.4-1991

operation. 992

: A WS-Man service version 1.1 or later shall support WSMA and should support R5.3.4-2993

WSA-Rec. 994

: A WS-Man implementation that is version 1.1 or later shall send messages to R5.3.4-3995

endpoints using the same version of Addressing used in the Endpoint Reference of the 996
destination endpoint (see 5.2). 997

: Within a single SOAP message, a WS-Man implementation shall use the same R5.3.4-4998

version of Addressing for all Addressing SOAP headers. 999

Because WS-Man version 1.1 or later allows for either version of Addressing to be used, R5.3.4-41000

removes the possibility of mixing the two versions for the WSA SOAP headers, but it does not 1001
disallow Endpoint References that might appear elsewhere in the message to be of a different 1002
version. 1003

In order to provide a migration path from the WSMA to WSA-Rec, the schema of certain messages 1004
allows for either version’s EndpointReferenceType to be used. While the schema itself is written in a 1005
very generic way (that is, using an xs:any) allowing any arbitrary XML to appear, implementations 1006
shall restrict the contents of this element to one of the EndpointReference Types. 1007

NOTE: This allows existing WS-Man 1.0 implementations to be compliant, while providing newer 1008
implementations a migration path. In this spirit, newer implementations are strongly encouraged to support both 1009
versions of Addressing. 1010

5.4 Use of Addressing in WS-Management 1011

This clause describes the use of Endpoint References regardless of whether an implementation uses 1012
WS-Management Addressing (see 5.1) or the W3C Recommendation version of WS-Addressing. 1013

Addressing (either addressing type) endpoint references (EPRs) are used to convey information 1014
needed to address a Web service endpoint. WS-Management defines a default addressing model 1015
that can optionally be used in EPRs. 1016

5.4.1 Use of Endpoint References 1017

WS-Management uses EPRs as the addressing mechanism for individual resource instances. 1018
WS-Management also defines a default addressing model for use in addressing resources. In cases 1019
where this default addressing model is not appropriate, such as in systems with well-established 1020
addressing models or with EPRs retrieved from a discovery service, services may use those service-1021
specific addressing models if they are based on either addressing version supported by WS-1022
Management. 1023

: All messages that are addressed to a resource class or instance that is referenced R5.4.1-11024

by an EPR must follow the Addressing rules for representing content from the EPR (the address 1025
and reference parameters) in the SOAP message. This rule also applies to continuation 1026
messages such as Pull or Release, which continue an operation begun in a previous message. 1027
Even though such messages contain contextual information that binds them to a previous 1028
operation, the information from the EPR is still required in the message to help route it to the 1029
correct handler. 1030

Rule clarifies that messages such as Pull or Renew still require a full EPR. For Pull, for R5.4.1-11031

example, this EPR would be the same as the original Enumerate, even though EnumerateResponse 1032

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 27

returns a context object that would seem to obviate the need for the EPR. The EPR is still required to 1033
route the message properly. Similarly, the Renew request uses the SubscriptionManager EPR 1034
received in the SubscribeResponse. 1035

When a service includes an EPR in a response message, it must be willing to accept subsequent 1036
request messages targeted to that EPR for the same individual managed resource. Clients are not 1037
required to process or enhance EPRs given to them by the service before using them to address a 1038
managed resource. 1039

: An EPR returned by a service shall be acceptable to that service to refer to the R5.4.1-21040

same managed resource. 1041

: All EPRs returned by a service, whether expressed using the WS-Management R5.4.1-31042

default addressing model (see 5.4.2) or any other addressing model, shall be valid as long as the 1043
managed resource exists. 1044

5.4.2 WS-Management Default Addressing Model 1045

WS-Management defines a default addressing model for resources. A service is not required to use 1046
this addressing model, but it is suitable for many new implementations and can increase the chances 1047
of successful interoperation between clients and services. 1048

This document uses examples of this addressing model that contain its component parts, the 1049
ResourceURI and SelectorSet SOAP headers. This specification is independent of the actual data 1050
model and does not define the structure of the ResourceURI or the set of values for selectors for a 1051
given resource. These may be vendor specific or defined by other specifications. 1052

Description and use of this addressing model in this specification do not indicate that support for this 1053
addressing model is a requirement for a conformant service. 1054

All of the normative text, examples, and conformance rules in 5.4.2 and 5.4.2.2 presume that the 1055
service is based on the default addressing model. In cases where this addressing model is not in use, 1056
these rules do not apply. 1057

The default addressing model uses a representation of an EPR that is a tuple of the following SOAP 1058
headers: 1059

 wsa:To (required): the transport address of the service 1060

 wsman:ResourceURI (required if the default addressing model is used): the URI of the 1061
resource class representation or instance representation 1062

 wsman:SelectorSet (optional): a header that identifies or "selects" the resource instance to 1063
be accessed if more than one instance of a resource class exists 1064

The wsman:ResourceURI value needs to be marked with an s:mustUnderstand attribute set to "true" 1065
in all messages that use the default addressing model. Otherwise, a service that does not understand 1066
this addressing model might inadvertently return a resource that was not requested by the client. 1067

The WS-Management default addressing model is defined in the following XML outline for an EPR: 1068

(1) <wsa:EndpointReference> 1069
(2) <wsa:Address> 1070
(3) Network address 1071
(4) </wsa:Address> 1072
(5) <wsa:ReferenceParameters> 1073
(6) <wsman:ResourceURI> resource URI </wsman:ResourceURI> 1074
(7) <wsman:SelectorSet> 1075
(8) <wsman:Selector Name="selector-name"> * 1076
(9) Selector-value 1077

Web Services for Management (WS-Management) Specification DSP0226

28 Work in Progress - Not a DMTF Standard Version 1.2.0b

(10) </wsman:Selector> 1078
(11) </wsman:SelectorSet> ? 1079
(12) </wsa:ReferenceParameters> 1080
(13) </wsa:EndpointReference> 1081

The following definitions provide additional, normative constraints on the preceding outline: 1082

wsa:Address 1083

the URI of the transport address 1084

wsa:ReferenceParameters/wsman:ResourceURI 1085

the URI of the resource class or instance to be accessed 1086

Typically, this URI represents the resource class, but it may represent the instance. The 1087
combination of this URI and the wsa:To URI form the full address of the resource class or 1088
instance. 1089

wsa:ReferenceParameters/wsman:SelectorSet: 1090

the optional set of selectors as described in 5.4.2.2 1091

These values are used to select an instance if the ResourceURI identifies a multi-instanced 1092
target. 1093

When the default addressing model is used in a SOAP message, Addressing specifies that 1094
translations take place and the headers are flattened out. 1095

EXAMPLE: The following is an example EPR definition: 1096

(1) <wsa:EndpointReference> 1097
(2) <wsa:Address> Address </wsa:Address> 1098
(3) <wsa:ReferenceParameters xmlns:wsman="..."> 1099
(4) <wsman:ResourceURI>resURI</wsman:ResourceURI> 1100
(5) <wsman:SelectorSet> 1101
(6) <wsman:Selector Name="Selector-name"> 1102
(7) Selector-value 1103
(8) </wsman:Selector> 1104
(9) </wsman:SelectorSet> 1105
(10) </wsa:ReferenceParameters> 1106
(11) </wsa:EndpointReference> 1107

This address definition is translated as follows when used in a SOAP message. wsa:Address becomes wsa:To, 1108
and the reference parameters are unwrapped and juxtaposed. The following example shows a sample SOAP 1109
message using WSMA: 1110

(1) <s:Envelope xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 1111
(2) <s:Header> 1112
(3) <wsa:To> Address </wsa:To> 1113
(4) <wsa:Action> Action URI </wsa:Action> 1114
(5) <wsman:ResourceURI s:mustUnderstand="true">resURI</wsman:ResourceURI> 1115
(6) <wsman:SelectorSet> 1116
(7) <wsman:Selector Name="Selector-name"> 1117
(8) Selector-value 1118
(9) </wsman:Selector> 1119
(10) </wsman:SelectorSet> 1120
(11) ... 1121
(12) </s:Header> 1122
(13) <s:Body> ... </s:Body> 1123
(14) </s:Envelope> 1124

The following message shows a sample SOAP message using WS-Rec: 1125

(1) <s:Envelope xmlns:wsa="http://www.w3.org/2005/08/addressing "> 1126

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 29

(2) <s:Header> 1127
(3) <wsa:To s:mustUnderstand="true"> Address </wsa:To> 1128
(4) <wsa:Action s:mustUnderstand="true"> Action URI </wsa:Action> 1129
(5) <wsman:ResourceURI s:mustUnderstand="true" 1130
(6) wsa:isReferenceParameter="true">resURI</wsman:ResourceURI> 1131
(7) <wsman:SelectorSet wsa:isReferenceParameter="true"> 1132
(8) <wsman:Selector Name="Selector-name"> 1133
(9) Selector-value 1134
(10) </wsman:Selector> 1135
(11) </wsman:SelectorSet> 1136
(12) ... 1137
(13) </s:Header> 1138
(14) <s:Body> ... </s:Body> 1139
(15) </s:Envelope> 1140

In both cases, the wsa:To, wsman:ResourceURI, and wsman:SelectorSet elements work together to 1141
reference the resource instance to be managed, but the actual method or operation to be executed 1142
against this resource is indicated by the wsa:Action header. 1143

EXAMPLE: The following is an example of Addressing headers based on the default addressing model in an 1144
actual message: 1145

(1) <s:Envelope 1146
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1147
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1148
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1149
(5) <s:Header> 1150
(6) ... 1151
(7) <wsa:To>http://123.99.222.36/wsman</wsa:To> 1152
(8) <wsman:ResourceURI s:mustUnderstand="true"> 1153
(9) http://example.org/hardware/2005/02/storage/physDisk 1154
(10) </wsman:ResourceURI> 1155
(11) <wsman:SelectorSet> 1156
(12) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 1157
(13) </wsman:SelectorSet> 1158
(14) <wsa:Action> http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1159

 </wsa:Action> 1160
(15) <wsa:MessageID> urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91 1161

 </wsa:MessageID> 1162
(16) ... 1163
(17) </s:Header> 1164
(18) <s:Body> ... </s:Body> 1165
(19) </s:Envelope> 1166

The following definitions apply to the preceding message example: 1167

wsa:To 1168

the network (or transport-level) address of the service 1169

wsman:ResourceURI 1170

the ResourceURI of the resource class or resource instance to be accessed 1171

wsman:SelectorSet 1172

a wrapper for the selectors 1173

wsman:SelectorSet/wsman:Selector 1174

identifies or selects the resource instance to be accessed, if more than one instance of the 1175
resource exists 1176

Web Services for Management (WS-Management) Specification DSP0226

30 Work in Progress - Not a DMTF Standard Version 1.2.0b

In this case, the selector is "LUN" (logical unit number), and the selected device is unit number 1177
"2". 1178

wsa:Action 1179

identifies which operation is to be carried out against the resource (in this case, a "Get") 1180

wsa:MessageID 1181

identifies this specific message uniquely for tracking and correlation purposes 1182

The format defined in RFC 4122 is often used in the examples in this specification, but it is not 1183
required. 1184

5.4.2.1 ResourceURI 1185

The ResourceURI is used to indicate the class resource or instance. 1186

: The format of the wsman:ResourceURI is unconstrained provided that it meets RFC R5.4.2.1-11187

3986 requirements. 1188

The format and syntax of the ResourceURI is any valid URI according to RFC 3986. Although there is 1189
no default scheme, http: and urn: are common defaults. If http: is used, users may expect to find 1190
Web-based documentation of the resource at that address. The wsa:To and the wsman:ResourceURI 1191
elements work together to define the actual resource being targeted. 1192

: Vendor-specific or organization-specific URIs should contain the Internet domain R5.4.2.1-21193

name in the first token sequence after the scheme, such as "example.org" in ResourceURI in the 1194
following example. 1195

EXAMPLE: 1196

(20) <s:Header> 1197
(21) <wsa:To> http://123.15.166.67/wsman </wsa:To> 1198
(22) <wsman:ResourceURI> 1199
(23) http//schemas.example.org/2005/02/hardware/physDisk 1200
(24) </wsman:ResourceURI> 1201
(25) ... 1202
(26) </s:Header> 1203

: When the default addressing model is used, the wsman:ResourceURI reference R5.4.2.1-31204

parameter is required in messages with the following wsa:Action URIs: 1205

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1206

http://schemas.xmlsoap.org/ws/2004/09/transfer/Put 1207

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create 1208

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete 1209

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 1210

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull 1211

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew 1212

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus 1213

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release 1214

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe 1215

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 31

The following messages require the EPR to be returned in the SubscriptionManager element of the 1216
SubscribeResponse message. The format of the EPR is determined by the service and might or 1217
might not include the ResourceURI: 1218

http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew 1219

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus 1220

While the ResourceURI SOAP header is required when the WS-Management default addressing 1221
mode is used, it may be short and of a very simple form, such as http://example.com/* or 1222
http://example.com/resource. 1223

: For the request message of custom actions (methods), the ResourceURI header may R5.4.2.1-41224

be present in the message to help route the message to the correct handler. 1225

: The ResourceURI element should not appear in other messages, such as responses R5.4.2.1-51226

or events, unless the associated EPR includes it in its ReferenceParameters. 1227

In practice, the wsman:ResourceURI element is required only in requests to reference the targeted 1228
resource class. Responses are not addressed to a management resource, so the 1229
wsman:ResourceURI has no meaning in that context. 1230

: When the default addressing model is used and the wsman:ResourceURI element is R5.4.2.1-61231

missing or in an incorrect form, the service shall issue a wsa:DestinationUnreachable fault with a 1232
detail code of 1233

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI 1234

: The wsman:ResourceURI element shall be used to indicate only the identity of a R5.4.2.1-71235

resource, and it may not be used to indicate the action being applied to that resource, which is 1236
properly expressed using the wsa:Action URI. 1237

Custom WSDL-based methods have both a ResourceURI identity from the perspective of addressing 1238
and a wsa:Action URI from the perspective of execution. In many cases, the ResourceURI is simply a 1239
pseudonym for the WSDL identity and Port, and the wsa:Action URI is the specific method within that 1240
port (or interface) definition. 1241

Although a single URI could theoretically be used alone to define an instance of a multi-instance 1242
resource, it is recommended that the wsa:To element be used to locate the WS-Management service, 1243
that the wsman:ResourceURI element be used to identify the resource class, and that the 1244
wsman:SelectorSet element be used to reference the resource instance. If the resource consists of 1245
only a single instance, then the wsman:ResourceURI element alone refers to the single instance. 1246

This usage is not a strict requirement, just a guideline. The service can use distinct selectors for any 1247
given operation, even against the same resource class, and may allow or require selectors for the 1248
Enumerate operation. 1249

See the recommendations in 7.2 regarding addressing uniformity. 1250

Custom actions have two distinct identities: the ResourceURI, which can identify the WSDL and port 1251
(or interface), and the wsa:Action URI, which identifies the specific method. If only one method exists 1252
in the interface, in a sense the ResourceURI and wsa:Action URI are identical. 1253

It is not an error to use the wsa:Action URI for the ResourceURI of a custom method, but both are still 1254
required in the message for uniform processing on both clients and servers. 1255

Web Services for Management (WS-Management) Specification DSP0226

32 Work in Progress - Not a DMTF Standard Version 1.2.0b

EXAMPLE 1: The following action to reset a network card might have the following EPR usage: 1256

(1) <s:Header> 1257
(2) <wsa:To> 1258
(3) http://1.2.3.4/wsman/ 1259
(4) </wsa:To> 1260
(5) <wsman:ResourceURI>http://example.org/2005/02/networkcards/reset 1261

 </wsman:ResourceURI> 1262
(6) <wsa:Action> 1263
(7) http://example.org/2005/02/networkcards/reset 1264
(8) </wsa:Action> 1265
(9) ... 1266
(10) </s:Header> 1267

In many cases, the ResourceURI is equivalent to a WSDL name and port, and the wsa:Action URI 1268
contains an additional token as a suffix, as in the following example. 1269

EXAMPLE 2: 1270

(1) <s:Header> 1271
(2) <wsa:To> 1272
(3) http://1.2.3.4/wsman 1273
(4) </wsa:To> 1274
(5) <wsman:ResourceURI>http://example.org/2005/02/networkcards 1275

 </wsman:ResourceURI> 1276
(6) <wsa:Action> 1277
(7) http://example.org/2005/02/networkcards/reset 1278
(8) </wsa:Action> 1279
(9) ... 1280
(10) </s:Header> 1281

Finally, the ResourceURI may be completely unrelated to the wsa:Action URI, as in the following 1282
example. 1283

EXAMPLE 3: 1284

(1) <s:Header> 1285
(2) <wsa:To>http://1.2.3.4/wsman</wsa:To> 1286
(3) <wsman:ResourceURI> 1287
(4) http://example.org/products/management/networkcards 1288
(5) </wsman:ResourceURI> 1289
(6) <wsa:Action> 1290
(7) http://example.org/2005/02/netcards/reset 1291
(8) </wsa:Action> 1292
(9) ... 1293
(10) </s:Header> 1294

All of these uses are legal. 1295

When used with subscriptions, the EPR described by wsa:Address and wsman:ResourceURI (and 1296
optionally the wsman:SelectorSet values) identifies the event source to which the subscription is 1297
directed. In many cases, the ResourceURI identifies a real or virtual event log, and the subscription is 1298
intended to provide real-time notifications of any new entries added to the log. In many cases, the 1299
wsman:SelectorSet element might not be used as part of the EPR. 1300

5.4.2.2 Selectors 1301

In the WS-Management default addressing model, selectors are optional elements used to identify 1302
instances within a resource class. For operations such as Get or Put, the selectors are used to 1303
identify a single instance of the resource class referenced by the ResourceURI. 1304

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 33

In practice, because the ResourceURI often acts as a table or a "class," the SelectorSet element is a 1305
discriminant used to identify a specific "row" or "instance." If only one instance of a resource class is 1306
implied by the ResourceURI, the SelectorSet can be omitted because the ResourceURI is acting as 1307
the full identity of the resource. If more than one selector value is required, the entire set of selectors 1308
is interpreted by the service in order to reference the specific instance. The selectors are interpreted 1309
as being separated by implied logical AND operators. 1310

In some information domains, the values referenced by the selectors are "keys" that are part of the 1311
resource content itself, whereas in other domains the selectors are part of a logical or physical 1312
directory system or search space. In these cases, the selectors are used to identify the resource, but 1313
are not part of the representation. 1314

: If a resource has more than one instance, a wsman:SelectorSet element may be R5.4.2.2-11315

used to distinguish which instance is targeted if the WS-Management default addressing model is 1316
in use. Any number of wsman:Selector values may appear with the wsman:SelectorSet element, 1317
as required to identify the precise instance of the resource class. The service may consider the 1318
case of selector names and values (see 13.6), as required by the underlying execution 1319
environment. 1320

If the client needs to discover the policy on how the case of selector values is interpreted, the service 1321
can provide metadata documents that describe this policy. The format of such metadata is beyond 1322
the scope of this specification. 1323

: All content within the SelectorSet element is to be treated as a single reference R5.4.2.2-21324

parameter with a scope relative to the ResourceURI. 1325

: A service using the WS-Management default addressing model shall examine all R5.4.2.2-31326

selectors in the message and process them as if they were logically joined by AND. If the set of 1327
selectors is incorrect for the targeted resource instance, a wsman:InvalidSelectors fault should be 1328
returned to the client with the following detail codes: 1329

 if selectors are missing: 1330

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsufficientSelectors 1331

 if selector values are the wrong types: 1332

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch 1333

 if the selector value is of the correct type from the standpoint of XML types, but out of range 1334
or otherwise illegal in the specific information domain: 1335

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue 1336

 if the name is not a recognized selector name 1337

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnexpectedSelectors 1338

: The Selector Name attribute shall not be duplicated at the same level of nesting. If R5.4.2.2-41339

this occurs, the service should return a wsman:InvalidSelectors fault with the following detail 1340
code: 1341

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DuplicateSelectors 1342

This specification does not mandate the use of selectors. Some implementations may decide to use 1343
complex URI schemes in which the ResourceURI itself implicitly identifies the instance. 1344

Web Services for Management (WS-Management) Specification DSP0226

34 Work in Progress - Not a DMTF Standard Version 1.2.0b

The format of the SelectorSet element is as follows: 1345

(1) <s:Envelope 1346
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1347
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1348
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1349
(5) <s:Header> 1350
(6) ... 1351
(7) <wsa:To> service transport address </wsa:To> 1352
(8) <wsman:ResourceURI> ResourceURI </wsman:ResourceURI> 1353
(9) <wsman:SelectorSet> 1354
(10) <wsman:Selector Name="name"> value </wsman:Selector> + 1355
(11) </wsman:SelectorSet> ? 1356
(12) ... 1357
(13) </s:Header> 1358
(14) <s:Body> ... </s:Body> 1359
(15) </s:Envelope> 1360

The following definitions provide additional, normative constraints on the preceding outline: 1361

wsman:SelectorSet 1362

the wrapper for one or more Selector elements required to reference the instance 1363

wsman:SelectorSet/wsman:Selector 1364

used to describe the selector and its value 1365

If more than one selector is required, one Selector element exists for each part of the overall 1366
selector. The value of this element is the Selector value. 1367

wsman:SelectorSet/wsman:Selector/@Name 1368

the name of the selector (to be treated in a case-insensitive manner) 1369

The value of a selector may be a nested EPR. 1370

EXAMPLE: In the following example, the selector on line 9 is a part of a SelectorSet that contains a nested 1371
EPR (lines 10–18) with its own Address, ResourceURI, and SelectorSet elements: 1372

(1) <s:Envelope 1373
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1374
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1375
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1376
(5) <s:Header> 1377
(6) ... 1378
(7) <wsman:SelectorSet> 1379
(8) <wsman:Selector Name="Primary"> 123 </wsman:Selector> 1380
(9) <wsman:Selector Name="EPR"> 1381
(10) <wsa:EndpointReference> 1382
(11) <wsa:Address> address </wsa:Address> 1383
(12) <wsa:ReferenceParameters> 1384
(13) <wsman:ResourceURI> resource URI </wsman:ResourceURI> 1385
(14) <wsman:SelectorSet> 1386
(15) <wsman:Selector Name="name"> value </wsman:Selector> 1387
(16) </wsman:SelectorSet> 1388
(17) </wsa:ReferenceParameters> 1389
(18) </wsa:EndpointReference> 1390
(19) </wsman:Selector> 1391
(20) </wsman:SelectorSet> 1392
(21) ... 1393
(22) </s:Header> 1394
(23) <s:Body> ... </s:Body> 1395
(24) </s:Envelope> 1396

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 35

: For those services using the WS-Management default addressing model, the value of R5.4.2.2-51397

a wsman:Selector shall be one of the following values: 1398

 a simple type as defined in the XML schema namespace 1399

http://www.w3.org/2001/XMLSchema 1400

 a nested wsa:EndpointReference using the WS-Management default addressing model 1401

A service may fault selector usage with wsman:InvalidSelectors if the selector is not a simple type or 1402
an EPR. 1403

: A conformant service may reject any selector or nested selector with a nested EPR R5.4.2.2-61404

whose wsa:Address value is not the same as the primary wsa:To value or is not the Addressing 1405
Anonymous URI. 1406

The primary purpose for this nesting mechanism is to allow resources that can answer questions 1407
about other resources. 1408

: A service may fail to process a selector name of more than 2048 characters. R5.4.2.2-71409

: A service may fail to process a selector value of more than 4096 characters, R5.4.2.2-81410

including any embedded selectors, and may fail to process a message that contains more than 1411
8096 characters of content in the root SelectorSet element. 1412

5.4.2.3 Faults for Default Addressing Model 1413

When faults related to the information in the addressing model based on the default format are 1414
generated, they may contain specific fault detail codes. These detail codes are called out separately 1415
in 14.6 and do not apply when service-specific addressing is used. 1416

5.4.3 Service-Specific Endpoint References 1417

Although WS-Management specifies a default addressing model, in some cases this model is not 1418
available or appropriate. 1419

: A conformant service may not understand the header values used by the R5.4.3-11420

WS-Management default addressing model. If this is the case, and if the client marks the 1421
wsman:ResourceURI with mustUnderstand="true", the service shall return an s:NotUnderstood 1422
fault. 1423

: A conformant service may require additional header values to be present that are R5.4.3-21424

beyond the scope of this specification. 1425

Services can thus use alternative addressing models for referencing resources with 1426
WS-Management. These addressing models might or might not use ResourceURI or SelectorSet 1427
elements and still be valid addressing models if they conform to the rules of Addressing. 1428

In addition to a defined alternative addressing model, a service might not explicitly define any 1429
addressing model at all and instead use an opaque EPR generated at run-time, which is handled 1430
according to the standard rules of Addressing. 1431

When such addressing models are used, the client application has to understand and interoperate 1432
with discovery methods for acquiring EPRs that are beyond the scope of this specification. 1433

Web Services for Management (WS-Management) Specification DSP0226

36 Work in Progress - Not a DMTF Standard Version 1.2.0b

5.4.4 mustUnderstand 1434

This clause describes the use of the mustUnderstand attribute, regardless of whether an 1435
implementation uses WS-Management Addressing (see 5.1) or the W3C Recommendation type of 1436
WS-Addressing. 1437

The mustUnderstand attribute for SOAP headers is to be interpreted as a "must comply" instruction in 1438
WS-Management. For example, if a SOAP header that is listed as being optional in this specification 1439
is tagged with mustUnderstand="true", the service is required to comply or return a fault. To ensure 1440
that the service treats a header as optional, the mustUnderstand attribute can be omitted. 1441

If the wsa:Action URI is not understood, the implementation might not know how to process the 1442
message. So, for the following elements, the omission or inclusion of mustUnderstand="true" has no 1443
real effect on the message in practice, because mustUnderstand is implied: 1444

 wsa:To 1445

 wsa:MessageID 1446

 wsa:RelatesTo 1447

 wsa:Action 1448

 wsa:ReplyTo 1449

 wsa:FaultTo 1450

: A conformant service shall process any of the preceding elements identically R5.4.4-11451

regardless of whether mustUnderstand="true" is present. 1452

As a corollary, clients can omit mustUnderstand="true" from any of the preceding elements with no 1453
change in meaning. 1454

: If a service cannot comply with a header marked with mustUnderstand="true", it R5.4.4-21455

shall issue an s:NotUnderstood fault. 1456

The goal is for the service to be tolerant of inconsistent mustUnderstand usage by clients when the 1457
request is not likely to be misinterpreted. 1458

It is important that clients using the WS-Management default addressing model (ResourceURI and 1459
SelectorSet) use mustUnderstand="true" on the wsman:ResourceURI element to ensure that the 1460
service is compliant with that addressing model. Implementations that use service-specific addressing 1461
models will otherwise potentially ignore these header values and behave inconsistently with the 1462
intentions of the client. 1463

5.4.5 wsa:To 1464

This clause describes the use of the Addressing wsa:To header regardless of whether an 1465
implementation uses WS-Management Addressing (see 5.1) or the W3C Recommendation version of 1466
WS-Addressing. 1467

In request messages, the wsa:To address contains the transport address of the service. In some 1468
cases, this address is sufficient to locate the resource. In other cases, the service is a dispatching 1469
agent for multiple resources. In these cases, the message typically contains additional headers to 1470
allow the service to identify a resource within its scope. For example, when the default addressing 1471
model is in use, these additional headers will be the ResourceURI and SelectorSet elements. 1472

NOTE: WS-Management does not preclude multiple listener services from coexisting on the same physical 1473
system. Such services would be discovered and distinguished using mechanisms beyond the scope of this 1474
specification. 1475

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 37

: The wsa:To header shall be present in all messages, whether requests, responses, R5.4.5-11476

or events. In the absence of other requirements, it is recommended that the network address for 1477
resources that require authentication be suffixed by the token sequence /wsman. If /wsman is 1478
used, unauthenticated access should not be allowed. 1479

(1) <wsa:To> http://123.15.166.67/wsman </wsa:To> 1480

: In the absence of other requirements, it is recommended that the network address R5.4.5-21481

for resources that do not require authentication be suffixed by the token sequence /wsman-anon. 1482
If /wsman-anon is used, authenticated access shall not be required. 1483

(1) <wsa:To> http://123.15.166.67/wsman-anon </wsa:To> 1484

Including the network transport address in the SOAP message may seem redundant because the 1485
network connection would already be established by the client. However, in cases where the 1486
message is routed through intermediaries, the network transport address is required so that the 1487
intermediaries can examine the message and make the connection to the actual endpoint. 1488

The wsa:To header may encompass any number of tokens required to locate the service and a group 1489
of resources within that service. 1490

: The service should generate a fault when the wsa:To address cannot be processed R5.4.5-31491

due to the following situations:: 1492

 If the resource is offline, a wsa:EndpointUnavailable fault is returned with the following 1493
detail code: 1494

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ResourceOffline 1495

 If the resource cannot be located ("not found"), a wsa:DestinationUnreachable fault is 1496
returned. 1497

 If the resource is valid, but internal errors occur, a wsman:InternalError fault is returned. 1498

 If the resource cannot be accessed for security reasons, a wsman:AccessDenied fault is 1499
returned. 1500

5.4.6 Other Addressing Headers 1501

This clause describes the use of other Addressing headers, regardless of whether an implementation 1502
uses WS-Management Addressing (see 5.1) or the W3C Recommendation version of WS-1503
Addressing. 1504

WS-Management depends on Addressing to describe the rules for use of other Addressing headers. 1505

5.4.6.1 Processing Addressing Headers 1506

The following additional addressing-related header blocks occur in WS-Management messages. 1507

: A conformant service shall recognize and process the following Addressing header R5.4.6.1-11508

blocks. 1509

 wsa:To 1510

 wsa:ReplyTo (required when a response is expected) 1511

 wsa:FaultTo (optional) 1512

 wsa:MessageID (required) 1513

 wsa:Action (required) 1514

 wsa:RelatesTo (required in responses) 1515

Web Services for Management (WS-Management) Specification DSP0226

38 Work in Progress - Not a DMTF Standard Version 1.2.0b

The use of these header blocks is discussed in subsequent clauses. 1516

5.4.6.2 wsa:ReplyTo 1517

WS-Management requires the following usage of wsa:ReplyTo in addressing: 1518

: A wsa:ReplyTo header shall be present in all request messages when a reply is R5.4.6.2-11519

required. This address shall be either a valid address for a new connection using any transport 1520
supported by the service or the Addressing Anonymous URI, which indicates that the reply is to 1521
be delivered over the same connection on which the request arrived. If the wsa:ReplyTo header 1522
is missing, a wsa:MessageInformationHeaderRequired fault is returned. 1523

Some messages, such as event deliveries, SubscriptionEnd, and so on, do not require a response 1524
and may omit a wsa:ReplyTo element. 1525

: A conformant service may require that all responses be delivered over the same R5.4.6.2-21526

connection on which the request arrives. In this case, the URI discussed in shall R5.4.6.2-11527

indicate this. Otherwise, the service shall return a wsman:UnsupportedFeature fault with the 1528
following detail code: 1529

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode 1530

: When delivering events for which acknowledgement of delivery is required, the R5.4.6.2-31531

sender of the event shall include a wsa:ReplyTo element and observe the usage in 10.8 of this 1532
specification. 1533

: This rule intentionally left blank. R5.4.6.2-41534

: This rule intentionally left blank. R5.4.6.2-51535

Addressing allows clients to include client-defined reference parameters in wsa:ReplyTo headers. 1536
Addressing requires that these reference parameters be extracted from requests and placed in the 1537
responses by removing the ReferenceParameters wrapper and placing all of the values as top-level 1538
SOAP headers in the response, as discussed in 5.1. This allows clients to better correlate responses 1539
with the original requests. This step cannot be omitted. 1540

EXAMPLE: In the following example, the header x:someHeader is included in the reply message: 1541

(1) <s:Envelope 1542
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1543
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1544
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1545
(5) <s:Header> 1546
(6) ... 1547
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To> 1548
(8) <wsa:ReplyTo> 1549
(9) <wsa:Address> 1550
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1551
(11) </wsa:Address> 1552
(12) <wsa:ReferenceParameters> 1553
(13) <x:someHeader xmlns:x="..."> user-defined content </x:someHeader> 1554
(14) </wsa:ReferenceParameters> 1555
(15) </wsa:ReplyTo> 1556
(16) ... 1557
(17) </s:Header> 1558
(18) <s:Body> ... </s:Body> 1559
(19) </s:Envelope> 1560

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 39

: If the wsa:ReplyTo address is not usable or is missing, the service should not reply to R5.4.6.2-61561

the request and it should close or terminate the connection according to the rules of the current 1562
network transport. In these cases, the service should locally log some type of entry to help locate 1563
the client defect later. 1564

5.4.6.3 wsa:FaultTo 1565

WS-Management qualifies the use of wsa:FaultTo as indicated in this clause. 1566

: A conformant service may support a wsa:FaultTo address that is distinct from the R5.4.6.3-11567

wsa:ReplyTo address. If such a request is made and is not supported by the service, a 1568
wsman:UnsupportedFeature fault shall be returned with the following detail code: 1569

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode 1570

If both the wsa:FaultTo and wsa:ReplyTo headers are omitted from a request, transport-level 1571
mechanisms are typically used to fail the request because the address to which the fault is to be sent 1572
is uncertain. In such a case, it is not an error for the service to simply shut down the connection. 1573

: If wsa:FaultTo is omitted, the service shall return the fault to the wsa:ReplyTo R5.4.6.3-21574

address if a fault occurs. 1575

: A conformant service may require that all faults be delivered to the client over the R5.4.6.3-31576

same transport or connection on which the request arrives. In this case, the URI shall be the 1577
Addressing Anonymous URI. If services do not support separately addressed fault delivery and 1578
the wsa:FaultTo is any other address, a wsman:UnsupportedFeature fault shall be returned with 1579
the following detail code: 1580

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode 1581

NOTE: This specification does not restrict richer implementations from fully supporting wsa:FaultTo. 1582

: This rule intentionally left blank. R5.4.6.3-41583

EXAMPLE: In the following example, the header x:someHeader is included in fault messages if they occur: 1584

(1) <s:Envelope 1585
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1586
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1587
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1588
(5) <s:Header> 1589
(6) ... 1590
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To> 1591
(8) <wsa:FaultTo> 1592
(9) <wsa:Address> 1593
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1594
(11) </wsa:Address> 1595
(12) <wsa:ReferenceParameters> 1596
(13) <x:someHeader xmlns:x="..."> user-defined content </x:someHeader> 1597
(14) </wsa:ReferenceParameters> 1598
(15) </wsa:FaultTo> 1599
(16) ... 1600
(17) </s:Header> 1601
(18) <s:Body> ... </s:Body> 1602
(19) </s:Envelope> 1603

: If the wsa:FaultTo address is not usable, the service should not reply to the request. R5.4.6.3-51604

Similarly, if according to WS-Addressing processing rules there is no suitable address to send a 1605

Web Services for Management (WS-Management) Specification DSP0226

40 Work in Progress - Not a DMTF Standard Version 1.2.0b

fault to, it should not reply and should close the network connection. In these cases, the service 1606
should locally log some type of entry to help locate the client defect later. 1607

: The service shall properly duplicate the wsa:Address of the wsa:FaultTo element in R5.4.6.3-61608

the wsa:To of the reply, even if some of the information is not understood by the service. 1609

This rule applies in cases where the client includes private content suffixes on the HTTP or HTTPS 1610
address that the service does not understand. If the service removes this information when 1611
constructing the address, the subsequent message might not be correctly processed. 1612

5.4.6.4 wsa:MessageID and wsa:RelatesTo 1613

WS-Management qualifies the use of wsa:MessageID and wsa:RelatesTo as follows: 1614

: The MessageID and RelatesTo URIs may be of any format, as long as they are valid R5.4.6.4-11615

URIs according to RFC 3986. Two URIs are considered different even if the characters in the 1616
URIs differ only by case. 1617

The following two formats are endorsed by this specification. The first is considered a best 1618
practice because it is backed by RFC 4122: 1619

urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 1620

or 1621

uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 1622

In these formats, each x is an uppercase or lowercase hexadecimal digit (lowercase is required 1623
by RFC 4122); there are no spaces or other tokens. The value may be a DCE-style universally 1624
unique identifier (UUID) with provable uniqueness properties in this format, however, it is not 1625
necessary to have provable uniqueness properties in the URIs used in the wsa:MessageID and 1626
wsa:RelatesTo headers. 1627

Regardless of format, the URI should not exceed the maximum defined in . R13.1-61628

UUIDs have a numeric meaning as well as a string meaning, and this can lead to confusion. A UUID 1629
in lowercase is a different URI from the same UUID in uppercase. This is because URIs are case-1630
sensitive. If a UUID is converted to its decimal equivalent the case of the original characters is lost. 1631
WS-Management works with the URI value itself, not the underlying decimal equivalent 1632
representation. Services are free to interpret the URI in any way, but are not allowed to alter the case 1633
usage when repeating the message or any of the MessageID values in subsequent messages. 1634

The RFC 4122 requires the digits to be lowercase, which is the responsibility of the client. The service 1635
simply processes the values as URI values and is not required to analyze the URI for correctness or 1636
compliance. The service replicates the client usage in the wsa:RelatesTo reply header and is not 1637
allowed to alter the case usage. 1638

: The MessageID should be generated according to any algorithm that ensures that no R5.4.6.4-21639

two MessageIDs are repeated. Because the value is treated as case-sensitive (), R5.4.6.4-11640

confusion can arise if the same value is reused differing only in case. As a result, the service shall 1641
not create or employ MessageID values that differ only in case. For any message transmitted by 1642
the service, the MessageID shall not be reused. 1643

The client ensures that MessageID values are not reused in requests. Although services and clients 1644
can issue different MessageIDs that differ only in case, the service is not required to detect this 1645
difference, nor is it required to analyze the URI for syntactic correctness or repeated use. 1646

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 41

: The RelatesTo element shall be present in all response messages and faults, shall R5.4.6.4-31647

contain the MessageID of the associated request message, and shall match the original in case, 1648
being treated as a URI value and not as a binary UUID value. 1649

: If the MessageID is not parsable or is missing, a R5.4.6.4-41650

wsa:InvalidMessageInformationHeader fault should be returned. 1651

EXAMPLE: The following examples show wsa:MessageID usage: 1652

(20) <wsa:MessageID> 1653
(21) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91 1654
(22) </wsa:MessageID> 1655
(23) 1656
(24) <wsa:MessageID> 1657
(25) anotherScheme:ID/12310/1231/16607/25 1658
(26) </wsa:MessageID> 1659

5.4.6.5 wsa:Action 1660

The wsa:Action URI indicates the "operation" being invoked against the resource. 1661

: The wsa:Action URI shall not be used to identify the specific resource class or R5.4.6.5-11662

instance, but only to identify the operation to use against that resource. 1663

: For all resource endpoints, a service shall return a wsa:ActionNotSupported fault if a R5.4.6.5-21664

requested action is not supported by the service for the specified resource. 1665

In other words, to model the "Get" of item "Disk", the wsa:Action URI contains the "Get". The wsa:To, 1666
and potentially other SOAP headers, indicate what is being accessed. When the default addressing 1667
model is used, for example, the ResourceURI typically contains the reference to the "Disk" and the 1668
SelectorSet identifies which disk. Other service-specific addressing models can factor the identity of 1669
the resource in different ways. 1670

Implementations are free to support additional custom methods that combine the notion of "Get" and 1671
"Disk” into a single "GetDisk" action if they strive to support the separated form to maximize 1672
interoperation. One of the main points behind WS-Management is to unify common methods 1673
wherever possible. 1674

: If a service exposes any of the following types of capabilities, a conformant service R5.4.6.5-31675

shall at least expose that capability using the definitions in Table 4 according to the rules of this 1676
specification. The service may optionally expose additional similar functionality using a distinct 1677
wsa:Action URI. 1678

Table 4 – wsa:Action URI Descriptions 1679

Action URI Description

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get Models any simple single item retrieval

http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse Response to "Get"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Put Models an update of an entire item

http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse Response to "Put"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create Models creation of a new item

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse Response to "Create"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete Models the deletion of an item

http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse Response to "Delete"

Web Services for Management (WS-Management) Specification DSP0226

42 Work in Progress - Not a DMTF Standard Version 1.2.0b

Action URI Description

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate Begins an enumeration or query

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse Response to "Enumerate"

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull Retrieves the next batch of results
from enumeration

http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse Response to "Pull"

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew Renews an enumerator that may have
timed out
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewResponse Response to "Renew"
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus Gets the status of the enumerator
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusResponse Response to "GetStatus"
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release Releases an active enumerator

http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse Response to "Release"

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd Notifies that an enumerator has
terminated
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe Models a subscription to an event
source

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse Response to "Subscribe"

http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew Renews a subscription prior to its
expiration

http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse Response to "Renew"

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus Requests the status of a subscription

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse Response to "GetStatus"

http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe Removes an active subscription

http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse Response to "Unsubscribe"

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd Delivers a message to indicate that a
subscription has terminated

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events Delivers batched events based on a
subscription

http://schemas.dmtf.org/wbem/wsman/1/wsman/Heartbeat A pseudo-event that models a
heartbeat of an active subscription;
delivered when no real events are
available, but used to indicate that the
event subscription and delivery
mechanism is still active

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents A pseudo-event that indicates that the
real event was dropped

http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack Used by event subscribers to
acknowledge receipt of events; allows
event streams to be strictly sequenced

http://schemas.dmtf.org/wbem/wsman/1/wsman/Event Used for a singleton event that does
not define its own action

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 43

: A custom action may be supported if the operation is a custom method whose R5.4.6.5-41680

semantic meaning is not present in the table. 1681

: All notifications shall contain a unique action URI that identifies the type of the event R5.4.6.5-51682

delivery. For singleton notifications with only one event per message (the delivery mode 1683
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push), the wsa:Action URI 1684
defines the event type. For other delivery modes, the Action varies, as described in clause 10.2.7 1685
of this specification. 1686

5.4.6.6 wsa:From 1687

The wsa:From header can be used in any messages, responses, or events to indicate the source. 1688
When the same connection is used for both request and reply, this header provides no useful 1689
information, but can be useful in cases where the response arrives on a different connection. 1690

: A conformant service may include a wsa:From address in the message. A R5.4.6.6-11691

conformant service should process any incoming message that has a wsa:From element. 1692

: A conformant service should not fault any message with a wsa:From element, R5.4.6.6-21693

regardless of whether the mustUnderstand attribute is included. 1694

NOTE: Processing the wsa:From header is trivial because it has no effect on the meaning of the 1695
message. The From address is primarily for auditing and logging purposes. 1696

6 WS-Management Control Headers 1697

WS-Management defines several SOAP headers that can be used with any operation. 1698

6.1 wsman:OperationTimeout 1699

Most management operations are time-critical due to quality-of-service constraints and obligations. If 1700
operations cannot be completed in a specified time, the service returns a fault so that a client can 1701
comply with its obligations. The following header value can be supplied with any WS-Management 1702
message to indicate that the client expects a response or a fault within the specified time: 1703

(1) <wsman:OperationTimeout> xs:duration </wsman:OperationTimeout> 1704

: All request messages may contain a wsman:OperationTimeout header element that R6.1-11705

indicates the maximum amount of time the client is willing to wait for the service to issue a 1706
response. The service should interpret the timeout countdown as beginning from the point the 1707
message is processed until a response is generated. 1708

: The service should immediately issue a wsman:TimedOut fault if the countdown time is R6.1-21709

exceeded and the operation is not yet complete. If the OperationTimeout value is not valid, a 1710
wsa:InvalidMessageInformationHeader fault should be returned. 1711

: If the service does not support user-defined timeouts, a wsman:UnsupportedFeature R6.1-31712

fault should be returned with the following detail code: 1713

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OperationTimeout 1714

: If the wsman:OperationTimeout element is omitted, the service may interpret this R6.1-41715

omission as an instruction to block indefinitely until a response is available, or it may impose a 1716
default timeout. 1717

Web Services for Management (WS-Management) Specification DSP0226

44 Work in Progress - Not a DMTF Standard Version 1.2.0b

These rules do not preclude services from supporting infinite or very long timeouts. Because network 1718
connections seldom block indefinitely with no traffic occurring, some type of transport timeout is likely. 1719
Also the countdown is initiated from the time the message is received, so network latency is not 1720
included. If a client needs to discover the range of valid timeouts or defaults, metadata can be 1721
retrieved, but the format of such metadata is beyond the scope of this specification. 1722

If the timeout occurs in such a manner that the service has already performed some of the work 1723
associated with the request, the service state reaches an anomalous condition. This specification 1724
does not attempt to address behavior in this situation. Clearly, services can attempt to undo the 1725
effects of any partially complete operations, but this is not always practical. In such cases, the service 1726
can keep a local log of requests and operations, which the client can query later. 1727

For example, if a Delete operation is in progress and a timeout occurs, the service decides whether to 1728
attempt a rollback or roll-forward of the deletion, even though it issues a wsman:TimedOut fault. The 1729
service can elect to include additional information in the fault (see 14.5) regarding its internal policy in 1730
this regard. The service can attempt to return to the state that existed before the operation was 1731
attempted, but this is not always possible. 1732

: If the mustUnderstand attribute is applied to the wsman:OperationTimeout element and R6.1-51733

the service understands wsman:OperationTimeout, the service shall observe the requested value 1734

or return the fault specified in . The service should attempt to complete the request within R6.1-21735

the specified time or issue a fault without any further delay. 1736

Clients can always omit the mustUnderstand header for uniform behavior against all implementations. 1737
It is not an error for a compliant service to ignore the timeout value or treat it as a hint if 1738
mustUnderstand is omitted. 1739

EXAMPLE: The following is an example of a correctly formatted 30-second timeout in the SOAP header: 1740

(1) <wsman:OperationTimeout>PT30S</wsman:OperationTimeout> 1741

If the transport timeout occurs before the actual wsman:OperationTimeout, the operation can be 1742
treated as specified in 13.3, the same as a failed connection. In practice, the network transport 1743
timeout can be configured to be longer than any expected wsman:OperationTimeout. 1744

6.2 wsman:MaxEnvelopeSize 1745

To prevent a response beyond the capability of the client, the request message can contain a 1746
restriction on the response size. 1747

The following header value may be supplied with any WS-Management message to indicate that the 1748
client expects a response whose total SOAP envelope does not exceed the specified number of 1749
octets: 1750

(1) <wsman:MaxEnvelopeSize> xs:positiveInteger </wsman:MaxEnvelopeSize> 1751

The limitation is on the entire envelope. Resource-constrained implementations need a reliable figure 1752
for the required amount of memory for all SOAP processing, not just the SOAP Body. 1753

: All request messages may contain a wsman:MaxEnvelopeSize header element that R6.2-11754

indicates the maximum number of octets (not characters) in the entire SOAP envelope in the 1755
response. If the service cannot compose a reply within the requested size, it should return a 1756
wsman:EncodingLimit fault with the following detail code: 1757

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize 1758

: If the mustUnderstand attribute is set to “true”, the service shall comply with the R6.2-21759

request. If the response would exceed the maximum size, the service should return a 1760
wsman:EncodingLimit fault. Because a service might execute the operation prior to knowing the 1761

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 45

response size, the service should undo any effects of the operation before issuing the fault. If the 1762
operation cannot be reversed (such as a destructive Put or Delete, or a Create), the service shall 1763
indicate that the operation succeeded in the wsman:EncodingLimit fault with the following detail 1764
code: 1765

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess 1766

: If the mustUnderstand attribute is set to “false”, the service may ignore the header. R6.2-31767

: Services should reject any MaxEnvelopeSize value less than 8192 octets. This number R6.2-41768

is the safe minimum in which faults can be reliably encoded for all character sets. If the requested 1769
size is less than this, the service should return a wsman:EncodingLimit fault with the following 1770
detail code: 1771

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MinimumEnvelopeLimit 1772

A service might have its own encoding limit independent of what the client specifies, and the same 1773
fault applies. 1774

: If the service cannot compose a reply within its own internal limits, the service should R6.2-51775

return a wsman:EncodingLimit fault with the following detail code: 1776

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ServiceEnvelopeLimit 1777

The definition of the wsman:MaxEnvelopeSize element in the schema contains a Policy attribute 1778
because this element is used for other purposes. This specification does not define a meaning for the 1779
Policy attribute when the wsman:MaxEnvelopeSize element is used as a SOAP header. 1780

: Clients should not add the Policy attribute to the wsman:MaxEnvelopeSize element R6.2-61781

when it is used as a SOAP header. Services should ignore the Policy attribute if it appears in the 1782
wsman:MaxEnvelopeSize element when used as a SOAP header. 1783

6.3 wsman:Locale 1784

Management operations often span locales, and many items in responses can require translation. 1785
Typically, translation is required for descriptive information, intended for human readers, that is sent 1786
back in the response. If the client requires such output to be translated into a specific language, it can 1787
employ the optional wsman:Locale header, which makes use of the standard XML attribute xml:lang, 1788
as follows: 1789

(1) <wsman:Locale xml:lang="xs:language" s:mustUnderstand="false"/> 1790

: If the mustUnderstand attribute is omitted or set to “false”, the service should use this R6.3-11791

value when composing the response message and adjust any localizable values accordingly. 1792
This use is recommended for most cases. The locale is treated as a hint in this case. 1793

: If the mustUnderstand attribute is set to “true”, the service shall ensure that the replies R6.3-21794

contain localized information where appropriate, or else the service shall issue a 1795
wsman:UnsupportedFeature fault with the following detail code: 1796

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Locale 1797

A service may always fault if wsman:Locale contains s:mustUnderstand set to “true”, because it 1798
may not be able to ensure that the reply is localized. 1799

Some implementations delegate the request to another subsystem for processing, so the service 1800
cannot be certain that the localization actually occurred. 1801

Web Services for Management (WS-Management) Specification DSP0226

46 Work in Progress - Not a DMTF Standard Version 1.2.0b

: The value of the xml:lang attribute in the wsman:Locale header shall be a valid RFC R6.3-31802

5646 language code. 1803

: In any response, event, or singleton message, the service should include the xml:lang R6.3-41804

attribute in the s:Envelope (or other elements) to signal to the receiver that localized content 1805
appears in the body of the message. This attribute may be omitted if no descriptive content 1806
appears in the body. Including the xml:lang attribute is not an error, even if no descriptive content 1807
occurs. 1808

EXAMPLE: 1809

(1) <s:Envelope 1810
(2) xml:lang="en-us" 1811
(3) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1812
(4) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1813
(5) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1814
(6) <s:Header> ... </s:Header> 1815
(7) <s:Body> ... </s:Body> 1816
(8) </s:Envelope> 1817

The xml:lang attribute can appear on any content in the message, although a simpler approach 1818
allows the client always to check for the attribute in one place, the s:Envelope wrapper. 1819

: For operations that span multiple message sequences, the wsman:Locale element is R6.3-51820

processed in the initial message only. It should be ignored in subsequent messages because the 1821
first message establishes the required locale. The service may issue a fault if the wsman:Locale 1822
is present in subsequent messages and the value is different from that used in the initiating 1823
request. 1824

This rule applies primarily to Enumerate and Pull messages. The locale is clearly established during 1825
the initial Enumerate request, so changing the locale during the enumeration serves no purpose. The 1826
service ignores any wsman:Locale elements in subsequent Pull messages, but the client can ensure 1827
that the value does not change between Pull requests. This uniformity enables the client to construct 1828
messages more easily. 1829

It is recommended (as established in) that the wsman:Locale element never contain a R6.3-11830

mustUnderstand attribute. In this way, the client will not receive faults in unexpected places. 1831

6.4 wsman:OptionSet 1832

The OptionSet header is used to pass a set of switches to the service to modify or refine the nature of 1833
the request. This facility is intended to help the service observe any context or side effects desired by 1834
the client, but not to alter the output schema or modify the meaning of the addressing. Options are 1835
similar to switches used in command-line shells in that they are service-specific, text-based 1836
extensions. 1837

: Any request message may contain a wsman:OptionSet header, which wraps a set of R6.4-11838

optional switches or controls on the message. These switches help the service compose the 1839
desired reply or observe the required side effect. 1840

: The service should not send responses, unacknowledged events, or singleton R6.4-21841

messages that contain wsman:OptionSet headers unless it is acting in the role of a client to 1842
another service. Those headers are intended for request messages to which a subsequent 1843
response is expected, including acknowledged events. 1844

 If the mustUnderstand attribute is omitted from the OptionSet block or if it is present R6.4-3:1845

with a value of “false”, the service may ignore the entire wsman:OptionSet block. If it is present 1846

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 47

with a value of “true” and the service does not support wsman:OptionSet, the service shall return 1847
a s:NotUnderstood fault. 1848

Services can process an OptionSet block if it is present, but they are not required to understand or 1849

process individual options, as shown in . However, if MustComply is set to “true” on any given R6.4-61850

option, then mustUnderstand needs to be set to "true". Doing so avoids the incongruity of allowing the 1851
entire OptionSet block to be ignored while having MustComply on individual options. 1852

 Each resource class may observe its own set of options, and an individual instance of R6.4-4:1853

that resource class may further observe its own set of options. Consistent option usage is not 1854
required across resource class and instance boundaries. The metadata formats and definitions of 1855
options are beyond the scope of this specification and may be service-specific. 1856

 Any number of individual option elements may appear under the wsman:OptionSet R6.4-5:1857

wrapper. Option names may be repeated if appropriate. The content shall be a simple string 1858
(xs:string). This specification places no restrictions on whether the names or values are to be 1859
treated in a case-sensitive or case-insensitive manner. However, case usage shall be retained as 1860
the message containing the OptionSet element and its contents are propagated through SOAP 1861
intermediaries. 1862

Interpretation of the option with regard to case sensitivity is up to the service and the definition of the 1863
specific option because the value might be passed through to real-world subsystems that 1864
inconsistently expose case usage. Where interoperation is a concern, the client can omit both 1865
mustUnderstand and MustComply attributes. 1866

 Individual option values may be advisory or may be required by the client. The service R6.4-6:1867

shall observe and execute any option marked with the MustComply attribute set to "true", or 1868
return a wsman:InvalidOptions fault with the following detail code: 1869

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported 1870

Any option not marked with this attribute (or if the attribute is set to "false") is advisory to the 1871
service, and the service may ignore it. If any option is marked with MustComply set to "true", then 1872
the mustUnderstand attribute shall be used on the entire wsman:OptionSet block. 1873

This capability is required when the service delegates interpretation and execution of the options 1874
to another component. In many cases, the SOAP processor cannot know if the option was 1875
observed and can only pass it along to the next subsystem. 1876

 Options may optionally contain a Type attribute, which indicates the data type of the R6.4-7:1877

content of the Option element. A service may require that this attribute be present on any given 1878
option and that it be set to the QName of a valid XML schema data type. Only the standard 1879
simple types declared in the http://www.w3.org/2001/XMLSchema namespace are supported in 1880
this version of WS-Management. 1881

This rule can help some services distinguish numeric or date/time types from other string values. 1882

 Options should not be used as a replacement for the documented parameterization R6.4-8:1883

technique for the message; they should be used only as a modifier for it. 1884

Options are primarily used to establish context or otherwise instruct the service to perform side-band 1885
operations while performing the operation, such as turning on logging or tracing. 1886

 The following faults should be returned by the service: R6.4-9:1887

 when options are not supported, wsman:InvalidOptions with the following detail code: 1888

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported 1889

Web Services for Management (WS-Management) Specification DSP0226

48 Work in Progress - Not a DMTF Standard Version 1.2.0b

 when one or more option names are not valid or supported by the specific 1890
resource, wsman:InvalidOptions with the following detail code: 1891

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName 1892

 when the value is not correct for the option name, wsman:InvalidOptions with the 1893
following detail code: 1894

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue 1895

 For operations that span multiple message sequences, the wsman:OptionSet element R6.4-10:1896

is processed in the initial message only. It should be ignored in subsequent messages because 1897
the first message establishes the required set of options. The service may issue a fault if the 1898
wsman:OptionSet is present in subsequent messages and the value is different from that used in 1899
the initiating request, or the service may ignore the values of wsman:OptionSet in such 1900
messages. 1901

This rule applies primarily to Enumerate and Pull messages. The set of options is established once 1902
during the initial Enumerate request, so changing the options during the enumeration would constitute 1903
an error. 1904

Options are intended to make operations more efficient or to preprocess output on behalf of the client. 1905
For example, the options could indicate to the service that the returned values are to be recomputed 1906
and that cached values are not to be used, or that any optional values in the reply may be omitted. 1907
Alternately, the options could be used to indicate verbose output within the limits of the XML schema 1908
associated with the reply. 1909

Option values are not intended to contain XML. If XML-based input is required, a custom operation 1910
with its own wsa:Action URI is the correct model for the operation. This ensures that no backdoor 1911
parameters are introduced over well-known message types. For example, when issuing a Subscribe 1912
request, the message already defines a technique for passing an event filter to the service, so the 1913
option is not used to circumvent this and pass a filter using an alternate method. 1914

EXAMPLE: The following is an example of wsman:OptionSet: 1915

(1) <s:Envelope 1916
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1917
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1918
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 1919
(5) xmlns:xs="http://www.w3.org/2001/XMLSchema"> 1920
(6) <s:Header> 1921
(7) ... 1922
(8) <wsman:OptionSet s:mustUnderstand="true"> 1923
(9) <wsman:Option Name="VerbosityLevel" Type="xs:int"> 1924
(10) 3 1925
(11) </wsman:Option> 1926
(12) <wsman:Option Name="LogAllRequests" MustComply ="true"/> 1927
(13) </wsman:OptionSet> 1928
(14) ... 1929
(15) </s:Header> 1930
(16) <s:Body> ... </s:Body> 1931
(17) </s:Envelope> 1932

The following definitions provide additional, normative constraints on the preceding outline: 1933

wsman:OptionSet 1934

used to wrap individual option blocks 1935

In this example, s:mustUnderstand is set to "true", indicating that the client is requiring the 1936
service to process the option block using the given rules. 1937

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 49

wsman:OptionSet/wsman:Option/@Name 1938

identifies the option (an xs:string), which may be a simple name or a URI 1939

This name is scoped to the resource to which it applies. The name may be repeated in 1940
subsequent elements. The name cannot be blank and can be a short non-colliding URI that is 1941
vendor-specific. 1942

wsman:OptionSet/wsman:Option/@MustComply 1943

if set to "true", indicates that the option shall be observed; otherwise, indicates an advisory or a 1944
hint 1945

wsman:OptionSet/wsman:Option/@Type 1946

(optional) if present, indicates the data type of the element content, which helps the service to 1947
interpret the content 1948

A service may require this attribute to be present on any given option element. 1949

wsman:OptionSet/wsman:Option 1950

the content of the option 1951

The value may be any simple string value. If the option value is empty, the option should be 1952
interpreted as logically "true", and the option should be "enabled". The following example 1953
enables the "Verbose" option: 1954

(1) <wsman:Option Name="Verbose"/> 1955

Options are logically false if they are not present in the message. All other cases require an explicit 1956
string to indicate the option value. The reasoning for allowing the same option to repeat is to allow 1957
specification of a list of options of the same name. 1958

6.5 wsman:RequestEPR 1959

Some service operations, including "Put", are able to modify the resource representation in such a 1960
way that the update results in a logical identity change for the resource, such as the "rename" of a 1961
document. In many cases, this modification in turn alters the EPR of that resource after the operation 1962
is completed, as EPRs are often dynamically derived from naming values within the resource 1963
representation itself. This behavior is common in SOAP implementations that delegate operations to 1964
underlying systems. 1965

To provide the client a way to determine when such a change has happened, two SOAP headers are 1966
defined to request and return the EPR of a resource instance. 1967

In any WS-Management request message, the following header may appear: 1968

(1) <wsman:RequestEPR .../> 1969

 A service receiving a message that contains the wsman:RequestEPR header block R6.5-1:1970

should return a response that contains a wsman:RequestedEPR header block. This block 1971
contains the most recent EPR of the resource being accessed or a status code if the service 1972
cannot determine or return the EPR. This EPR reflects any identity changes that may have 1973
occurred as a result of the current operation, as set forth in the following behavior. The header 1974
block in the corresponding response message has the following format: 1975

(1) <wsman:RequestedEPR ...> 1976
(2) [<wsa:EndpointReference> 1977
(3) wsa:EndpointReferenceType 1978
(4) </wsa:EndpointReference> | 1979
(5) <wsman:EPRInvalid/> | 1980
(6) <wsman:EPRUnknown/>] 1981
(7) </wsman:RequestedEPR> 1982

Web Services for Management (WS-Management) Specification DSP0226

50 Work in Progress - Not a DMTF Standard Version 1.2.0b

The following definitions describe additional, normative constraints on the preceding format: 1983

wsman:RequestedEPR/wsa:EndpointReference 1984

one of three elements that can be returned as a child element of the wsman:RequestedEPR 1985
element 1986

The use of this element indicates that the service understood the request to return the EPR of 1987
the resource and is including the EPR of the resource. The returned EPR is calculated after all 1988
intentional effects or side effects of the associated request message have occurred. The EPR 1989
may not have changed as a result of the operation, but the service is still obligated to return it. 1990

wsman:RequestedEPR/wsman:EPRInvalid 1991

one of three elements that can be returned as a child element of the wsman:RequestedEPR 1992
element 1993

The use of this element (no value is required) indicates that the service understands the request 1994
to return the EPR of the resource but is unable to calculate a full EPR. However, the service is 1995
able to determine that this message exchange has modified the resource representation in such 1996
a way that any previous references to the resource are no longer valid. When EPRInvalid is 1997
returned, the client shall not use the old wsa:EndpointReference in subsequent operations. 1998

wsman:RequestedEPR/wsman:EPRUnknown 1999

one of three elements that can be returned as a child element of the wsman:RequestedEPR 2000
element 2001

The use of this element (no value is required) indicates that the service understands the request 2002
to return the EPR of the resource but is unable to determine whether existing references to the 2003
resource are still valid. When EPRUnknown is returned, the client may attempt to use the old 2004
wsa:EndpointReference in subsequent operations. The result of using an old 2005
wsa:EndpointReference, however, is unpredictable; a result may be a fault or a successful 2006
response. 2007

7 Resource Access 2008

7.1 General 2009

Resource access applies to all synchronous operations regarding getting, setting, and enumerating 2010
values. The subclauses in clause 7 define a mechanism for acquiring management-specific XML-2011
based representations of entities using the Web service infrastructure, such as managed resources. 2012

Specifically, two operations are defined for sending and receiving the management representation of 2013
a given resource and two operations are defined for creating and deleting a management resource 2014
and its corresponding representation. Multi-instance retrieval is achieved using the enumeration 2015
messages. This specification does not define any messages or techniques for batched operations, 2016
such as batched Get or Delete. All such operations can be sent as a series of single messages. 2017

It should be noted that the state maintenance of a resource is at most subject to the "best efforts" of 2018
the hosting server. When a client receives the server's acceptance of a request to create or update a 2019
resource, it can reasonably expect that the resource now exists at the confirmed location and with the 2020
confirmed representation, but this is not a guarantee, even in the absence of any third parties. The 2021
server may change the representation of a resource, may remove a resource entirely, or may bring 2022
back a resource that was deleted. 2023

For instance, the server may store resource state information on a disk drive. If that drive crashes and 2024
the server recovers state information from a backup tape, changes that occurred after the backup 2025
was made would be lost. 2026

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 51

A server may have other operational processes that change resource state information. A server may 2027
run a background process that examines resources for objectionable content and deletes any such 2028
resources it finds. A server may purge resources that have not been accessed for some period of 2029
time. A server may apply storage quotas that cause it to occasionally purge resources. 2030

In essence, the confirmation by a service of having processed a request to create, modify, or delete a 2031
resource implies a commitment only at the instant that the confirmation was generated. While the 2032
usual case should be that resources are long-lived and stable, there are no guarantees, and clients 2033
should code defensively. 2034

There is no requirement for uniformity in resource representations between the messages defined in 2035
this specification. For example, the representations required by Create or Put may differ from the 2036
representation returned by Get, depending on the semantic requirements of the service. Additionally, 2037
there is no requirement that the resource content is fixed for any given endpoint reference. The 2038
resource content may vary based on environmental factors, such as the security context, time of day, 2039
configuration, or the dynamic state of the service. 2040

As per the SOAP processing model, other specifications may define SOAP headers that may be 2041
optionally added to request messages to require the transfer of subsets or the application of 2042
transformations of the resource associated with the endpoint reference. When the Action URIs 2043
defined by this specification are used, such extension specifications must also allow the basic 2044
processing models defined herein. 2045

NOTE: The WSDL for the resource access operations (see ANNEX G), as well as the pseudo schema and 2046
example message fragments throughout clause 7, is not usable as represented without first replacing the 2047
"resource-specific-GED" text with the application-defined GED. 2048

EXAMPLE 1: Following is a full example of a hypothetical Get request: 2049

(1) <s:Envelope 2050
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2051
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2052
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2053
(5) <s:Header> 2054
(6) <wsa:To>http://1.2.3.4/wsman/</wsa:To> 2055
(7) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 2056

 </wsman:ResourceURI> 2057
(8) <wsa:ReplyTo> 2058
(9) <wsa:Address> 2059
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2060
(11) </wsa:Address> 2061
(12) </wsa:ReplyTo> 2062
(13) <wsa:Action> 2063
(14) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 2064
(15) </wsa:Action> 2065
(16) <wsa:MessageID> 2066
(17) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 2067
(18) </wsa:MessageID> 2068
(19) <wsman:SelectorSet> 2069
(20) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 2070
(21) </wsman:SelectorSet> 2071
(22) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 2072
(23) </s:Header> 2073
(24) <s:Body/> 2074
(25) </s:Envelope> 2075

Notice that the wsa:ReplyTo indicates the response is to be sent on the same connection as the 2076
request (line 10), the action is a Get (line 14), and the ResourceURI (line 7) and wsman:SelectorSet 2077
(line 20) are used to address the requested management information. This example assumes that the 2078

Web Services for Management (WS-Management) Specification DSP0226

52 Work in Progress - Not a DMTF Standard Version 1.2.0b

WS-Management default addressing model is in use. The service is expected to complete the 2079
operation in 30 seconds or return a fault to the client (line 22). 2080

Also, the s:Body in a Get request has no content. 2081

EXAMPLE 1 (continued): The following shows a hypothetical response to the preceding hypothetical Get request: 2082

(26) <s:Envelope 2083
(27) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2084
(28) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2085
(29) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2086
(30) <s:Header> 2087
(31) <wsa:To> 2088
(32) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2089
(33) </wsa:To> 2090
(34) <wsa:Action s:mustUnderstand="true"> 2091
(35) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 2092
(36) </wsa:Action> 2093
(37) <wsa:MessageID s:mustUnderstand="true"> 2094
(38) urn:uuid:217a431c-b071-3301-9bb8-5f538bec89b8 2095
(39) </wsa:MessageID> 2096
(40) <wsa:RelatesTo> 2097
(41) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 2098
(42) </wsa:RelatesTo> 2099
(43) </s:Header> 2100
(44) <s:Body> 2101
(45) <PhysicalDisk 2102

 xmlns="http://schemas.example.org/2005/02/samples/physDisk"> 2103
(46) <Manufacturer> Acme, Inc. </Manufacturer> 2104
(47) <Model> 123-SCSI 42 GB Drive </Model> 2105
(48) <LUN> 2 </LUN> 2106
(49) <Cylinders> 16384 </Cylinders> 2107
(50) <Heads> 80 </Heads> 2108
(51) <Sectors> 63 </Sectors> 2109
(52) <OctetsPerSector> 512 </OctetsPerSector> 2110
(53) <BootPartition> 0 </BootPartition> 2111
(54) </PhysicalDisk> 2112
(55) </s:Body> 2113
(56) </s:Envelope> 2114

Notice that the response uses the wsa:To address (line 32) that the original request had specified in 2115
wsa:ReplyTo. Also, the wsa:MessageID for this response is unique (line 38). The wsa:RelatesTo 2116
(line 41) contains the UUID of the wsa:MessageID of the original request to allow the client to 2117
correlate the response. 2118

The s:Body (lines 44-55) contains the requested resource representation. 2119

The same general approach exists for Delete, except that no content exists in the response s:Body. 2120
The Create and Put operations are similar, except that they contain content in the request s:Body to 2121
specify the values being created or updated. 2122

7.2 Addressing Uniformity 2123

Where practical, the EPR of the resource can be the same whether a Get, Delete, or Put operation is 2124
being used. This is not a strict requirement, but it reduces the education and training required to 2125
construct and use WS-Management-aware tools. 2126

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 53

Create is a special case, in that the EPR of the newly created resource is often not known until the 2127
resource is actually created. For example, although it might be possible to return running process 2128
information using a hypothetical ProcessID in an addressing header, it is typically not possible to 2129
assert the ProcessID during the creation phase because the underlying system does not support the 2130
concept. Thus, the Create operation would not have the same addressing headers as the 2131
corresponding Get or Delete operations. 2132

If the WS-Management default addressing model is in use, it would be typical to use the 2133
ResourceURI as a "type" and selector values for "instance" identification. Thus, the same address 2134
would be used for Get, Put, and Delete when working with the same instance. When enumerating all 2135
instances, the selectors would be omitted and the ResourceURI would be used alone to indicate the 2136
"type" of the object being enumerated. The Create operation might also share this usage, or have its 2137
own ResourceURI and selector usage (or not even use selectors). This pattern is not a requirement. 2138

Throughout, it is expected that the s:Body of the messages contains XML with correct and valid XML 2139
namespaces referring to XML Schemas that can validate the message. Most services and clients do 2140
not perform real-time validation of messages in production environments because of performance 2141
constraints; however, during debugging or other systems verification, validation might be enabled, 2142
and messages without the appropriate XML namespace declarations would be considered invalid. 2143

When performing resource access operations, side effects might occur. For example, deletion of a 2144
particular resource by using Delete can result in several other dependent instances disappearing, and 2145
a Create operation can result in the logical creation of more than one resource that can be 2146
subsequently returned through a Get operation. Similarly, a Put operation can result in a rename of 2147
the target instance, a rename of some unrelated instance, or the deletion of some unrelated instance. 2148
These side effects are service specific, and this specification makes no statements about the 2149
taxonomy and semantics of objects over which these operations apply. 2150

7.3 Get 2151

A Web service operation (Get) is defined for fetching a one-time snapshot of the representation of a 2152
resource. A snapshot is a complete XML representation of a resource at the time the service 2153
processes the request. 2154

The Get request message shall be of the following form: 2155

(1) <s:Envelope …> 2156
(2) <s:Header …> 2157
(3) <wsa:Action> 2158
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 2159
(5) </wsa:Action> 2160
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 2161
(7) <wsa:To>xs:anyURI</wsa:To> 2162
(8) … 2163
(9) </s:Header> 2164
(10) <s:Body .../> 2165
(11) </s:Envelope> 2166

The following describes additional, normative constraints on the preceding outline: 2167

/s:Envelope/s:Header/wsa:Action 2168

This required element shall contain the value 2169
http://schemas.xmlsoap.org/ws/2004/09/transfer/Get. If a SOAP Action URI is also present in the 2170
underlying transport, its value shall convey the same value. 2171

A Get request shall be targeted at the resource whose representation is desired. 2172

There are no body blocks defined by default for a Get Request. As per the SOAP processing model, 2173
other specifications may introduce various types of extensions to the semantics of this message that 2174

Web Services for Management (WS-Management) Specification DSP0226

54 Work in Progress - Not a DMTF Standard Version 1.2.0b

are enabled through headers tagged with s:mustUnderstand="true". Such extensions may define how 2175
resource or subsets of it are to be retrieved or transformed prior to retrieval. Specifications that define 2176
such extensions shall allow processing the basic Get request message without those extensions. 2177
Because the response may not be sent to the original sender, extension specifications should 2178
consider adding a corresponding SOAP header value in the response to signal to the receiver that the 2179
extension is being used. 2180

Implementations may respond with a fault message using the standard fault codes defined in 2181
Addressing (for example, wsa:ActionNotSupported). Other components of the preceding outline are 2182
not further constrained by this specification. 2183

If the resource accepts a Get request, it shall reply with a response of the following form: 2184

(1) <s:Envelope …> 2185
(2) <s:Header …> 2186
(3) <wsa:Action> 2187
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 2188
(5) </wsa:Action> 2189
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 2190
(7) <wsa:To>xs:anyURI</wsa:To> 2191
(8) … 2192
(9) </s:Header> 2193
(10) <s:Body …> 2194
(11) resource-specific-element 2195
(12) </s:Body> 2196
(13) </s:Envelope> 2197

The following describes additional, normative constraints on the preceding outline: 2198

/s:Envelope/s:Header/wsa:Action 2199

This required element shall contain the value 2200
http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse. If a SOAP Action URI is also 2201
present in the underlying transport, its value shall convey the same value. 2202

/s:Envelope/s:Body/child 2203

The representation itself shall be the child element of the SOAP:Body element of the response 2204
message. 2205

Other components of the preceding outline are not further constrained by this specification. 2206

The Get operation retrieves resource representations. The message can be targeted to return a 2207
complex XML document or to return a single, simple value. The nature and complexity of the 2208
representation is not constrained by this specification. 2209

 A conformant service should support Get operations to service metadata requests R7.3-1:2210

about the service itself or to verify the result of a previous action or operation. 2211

This statement does not constrain implementations from supplying additional similar methods for 2212
resource and metadata retrieval. 2213

 Execution of Get should not in itself have side effects on the value of the resource. R7.3-2:2214

 If an object cannot be retrieved due to locking conditions, simultaneous access, or R7.3-3:2215

similar conflicts, a wsman:Concurrency fault should be returned. 2216

In practice, Get is designed to return XML that corresponds to real-world objects. To retrieve 2217
individual property values, either the client can postprocess the XML content for the desired value, or 2218
the service can support fragment-level access (7.7). 2219

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 55

Fault usage is generally as described in clause 14. An inability to locate or access the resource is 2220
equivalent to problems with the SOAP message when the EPR is defective. There are no "Get-2221
specific" faults. 2222

7.4 Put 2223

A Web service operation (Put) is defined for updating a resource by providing a replacement 2224
representation. A resource may accept updates that provide different XML representations than that 2225
returned by the resource; in such a case, the semantics of the update operation is defined by the 2226
resource. 2227

The Put request message shall be of the following form: 2228

(1) <s:Envelope …> 2229
(2) <s:Header …> 2230
(3) <wsa:Action> 2231
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/Put 2232
(5) </wsa:Action> 2233
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 2234
(7) <wsa:To>xs:anyURI</wsa:To> 2235
(8) … 2236
(9) </s:Header> 2237
(10) <s:Body…> 2238
(11) resource-specific-element 2239
(12) </s:Body> 2240
(13) </s:Envelope> 2241

The following describes additional, normative constraints on the preceding outline: 2242

/s:Envelope/s:Header/wsa:Action 2243

This required element shall contain the value 2244
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put. If a SOAP Action URI is also present in the 2245
underlying transport, its value shall convey the same value. 2246

/s:Envelope/s:Body/child 2247

The representation to be used for the update shall be the child element of the s:Body element of 2248
the request message. 2249

A Put request shall be targeted at the resource whose representation is desired to be replaced. As 2250
per the SOAP processing model, other specifications may introduce various types of extensions to 2251
this message, which are enabled through headers tagged with s:mustUnderstand="true". Such 2252
extensions may require that a full or partial update should be accomplished using symbolic, 2253
instruction-based, or other methodologies. 2254

Extension specifications may also define extensions to the original Put request, enabled by optional 2255
SOAP headers, which control the nature of the response (see the information about PutResponse 2256
later in this clause). 2257

Specifications that define any of these extensions shall allow processing of the Put message without 2258
such extensions. 2259

In addition to the standard fault codes defined in Addressing, implementations may use the fault code 2260
wsmt:InvalidRepresentation if the presented representation is invalid for the target resource. Other 2261
components of the preceding outline are not further constrained by this specification. 2262

A successful Put operation updates the current representation associated with the targeted resource. 2263

If the resource accepts a Put request and performs the requested update, it shall reply with a 2264
response of the following form: 2265

Web Services for Management (WS-Management) Specification DSP0226

56 Work in Progress - Not a DMTF Standard Version 1.2.0b

(1) <s:Envelope …> 2266
(2) <s:Header …> 2267
(3) <wsa:Action> 2268
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse 2269
(5) </wsa:Action> 2270
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 2271
(7) <wsa:To>xs:anyURI</wsa:To> 2272
(8) … 2273
(9) </s:Header> 2274
(10) <s:Body …> 2275
(11) resource-specific-element ? 2276
(12) </s:Body> 2277
(13) </s:Envelope> 2278

/s:Envelope/s:Header/wsa:Action 2279

This required element shall contain the value 2280
http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse. If a SOAP Action URI is also 2281
present in the underlying transport, its value shall convey the same value. 2282

/s:Envelope/s:Body/child 2283

An implementation of a service shall choose, in advance, whether to return an empty Body or the 2284
resulting representation of the resource. This choice shall be explicitly stated in the WSDL, if 2285
WSDL is provided. 2286

By default, a service shall return the current representation of the resource as the child of the 2287
s:Body element if the updated representation differs from the representation sent in the Put 2288
request message. 2289

As an optimization and as a service to the requester, the s:Body element of the response 2290
message should be empty if the updated representation does not differ from the representation 2291
sent in the Put request message; that is, if the service accepted the new representation 2292
verbatim. 2293

Such a response (an empty s:Body) implies that the update request was successful in its entirety 2294
(assuming no intervening mutating operations are performed). A service may return the current 2295
representation of the resource as the initial child of the s:Body element even in this case, 2296
however. 2297

Extension specifications may define extensions to the original Put request, enabled by optional 2298
header values, in order to optimize the response. In the absence of such headers, the behavior shall 2299
be as previously described. Specifications that define any of these extensions shall allow processing 2300
the Put message without such extensions. Because the response may not be sent to the original 2301
sender, extension specifications should consider adding a corresponding SOAP header value in the 2302
response to signal to the receiver that the extension is being used. 2303

Other components of the preceding outline are not further constrained by this specification. 2304

If a resource can be updated in its entirety within the constraints of the corresponding XML schema 2305
for the resource, the service can support the Put operation. 2306

 A conformant service may support Put. R7.4-1:2307

 If a single resource instance can be updated (within the constraints of its schema) by R7.4-2:2308

using a SOAP message, and that resource subsequently can be retrieved using Get, a service 2309
should support updating the resource by using Put. The service may additionally export a custom 2310
method for updates. 2311

 If a single resource instance contains a mix of modifiable and non-modifiable R7.4-3:2312

properties, the Put message may contain values for both the modifiable and non-modifiable 2313
properties if the XML content is legal with regard to its XML schema namespace. If the Put 2314

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 57

message contains values for modifiable properties, the service shall set these properties to these 2315
values during the Put operation. If the Put message contains values for non-modifiable properties, 2316
the service should ignore those values during the Put operation. If none of the properties are 2317
modifiable, the service should return a wsa:ActionNotSupported fault. 2318

This situation typically happens if a Get operation is performed, a value is altered, and the entire 2319
updated representation is sent using Put. In this case, any read-only values would still be present. 2320

A complication arises because Put contains the complete new representation for the instance. If the 2321
resource schema requires the presence of any given value (minOccurs is not zero), it will be supplied 2322
as part of the Put message, even if it is not being altered from its original value. 2323

 If a Put operation specifies a modifiable value as NULL using the xsi:nil attribute, then R7.4-4:2324

the service shall set the value to NULL. 2325

If the schema definition includes elements that are optional (minOccurs=0), the Put message can omit 2326
these values. Existing implementations provide two different responses when these elements are 2327
modifiable (writeable). They either set the omitted element's value to NULL or leave the value 2328
unchanged. Given this reality, the following rules apply: 2329

 Any modifiable properties that are optional in the XML schema (that is, minOccurs=”0”) R7.4-5:2330

and that are are omitted from the Put message shall either be set to a resource-specific default 2331
value or be left unchanged. Setting to a resource specific default value is recommended. 2332

NOTE 1: Elements not set may have their value changed as a result of other constraints. 2333

NOTE 2: The resource-specific default value is outside the scope of this specification. 2334

To update isolated values without having to supply all values, use the fragment-level resource access 2335
mechanism described in 7.7. 2336

In short, the s:Body of the Put message complies with the constraints of the associated XML schema. 2337

EXAMPLE 1: For example, assume that Get returns the following information: 2338

(1) <s:Body> 2339
(2) <MyObject xmlns="examples.org/2005/02/MySchema"> 2340
(3) <A> 100 2341
(4) 200 2342
(5) <C> 100 </C> 2343
(6) </MyObject> 2344
(7) </s:Body> 2345

EXAMPLE 2: The corresponding XML schema has defined A, B, and C as minOccurs=1: 2346

(8) <xs:element name="MyObjecct"> 2347
(9) <xs:complexType> 2348
(10) <xs:sequence> 2349
(11) <xs:element name="A" type="xs:int" minOccurs="1" maxOccurs="1"/> 2350
(12) <xs:element name="B" type="xs:int" minOccurs="1" maxOccurs="1"/> 2351
(13) <xs:element name="C" type="xs:int" minOccurs="1" maxOccurs="1"/> 2352
(14) ... 2353
(15) </xs:sequence> 2354
(16) </xs:complexType> 2355
(17) </xs :element> 2356

In this case, the corresponding Put needs to contain all three elements because the schema mandates that all 2357
three be present. Even if the only value being updated is , the client has to supply all three values. This 2358
usually means that the client first has to issue a Get to preserve the current values of <A> and <C>, change 2359
to the desired value, and then write the object using Put. As noted in , the service can ignore attempts to R7.4-32360

update values that are read-only with regard to the underlying real-world object. 2361

Web Services for Management (WS-Management) Specification DSP0226

58 Work in Progress - Not a DMTF Standard Version 1.2.0b

 A conformant service should support Put using the same EPR as a corresponding Get R7.4-6:2362

or other messages, unless the Put mechanism for a resource is semantically distinct. 2363

 If the supplied Body does not have the correct content to update the resource, the R7.4-7:2364

service should return a wsmt:InvalidRepresentation fault and detail codes as follows: 2365

 if any values in the s:Body are not correct: 2366

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues 2367

 if any values in the s:Body are missing: 2368

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues 2369

 if the wrong XML schema namespace is used and is not recognized by the service: 2370

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace 2371

 If an object cannot be updated because of locking conditions, simultaneous access, or R7.4-8:2372

similar conflicts, the service should return a wsman:Concurrency fault. 2373

 A Put operation may result in a change to the EPR for the resource because the values R7.4-9:2374

being updated may in turn cause an identity change. 2375

Because WS-Management services typically delegate the Put to underlying subsystems, the service 2376
might not always be aware of an identity change. Clients can make use of the mechanism in 6.5 to be 2377
informed of EPR changes that may have occurred as a side effect of executing a Put operation. 2378

 It is recommended that the service return the new representation in the Put response in R7.4-10:2379

all cases. Knowing whether the actual resulting representation is different from the requested 2380
update is often difficult because resource-constrained implementations may have insufficient 2381
resources to determine the equivalence of the requested update with the actual resulting 2382
representation. 2383

The implication of this rule is that if the new representation is not returned, it precisely matches what 2384
was submitted in the Put message. Because implementations can rarely assure this, they can always 2385
return the new representation. 2386

 If the success of an operation cannot be reported as described in this clause because R7.4-11:2387

of encoding limits or other reasons, and it cannot be reversed, the service should return a 2388
wsman:EncodingLimit fault with the following detail code: 2389

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess 2390

 The Put operation may contain updates of multiple values. The service shall R7.4-12:2391

successfully carry out an update of all the specified values or return the fault that was the cause 2392

of the error. If any fault is returned, the implication is that 0n-1 values were updated out of n 2393
possible update values. 2394

7.5 Delete 2395

This specification defines one Web service operation (Delete) for deleting a resource in its entirety. 2396

Extension specifications may define extensions to the Delete request, enabled by optional header 2397
values, which specifically control preconditions for the Delete to succeed and which may control the 2398
nature or format of the response. Because the response may not be sent to the original sender, 2399
extension specifications should consider adding a corresponding SOAP header value in the response 2400
to signal to the receiver that the extension is being used. 2401

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 59

The Delete request message shall be of the following form: 2402

(1) <s:Envelope …> 2403
(2) <s:Header …> 2404
(3) <wsa:Action> 2405
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete 2406
(5) </wsa:Action> 2407
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 2408
(7) <wsa:To>xs:anyURI</wsa:To> 2409
(8) … 2410
(9) </s:Header> 2411
(10) <s:Body … /> 2412
(11) </s:Envelope> 2413

The following describes additional, normative constraints on the preceding outline: 2414

/s:Envelope/s:Header/wsa:Action 2415

This required element shall contain the value 2416
http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete. If a SOAP Action URI is also present in 2417
the underlying transport, its value shall convey the same value. 2418

A Delete request shall be targeted at the resource to be deleted. 2419

There are no body blocks defined for a Delete Request. 2420

Implementations may respond with a fault message using the standard fault codes defined in 2421
Addressing (for example, wsa:ActionNotSupported). Other components of the preceding outline are 2422
not further constrained by this specification. 2423

A successful Delete operation invalidates the current representation associated with the targeted 2424
resource. 2425

If the resource accepts a Delete request, it shall reply with a response of the following form: 2426

(1) <s:Envelope …> 2427
(2) <s:Header …> 2428
(3) <wsa:Action> 2429
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse 2430
(5) </wsa:Action> 2431
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 2432
(7) <wsa:To>xs:anyURI</wsa:To> 2433
(8) … 2434
(9) </s:Header> 2435
(10) <s:Body .../> 2436
(11) </s:Envelope> 2437

/s:Envelope/s:Header/wsa:Action 2438

This required element shall contain the value 2439
http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse. If a SOAP Action URI is also 2440
present in the underlying transport, its value shall convey the same value. 2441

By default, there are no s:Body blocks defined for a Delete response. Specifications that define 2442
extensions for use in the original Delete request that control the format of the response shall allow 2443
processing the Delete message without such extensions. 2444

Other components of the preceding outline are not further constrained by this specification. 2445

In general, the addressing can be the same as for a corresponding Get operation for uniformity, but 2446
this is not absolutely required. 2447

 A conformant service may support Delete. R7.5-1:2448

Web Services for Management (WS-Management) Specification DSP0226

60 Work in Progress - Not a DMTF Standard Version 1.2.0b

 A conformant service should support Delete using the same EPR as a corresponding R7.5-2:2449

Get or other messages, unless the deletion mechanism for a resource is semantically distinct. 2450

 If deletion is supported and the corresponding resource can be retrieved using Get, a R7.5-3:2451

conformant service should support deletion using Delete. The service may additionally export a 2452
custom action for deletion. 2453

 If an object cannot be deleted due to locking conditions, simultaneous access, or R7.5-4:2454

similar conflicts, a wsman:Concurrency fault should be returned. 2455

In practice, Delete removes the resource instance from the visibility of the client and is a logical 2456
deletion. 2457

The operation might result in an actual deletion, such as removal of a row from a database table, or it 2458
might simulate deletion by unbinding the representation from the real-world object. Deletion of a 2459
"printer," for example, does not result in literal annihilation of the printer, but simply removes it from 2460
the access scope of the service, or "unbinds" it from naming tables. WS-Management makes no 2461
distinction between literal deletions and logical deletions. 2462

To delete individual property values within an object that, itself, is not to be deleted, either the client 2463
can perform a Put, according to section 7.4 or the service can support fragment-level delete (7.7). 2464

Fault usage is generally as described in clause 14. Inability to locate or access the resource is 2465
equivalent to problems with the SOAP message when the EPR is defective. There are no "Delete-2466
specific" faults. 2467

7.6 Create 2468

A Web service operation (Create) is defined for creating a resource and providing its initial 2469
representation. In some cases, the initial representation may constitute the representation of a logical 2470
constructor for the resource and may thus differ structurally from the representation returned by Get 2471
or the one required by Put. This difference is because the parameterization requirement for creating a 2472
resource is often distinct from the steady-state representation of the resource. Implementations 2473
should provide metadata that describes the use of the representation and how it relates to the 2474
resource which is created, but such mechanisms are beyond the scope of this specification. The 2475
resource factory that receives a Create request allocates a new resource that is initialized from the 2476
presented representation. The new resource is assigned a service-determined endpoint reference 2477
that is returned in the response message. 2478

The Create request message shall be of the following form: 2479

(1) <s:Envelope …> 2480
(2) <s:Header …> 2481
(3) <wsa:Action> 2482
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/Create 2483
(5) </wsa:Action> 2484
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 2485
(7) <wsa:To>xs:anyURI</wsa:To> 2486
(8) … 2487
(9) </s:Header> 2488
(10) <s:Body …> 2489
(11) resource-specific-element 2490
(12) </s:Body> 2491
(13) </s:Envelope> 2492

The following describes additional, normative constraints on the preceding outline: 2493

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 61

/s:Envelope/s:Header/wsa:Action 2494

This required element shall contain the value 2495
http://schemas.xmlsoap.org/ws/2004/09/transfer/Create. If a SOAP Action URI is also present in 2496
the underlying transport, its value shall convey the same value. 2497

/s:Envelope/s:Body/child 2498

The child element of the s:Body element shall not be omitted. The contents of this element are 2499
service-specific, and may contain the literal initial resource representation, a representation of 2500
the constructor for the resource, or other instructions for creating the resource. 2501

Extension specifications may also define extensions to the original Create request, enabled by 2502
optional SOAP headers, which constrain the nature of the response (see information about the 2503
CreateResponse later in this clause). Similarly, they may require headers that control the 2504
interpretation of the s:Body as part of the resource creation process. 2505

Such specifications shall also allow processing the Create message without such extensions. 2506

A Create request shall be targeted at a resource factory capable of creating the desired new 2507
resource. This factory is distinct from the resource being created (which by definition does not exist 2508
prior to the successful processing of the Create request message). 2509

In addition to the standard fault codes defined in Addressing, implementations may use the fault code 2510
wsmt:InvalidRepresentation if the presented representation is invalid for the target resource. 2511

Other components of the preceding outline are not further constrained by this specification. 2512

If the resource factory accepts a Create request, it shall reply with a response of the following form: 2513

(1) <s:Envelope …> 2514
(2) <s:Header …> 2515
(3) <wsa:Action> 2516
(4) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse 2517
(5) </wsa:Action> 2518
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 2519
(7) <wsa:To>xs:anyURI</wsa:To> 2520
(8) … 2521
(9) </s:Header> 2522
(10) <s:Body …> 2523
(11) <wsmt:ResourceCreated>endpoint-reference</wsmt:ResourceCreated> 2524
(12) </s:Body> 2525
(13) </s:Envelope> 2526

/s:Envelope/s:Header/wsa:Action 2527

This required element shall contain the value 2528
http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse. If a SOAP Action URI is also 2529
present in the underlying transport, its value shall convey the same value. 2530

/s:Envelope/s:Body/wsmt:ResourceCreated 2531

This required element shall contain a resource reference for the newly created resource. This 2532
resource reference, represented as an endpoint reference as defined in Addressing, shall 2533
identify the resource for future Get, Put, and Delete operations. 2534

Extension specifications may define extensions to the original Create request, enabled by optional 2535
header values. These headers may override the default behavior if they are marked with 2536
s:mustUnderstand="true". In the absence of such optional headers, the behavior shall be as 2537
described in the previous paragraphs. Because the response may not be sent to the original sender, 2538
extension specifications should consider adding a corresponding SOAP header value in the response 2539
to signal to the receiver that the extension is being used. 2540

Web Services for Management (WS-Management) Specification DSP0226

62 Work in Progress - Not a DMTF Standard Version 1.2.0b

Other components of the preceding outline are not further constrained by this specification. 2541

In general, the addressing is not the same as that used for Get or Delete in that the EPR assigned to 2542
a newly created instance for subsequent access is not necessarily part of the XML content used for 2543
creating the resource. Because the EPR is usually assigned by the service or one of its underlying 2544
systems, the CreateResponse contains the applicable EPR of the newly created instance. 2545

 A conformant service may support Create. R7.6-1:2546

 If a single resource can be created using a SOAP message and that resource can be R7.6-2:2547

subsequently retrieved using Get, then a service should support creation of the resource using 2548
Create. The service may additionally export a custom method for instance creation. 2549

 If the supplied SOAP Body does not have the correct content for the resource to be R7.6-3:2550

created, the service should return a wsmt:InvalidRepresentation fault and detail codes as follows: 2551

 if one or more values in the <s:Body> were not correct: 2552

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues 2553

 if one or more values in the <s:Body> were missing: 2554

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues 2555

 if the wrong XML schema namespace was used and is not recognized by the service: 2556

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace 2557

 A service shall not use Create to modify the value of an existing representation (except R7.6-4:2558

as specified in 7.11). If the targeted object already exists, the service should return a 2559
wsman:AlreadyExists fault. 2560

The message body for Create is not required to use the same schema as that returned with a Get 2561
operation for the resource. Often, the values required to create a resource are different from those 2562
retrieved using a Get operation or those used for updates with a Put operation. 2563

If a service needs to support creation of individual values within a representation (fragment-level 2564
creation, array insertion, and so on), it can support fragment-level access (7.7). 2565

 The response to a Create message shall contain the new EPR of the created resource R7.6-5:2566

in the ResourceCreated element. 2567

 This rule intentionally left blank. R7.6-6:2568

EXAMPLE: The following is a hypothetical example of a response for a newly created virtual drive: 2569

(1) <s:Envelope 2570
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2571
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2572
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 2573
(5) xmlns:wsmt="http://schemas.xmlsoap.org/ws/2004/09/transfer"> 2574
(6) <s:Header> 2575
(7) ... 2576
(8) <wsa:Action> 2577
(9) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse 2578
(10) </wsa:Action> 2579
(11) ... 2580
(12) </s:Header> 2581
(13) <s:Body> 2582
(14) <wsmt:ResourceCreated> 2583
(15) <wsa:Address> 2584

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 63

(16) http://1.2.3.4/wsman/ 2585
(17) </wsa:Address> 2586
(18) <wsa:ReferenceParameters> 2587
(19) <wsman:ResourceURI> 2588
(20) http://example.org/2005/02/virtualDrive 2589
(21) </wsman:ResourceURI> 2590
(22) <wsman:SelectorSet> 2591
(23) <wsman:Selector Name="ID"> F: </wsman:Selector> 2592
(24) </wsman:SelectorSet> 2593
(25) </wsa:ReferenceParameters> 2594
(26) </wsmt:ResourceCreated> 2595
(27) </s:Body> 2596
(28) </s:Envelope> 2597

This example assumes that the default addressing model is in use. The response contains a ResourceCreated 2598
block (lines 14-26), which contains the new endpoint reference of the created resource, including its 2599
ResourceURI and the SelectorSet. This address would be used to retrieve the resource in a subsequent Get 2600
operation. 2601

The service might use a network address that is the same as the wsa:To address in the Create request. 2602

 The service may ignore any values in the initial representation that are considered R7.6-7:2603

read-only from the point of view of the underlying real-world object. 2604

This rule allows Get, Put, and Create to share the same schema. Put also allows the service to ignore 2605
read-only properties during an update. 2606

 If the success of an operation cannot be reported as described in this clause and R7.6-8:2607

cannot be reversed, the service should return a wsman:EncodingLimit fault with the following 2608
detail code: 2609

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess 2610

7.7 Fragment-Level Access 2611

Because the resource access mechanism defined in this specification works with entire instances and 2612
it can be inconvenient to specify hundreds or thousands of EPRs just to model fragment-level access 2613
with full EPRs, WS-Management supports the concept of fragment-level (property) access of 2614
resources that are normally accessed through the resource access operations. This access is done 2615
through special use of these operations. 2616

Because of the XML schema limitations discussed in 7.6, simply returning a subset of the XML 2617
defined for the object being accessed is often incorrect because a subset may violate the XML 2618
schema for that fragment. To support resource access of fragments or individual elements of a 2619
representation object, several modifications to the basic resource access operations are made. 2620

 A conformant service may support fragment-level access. If the service supports R7.7-1:2621

fragment-level access, the service shall not behave as if the normal access operations were in 2622
place but shall operate exclusively on the fragments specified. If the service does not support 2623
fragment-level access, it shall return a wsman:UnsupportedFeature fault with the following detail 2624
code: 2625

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FragmentLevelAccess 2626

 A conformant service that supports fragment-level access shall accept the following R7.7-2:2627

SOAP header in all requests and include it in all responses that transport the fragments: 2628

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 2629
(2) xpath to fragment 2630
(3) </wsman:FragmentTransfer> 2631

Web Services for Management (WS-Management) Specification DSP0226

64 Work in Progress - Not a DMTF Standard Version 1.2.0b

The value of this header is the XPath 1.0 expression that identifies the fragment being transferred 2632
with relation to the full representation of the object. If an expression other than XPath 1.0 is used, 2633
a Dialect attribute can be added to indicate this, as follows: 2634

(4) <wsman:FragmentTransfer s:mustUnderstand="true" 2635
(5) Dialect="URIToNewFragmentDialect"> 2636
(6) dialect expression 2637
(7) </wsman:FragmentTransfer> 2638

The client needs to understand that unless the header is marked mustUnderstand="true", the service 2639
might process the request while ignoring the header, resulting in unexpected and potentially serious 2640
side effects. 2641

XPath is explicitly defined as a dialect due to its importance, but it is not required that 2642
implementations support XPath as a fragment dialect. Any other type of language to describe 2643
fragment-level access is permitted as long as the Dialect value is set to indicate to the service what 2644
dialect is being used. 2645

 For resource access fragment operations that use [XPath 1.0] (Dialect URI of R7.7-3:2646

http://www.w3.org/TR/1999/REC-xpath-19991116), the value of the 2647
/s:Envelope/s:Header/wsman:FragmentTransfer element is an XPath expression. This XPath 2648
expression is evaluated using the following context: 2649

 Context Node: the root element of the XML representation of the resource addressed in 2650
the request that would be returned as the initial child element of the SOAP Body response if 2651
a Get operation was applied against the addressed resource without using fragment access 2652

 Context Position: 1 2653

 Context Size: 1 2654

 Variable Bindings: none 2655

 Function Libraries: Core Function Library [XPath 1.0] 2656

 Namespace Declarations: the [in-scope namespaces] property [XML Infoset] of the 2657
request /s:Envelope/s:Header/wsman:FragmentTransfer element 2658

This rule means that the XPath is to be interpreted relative to the XML representation of the resource 2659
and not relative to any of the SOAP content. 2660

For the Enumeration operations, the XPath is interpreted as defined in clause 8, although the output 2661
is subsequently wrapped in wsman:XmlFragment wrappers after the XPath is evaluated. 2662

An XPath value can refer to the entire node, so the concept of a fragment includes the entire object, 2663
making fragment-level access a proper superset of normal resource access operations. 2664

If the full XPath expression syntax cannot be supported, a common subset for this purpose is 2665
described in ANNEX C of this specification. However, in such cases, the Dialect URI is still that of 2666
XPath. 2667

 If a service understands fragment access but does not understand the specified R7.7-4:2668

fragment Dialect URI or the default dialect, the service shall issue a 2669
wsman:FragmentDialectNotSupported fault. 2670

 All resource access messages in either direction of the XML fragments shall be R7.7-5:2671

wrapped with a <wsman:XmlFragment> wrapper that contains a definition that suppresses 2672
validation and allows any content to pass. A service shall reject any attempt to use 2673
wsman:FragmentTransfer unless the s:Body wraps the content using a wsman:XmlFragment 2674

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 65

wrapper. If any other usage is encountered, the service shall fault the request by using a 2675
wsmt:InvalidRepresentation fault with the following detail code: 2676

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFragment 2677

Fragment access can occur at any level, including single element, complex elements, simple values, 2678
and attributes. In practice, services typically support only value-level access to elements. 2679

 If fragment-level access is supported, a conformant service should support at least R7.7-6:2680

leaf-node, value-level access using an XPath expression that uses the /text() NodeTest. In this 2681
case, the value is not wrapped with XML but is transferred directly as text within the 2682
wsman:XmlFragment wrapper. 2683

In essence, the transferred content is whatever an XPath operation over the full XML would produce. 2684

 If fragment-level access is supported but the filter expression exceeds the capability of R7.7-7:2685

the service, the service should return a wsman:CannotProcessFilter fault with text explaining why 2686
the filter was problematic. 2687

 For all fragment-level operations, partial successes are not permitted. The entire R7.7-8:2688

meaning of the XPath expression or other dialect shall be fully observed by the service in all 2689
operations, and the entire fragment that is specified shall be successfully transferred in either 2690
direction. Otherwise, faults occur as if none of the operation had succeeded. 2691

All faults are the same as for normal, "full" resource access operations. 2692

The following clauses show how the underlying resource access operations change when transferring 2693
XML fragments. 2694

7.8 Fragment-Level Get 2695

Fragment-level Get is similar to full Get, except for the wsman:FragmentTransfer header (lines 25-2696
27). 2697

EXAMPLE 1: The following example is drawn from the example in 7.1: 2698

(1) <s:Envelope 2699
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2700
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2701
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2702
(5) <s:Header> 2703
(6) <wsa:To> 2704
(7) http://1.2.3.4/wsman 2705
(8) </wsa:To> 2706
(9) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 2707

 </wsman:ResourceURI> 2708
(10) <wsa:ReplyTo> 2709
(11) <wsa:Address> 2710
(12) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2711
(13) </wsa:Address> 2712
(14) </wsa:ReplyTo> 2713
(15) <wsa:Action> 2714
(16) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 2715
(17) </wsa:Action> 2716
(18) <wsa:MessageID> 2717
(19) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 2718
(20) </wsa:MessageID> 2719
(21) <wsman:SelectorSet> 2720
(22) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 2721

Web Services for Management (WS-Management) Specification DSP0226

66 Work in Progress - Not a DMTF Standard Version 1.2.0b

(23) </wsman:SelectorSet> 2722
(24) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 2723
(25) <wsman:FragmentTransfer s:mustUnderstand="true"> 2724
(26) Manufacturer 2725
(27) </wsman:FragmentTransfer> 2726
(28) </s:Header> 2727
(29) <s:Body/> 2728
(30) </s:Envelope> 2729

In this case, the service executes the specified XPath expression against the representation that 2730
would normally have been retrieved, and then return a fragment instead. 2731

EXAMPLE 2: The service repeats the wsman:FragmentTransfer element in the GetResponse (lines 48-50) to 2732
reference the fragment and signal that a fragment has been transferred. The response is wrapped in a 2733
wsman:XmlFragment wrapper, which suppresses the schema validation that would otherwise apply. 2734

(31) <s:Envelope 2735
(32) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2736
(33) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2737
(34) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2738
(35) <s:Header> 2739
(36) <wsa:To> 2740
(37) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2741
(38) </wsa:To> 2742
(39) <wsa:Action s:mustUnderstand="true"> 2743
(40) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 2744
(41) </wsa:Action> 2745
(42) <wsa:MessageID s:mustUnderstand="true"> 2746
(43) urn:uuid:1a7e7314-d791-4b4b-3eda-c00f7e833a8c 2747
(44) </wsa:MessageID> 2748
(45) <wsa:RelatesTo> 2749
(46) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 2750
(47) </wsa:RelatesTo> 2751
(48) <wsman:FragmentTransfer s:mustUnderstand="true"> 2752
(49) Manufacturer 2753
(50) </wsman:FragmentTransfer> 2754
(51) </s:Header> 2755
(52) <s:Body> 2756
(53) <wsman:XmlFragment 2757

xmlns="http://schemas.example.org/2005/02/samples/physDisk"> 2758
(54) <Manufacturer> Acme, Inc. </Manufacturer> 2759
(55) </wsman:XmlFragment> 2760
(56) </s:Body> 2761
(57) </s:Envelope> 2762

The output (lines 53-55) is like that supplied by a typical XPath processor. 2763

To receive the value in isolation without an XML element wrapper, the client can use XPath 2764
techniques such as the text() operator to retrieve just the values. 2765

EXAMPLE 3: The following example request uses text() to get the manufacturer name: 2766

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 2767
(2) Manufacturer/text() 2768
(3) </wsman:FragmentTransfer> 2769

This request results in the following XML in the response SOAP Body: 2770

(1) <wsman:XmlFragment> 2771
(2) Acme, Inc. 2772
(3) </wsman:XmlFragment> 2773

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 67

7.9 Fragment-Level Put 2774

Fragment-level Put works like regular Put except that it transfers only the part being updated. 2775
Although the fragment can be considered part of an instance from the observer's perspective, the 2776
referenced fragment is treated as the "instance" during the execution of the operation. 2777

NOTE: Put is always an update operation of an existing element, whether a simple element or an array. To 2778
create or insert new elements, Create is required. 2779

EXAMPLE 1: Consider the following XML for illustrative purposes: 2780

(1) <a> 2781
(2) 2782
(3) <c> </c> 2783
(4) <d> </d> 2784
(5) 2785
(6) <e> 2786
(7) <f> </f> 2787
(8) <g> </g> 2788
(9) </e> 2789
(10) 2790

Although a is the entire representation of the resource instance, if the operation references the a/b 2791

node during the Put operation, using an XPath expression of “b”, then the content of b is updated 2792

without touching other parts of a , such as e . If the client wants to update only d , then the 2793
XPath expression used is “b/d”. 2794

EXAMPLE 2: Continuing from the example in SECTION 7.1, if the client wanted to update the <BootPartition> 2795
value from 0 to 1, the following Put fragment could be sent to the service: 2796

(1) <s:Envelope 2797
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2798
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2799
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2800
(5) <s:Header> 2801
(6) <wsa:To> 2802
(7) http://1.2.3.4/wsman 2803
(8) </wsa:To> 2804
(9) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 2805

 </wsman:ResourceURI> 2806
(10) <wsa:ReplyTo> 2807
(11) <wsa:Address> 2808
(12) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2809
(13) </wsa:Address> 2810
(14) </wsa:ReplyTo> 2811
(15) <wsa:Action> 2812
(16) http://schemas.xmlsoap.org/ws/2004/09/transfer/Put 2813
(17) </wsa:Action> 2814
(18) <wsa:MessageID> 2815
(19) urn:uuid:d9726315-bc91-2222-9ed8-c044c9658a87 2816
(20) </wsa:MessageID> 2817
(21) <wsman:SelectorSet> 2818
(22) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 2819
(23) </wsman:SelectorSet> 2820
(24) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 2821
(25) <wsman:FragmentTransfer s:mustUnderstand="true"> 2822
(26) BootPartition 2823
(27) </wsman:FragmentTransfer> 2824
(28) </s:Header> 2825
(29) <s:Body> 2826

Web Services for Management (WS-Management) Specification DSP0226

68 Work in Progress - Not a DMTF Standard Version 1.2.0b

(30) <wsman:XmlFragment> 2827
(31) <BootPartition> 1 </BootPartition> 2828
(32) </wsman:XmlFragment> 2829
(33) </s:Body> 2830
(34) </s:Envelope> 2831

EXAMPLE 3: The <BootPartition> wrapper is present because the XPath value specifies this. If 2832
“BootPartition/text()” were used as the expression, the Body would contain just the value, as in the following 2833
example: 2834

(35) <s:Header> 2835
(36) ... 2836
(37) <wsman:FragmentTransfer s:mustUnderstand="true"> 2837
(38) BootPartition/text() 2838
(39) </wsman:FragmentTransfer> 2839
(40) </s:Header> 2840
(41) <s:Body> 2841
(42) <wsman:XmlFragment> 2842
(43) 1 2843
(44) </wsman:XmlFragment> 2844
(45) </s:Body> 2845

If the corresponding update occurs, the new representation matches, so no s:Body result is expected, 2846
although returning it is always legal. If a value does not match what was requested, the service needs 2847
to supply only the parts that are different than what is requested. This situation would generally not 2848
occur for single values because a failure to honor the new value would result in a 2849
wsmt:InvalidRepresentation fault. 2850

EXAMPLE 4: The following is a sample reply: 2851

(46) <s:Envelope 2852
(47) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2853
(48) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2854
(49) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2855
(50) <s:Header> 2856
(51) <wsa:To> 2857
(52) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 2858
(53) </wsa:To> 2859
(54) <wsa:Action s:mustUnderstand="true"> 2860
(55) http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse 2861
(56) </wsa:Action> 2862
(57) <wsa:MessageID s:mustUnderstand="true"> 2863
(58) urn:uuid:ee7f13b5-0091-430b-9ed8-2e12fbaa8a7e 2864
(59) </wsa:MessageID> 2865
(60) <wsa:RelatesTo> 2866
(61) urn:uuid:d9726315-bc91-2222-9ed8-c044c9658a87 2867
(62) </wsa:RelatesTo> 2868
(63) <wsman:FragmentTransfer s:mustUnderstand="true"> 2869
(64) BootPartition/text() 2870
(65) </wsman:FragmentTransfer> 2871
(66) </s:Header> 2872
(67) <s:Body> 2873
(68) <wsman:XmlFragment> 2874
(69) 1 2875
(70) </wsman:XmlFragment> 2876
(71) </s:Body> 2877
(72) </s:Envelope> 2878

 This rule intentionally left blank. R7.9-1:2879

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 69

 If the service encounters an attempt to update a read-only value using a fragment-level R7.9-2:2880

Put operation, it should return a wsa:ActionNotSupported fault with the following detail code: 2881

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ActionMismatch 2882

NOTE: The fragment-level Put operation implies replacement or update and does not insert new values into the 2883
representation object. Thus, it is not appropriate to use Put to insert a new value at the end of an array, for 2884
example. The entire array can be returned and then updated and replaced (because it is therefore an update of 2885
the entire array), but a single operation to insert a new element in the middle or at the end of an array is actually 2886
a Create operation. 2887

As stated in 7.4, if the new representation differs from the input, the new representation is to be 2888
returned in the response. With fragment-level Put, this rule applies only to the portion of the 2889
representation object being written, not the entire object. If a single value is written and accepted, but 2890
has side effects on other values in the representation, the entire object is not returned. 2891

To set a value to NULL without removing it as an element, use an attribute value of xsi:nil on the 2892
element being set to NULL to ensure that the fragment path is adjusted appropriately. 2893

EXAMPLE 5: 2894

(73) <s:Header> ... 2895
(74) <wsman:FragmentTransfer s:mustUnderstand="true"> 2896
(75) AssetLabel 2897
(76) </wsman:FragmentTransfer> 2898
(77) ... 2899
(78) </Header> 2900
(79) <s:Body> 2901
(80) <wsman:XmlFragment xmlns:xsi="www.w3.org/2001/XMLSchema-instance"> 2902
(81) <AssetLabel xsi:nil="true"/> 2903
(82) </wsman:XmlFragment> 2904
(83) </s:Body> 2905

7.10 Fragment-Level Delete 2906

Fragment-level Delete applies only if the XML schema for the targeted object supports optional 2907
elements that can be removed from the representation object, or supports arrays (repeated elements) 2908
with varying numbers of elements and the client wants to remove an element in an array. If 2909
replacement of an entire array is needed, fragment-level Put can be used. For array access, the 2910
XPath array access notation can conveniently be used. To delete a value that is legal to remove 2911
(according to the rules of the schema for the object), the wsman:FragmentTransfer expression 2912
identifies the item to be removed. 2913

EXAMPLE 1: 2914

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 2915
(2) VolumeLabel 2916
(3) </wsman:FragmentTransfer> 2917

To set a value to NULL without removing it as an element, use fragment-level Put with a value of 2918
xsi:nil. 2919

To delete an array element, use the XPath [] operators. 2920

Web Services for Management (WS-Management) Specification DSP0226

70 Work in Progress - Not a DMTF Standard Version 1.2.0b

EXAMPLE 2: The following example deletes the second <BlockedIPAddress> element in the representation. 2921
(XPath arrays are 1 based.) 2922

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 2923
(2) BlockedIPAddress[2] 2924
(3) </wsman:FragmentTransfer> 2925

The <s:Body> is empty for all Delete operations, even with fragment-level access, and all normal 2926
faults for Delete apply. 2927

 If a value cannot be deleted because of locking conditions or similar phenomena, the R7.10-1:2928

service should return a wsman:AccessDenied fault. 2929

7.11 Fragment-Level Create 2930

Fragment-level Create applies only if the XML schema for the targeted object supports optional 2931
elements that are not currently present, or supports arrays with varying numbers of elements and the 2932
client wants to insert an element in an array (a repeated element). If entire array replacement is 2933
needed, Fragment-level Put can be used. For array access, the XPath array access notation (the [] 2934
operators) can be used. 2935

NOTE: Create can be used only to add new content, not to update existing content. 2936

To insert a value that can be legally added (according to the rules of the schema for the object), the 2937
wsman:FragmentTransfer expression identifies the item to be added. 2938

EXAMPLE 1: For example, assume the following message fragment is sent to a LogicalDisk resource: 2939

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 2940
(2) VolumeLabel 2941
(3) </wsman:FragmentTransfer> 2942

EXAMPLE 2: In this case, the <Body> contains both the element and the value: 2943

(4) <s:Body> 2944
(5) <wsman:XmlFragment> 2945
(6) <VolumeLabel> MyDisk </VolumeLabel> 2946
(7) </wsman:XmlFragment> 2947
(8) </s:Body> 2948

This operation creates a <VolumeLabel> element where none existed before. 2949

EXAMPLE 3: To create the target using the value alone, apply the XPath text() operator to the path, as follows: 2950

(9) <wsman:FragmentTransfer s:mustUnderstand="true"> 2951
(10) VolumeLabel/text() 2952
(11) </wsman:FragmentTransfer> 2953

EXAMPLE 4: The body of Create contains the value to be inserted and is the same as for fragment-level Put: 2954

(12) <s:Body> 2955
(13) <wsman:XmlFragment> 2956
(14) MyDisk 2957
(15) </wsman:XmlFragment> 2958
(16) </s:Body> 2959

To create an array element in the target, the XPath [] operator may be used. To insert a new element 2960
at the end of the array, the user needs to know the number of elements in the array so that the new 2961
index can be used. 2962

EXAMPLE 5: The following message fragment is sent to an InternetServer resource: 2963

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 71

(17) <wsman:FragmentTransfer s:mustUnderstand="true"> 2964
(18) BlockedIPAddress[3] 2965
(19) </wsman:FragmentTransfer> 2966

Insertion of a new element within the array is done using the index of the desired location, and the 2967
array expands at that location to accommodate the new element. Using Put at this location overwrites 2968
the existing array element, whereas Create inserts a new element, making the array larger. 2969

The body of Create contains the value to be inserted and is the same as for fragment-level Put. 2970

EXAMPLE 6: 2971

(20) <s:Body> 2972
(21) <wsman:XmlFragment> 2973
(22) <BlockedIPAddress> 123.12.188.44 </BlockedIPAddress> 2974
(23) </wsman:XmlFragment> 2975
(24) </s:Body> 2976

This operation adds a third IP address to the <BlockedIPAddress> array (a repeated element), 2977
assuming that at least two elements are at that level already. 2978

 A service shall not use fragment-level Create to modify the value of an existing R7.11-1:2979

property. If the targeted object and the targeted property already exists, the service should return 2980
a wsman:AlreadyExists fault. 2981

 If the Create fails because the result would not conform to the schema in some way, R7.11-2:2982

the service should return a wsmt:InvalidRepresentation fault. 2983

As defined in 7.6, the CreateResponse contains the EPR of the created resource. In the case of 2984
fragment-level Create, the response additionally contains the wsman:FragmentTransfer block, 2985
including the path (line 12), in a SOAP header. 2986

EXAMPLE 7: In the following example, the ResourceCreated EPR continues to refer to the entire object, not just 2987
to the fragment. 2988

(25) <s:Envelope 2989
(26) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2990
(27) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2991
(28) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 2992
(29) xmlns:wsmt="http://schemas.xmlsoap.org/ws/2004/09/transfer"> 2993
(30) <s:Header> 2994
(31) ... 2995
(32) <wsa:Action> 2996
(33) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse 2997
(34) </wsa:Action> 2998
(35) <wsman:FragmentTransfer s:mustUnderstand="true"> 2999
(36) Path To Fragment 3000
(37) </wsman:FragmentTransfer> 3001
(38) ... 3002
(39) </s:Header> 3003
(40) <s:Body> 3004
(41) <wsmt:ResourceCreated> 3005
(42) <wsa:Address> ... </wsa:Address> 3006
(43) <wsa:ReferenceParameters> 3007
(44) <wsman:SelectorSet> 3008
(45) <wsman:Selector ...> ... </wsman:Selector> 3009
(46) </wsman:SelectorSet> 3010
(47) </wsa:ReferenceParameters> 3011
(48) </wsmt:ResourceCreated> 3012
(49) </s:Body> 3013

Web Services for Management (WS-Management) Specification DSP0226

72 Work in Progress - Not a DMTF Standard Version 1.2.0b

(50) </s:Envelope> 3014

As discussed in 7.6, to remain compatible with WSDL, only the EPR of the item is returned in the 3015
SOAP Body, in spite of other options discussed in 7.6. 3016

8 Enumeration of Datasets 3017

8.1 General 3018

This clause defines a set of operations that can be used as a basis for iteration through the members 3019
of a management-specific dataset or collection. WS-Management qualifies and extends these 3020
operations as described in this clause. 3021

There are numerous applications for which a simple single-request/single-reply metaphor is 3022
insufficient for transferring large data sets over SOAP. Applications that do not fit into this simple 3023
paradigm include streaming, traversal, query, and enumeration. 3024

This clause defines a simple SOAP-based protocol for enumeration that allows the data source to 3025
provide a session abstraction, called an enumeration context, to a consumer that represents a logical 3026
cursor through a sequence of data items. The consumer can then request XML element information 3027
items using this enumeration context over the span of one or more SOAP messages. 3028

Somewhere, state must be maintained regarding the progress of the iteration. This state may be 3029
maintained between requests by the data source being enumerated or by the data consumer. The 3030
operations defined in this clause allow the data source to decide, on a request-by-request basis, 3031
which party is responsible for maintaining this state for the next request. 3032

In its simplest form, there is a single operation, Pull, which allows a data source, in the context of a 3033
specific enumeration, to produce a sequence of XML elements in the body of a SOAP message. 3034
Each subsequent Pull operation returns the next N elements in the aggregate sequence. 3035

A data source may provide a custom mechanism for starting a new enumeration. For instance, a data 3036
source that provides access to a SQL database may support a SELECT operation that performs a 3037
database query and uses an explicit database cursor to iterate through the returned rows. In general, 3038
however, it is simpler if all data sources support a single, standard operation to start an enumeration. 3039
This specification defines such an operation, Enumerate, which data sources may implement for 3040
starting a new enumeration of a data source. The Enumerate operation is used to create new 3041
enumeration contexts for subsequent traversal/retrieval. Each Enumerate operation results in a 3042
distinct enumeration context, each with its own logical cursor/position. 3043

It should be emphasized that different enumerations of the same data source may produce different 3044
results; this may happen even for two enumeration contexts created concurrently by a single 3045
consumer using identical Enumerate requests. In general, the consumer of an enumeration should 3046
not make any assumptions about the ordering or completeness of the enumeration; the returned data 3047
items represent a selection by the data source of items it wishes to present to that consumer at that 3048
time in that order, with no guarantee that every available item is returned or that the order in which 3049
items is returned has any semantic meaning whatsoever (of course, any specific data source may 3050
provide strong guarantees, if so desired). In particular, it should be noted that the very act of 3051
enumerating the contents of a data source may modify the contents of the data source; for instance, a 3052
queue might be represented as a data source such that items that are returned in a Pull response are 3053
removed from the queue. 3054

Enumeration contexts represent a specific traversal through a sequence of XML information items. An 3055
Enumerate operation may be used to establish an enumeration context from a data source. A Pull 3056
operation is used to fetch information items from a data source according to a specific enumeration 3057
context. A Release operation is used to tell a data source that the consumer is abandoning an 3058
enumeration context before it has completed the enumeration. 3059

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 73

Enumeration contexts are represented as XML data that is opaque to the consumer. Initially, the 3060
consumer gets an enumeration context from the data source by means of an Enumerate operation. 3061
The consumer then passes that XML data back to the data source in the Pull request. Optionally, the 3062
data source may return an updated enumeration context in the Pull response; when present, this new 3063
enumeration context should replace the old one on the consumer, and it should be passed to the data 3064
source in all future responses until and unless the data source again returns an updated enumeration 3065
context. 3066

Consumers should not reuse old enumeration contexts that have been replaced by the data source. 3067
Using a replaced enumeration context in a Pull response may yield undefined results, including being 3068
ignored or generating a fault. 3069

After the last element in a sequence has been returned, or the enumeration context has expired, the 3070
enumeration context is considered invalid and the result of subsequent operations referencing that 3071
context is undefined. 3072

Callers may issue a Release operation against a valid enumeration context at any time, which causes 3073
the enumeration context to become invalid and allows the data source to free up any resources it may 3074
have allocated to the enumeration. Issuing a Release operation prior to reaching the end of the 3075
sequence of elements is explicitly allowed; however, no further operations should be issued after a 3076
Release. 3077

In addition, the data source may invalidate an enumeration context at any time, as necessary. 3078

If a resource with multiple instances provides a mechanism for enumerating or querying the set of 3079
instances, the operations defined in this clause can be used to perform the iteration. 3080

 A service may support the Enumeration operations if enumeration of any kind is R8.1-1:3081

supported. 3082

 If simple, unfiltered enumeration of resource instances is exposed through Web R8.1-2:3083

services, a conformant service shall support the Enumeration operations to expose this. The 3084
service may also support other techniques for enumerating the instances. 3085

 If filtered enumeration (queries) of resource instances is exposed through Web R8.1-3:3086

services, a conformant service should support the Enumeration operations to expose this. The 3087
service may also support other techniques for enumerating the instances. 3088

This clause indicates that enumeration is a three-part operation: 3089

1) An initial Enumerate message is issued to establish the enumeration context. 3090

2) Pull operations are used to iterate over the result set. 3091

3) When the enumeration iterator is no longer required and not yet exhausted, a Release 3092
message is issued to release the enumerator and associated resources. 3093

As with other WS-Management methods, the enumeration can make use of wsman:OptionSet. 3094

 A service may implement wsmen:Renew, wsmen:GetStatus and R8.1-4:3095

wsmen:EnumerationEnd messages; however, in constrained environments these are candidates 3096
for exclusion. If these messages are not supported, then a wsa:ActionNotSupported fault shall be 3097
returned in response to these requests. 3098

 If a service is exposing enumeration, it shall at least support the following messages: R8.1-5:3099

Enumerate, Pull, and Release, and their associated responses. 3100

Web Services for Management (WS-Management) Specification DSP0226

74 Work in Progress - Not a DMTF Standard Version 1.2.0b

If the service does not support stateful enumerators, the Release is a simple no-op, so it is trivial to 3101
implement. (It always succeeds when the operation is valid.) However, it is supported to allow for the 3102
uniform construction of clients. 3103

 The Pull and Release operations are a continuation of the original Enumerate R8.1-6:3104

operation. The service should enforce the same authentication and authorization throughout the 3105
entire sequence of operations and should fault any attempt to change credentials during the 3106
sequence. 3107

Some transports such as HTTP might drop or reestablish connections between Enumerate and 3108
subsequent Pull operations, or between Pull operations. It is expected that services will allow the 3109
enumeration to continue uninterrupted, but for practical reasons some services might require that the 3110
same connection be used. This specification establishes no requirements in this regard. However, 3111

 establishes that the user credentials do not change during the entire enumeration sequence. R8.1-63112

8.2 Enumerate 3113

All data sources shall support some operation that allows an enumeration to be started. A data 3114
source may support the Enumerate operation, or it may provide some other mechanism for starting 3115
an enumeration and receiving an enumeration context. 3116

The Enumerate operation is initiated by sending an Enumerate request message to the data source. 3117
The Enumerate request message shall be of the following form: 3118

(1) <s:Envelope …> 3119
(2) <s:Header …> 3120
(3) <wsa:Action> 3121
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 3122
(5) </wsa:Action> 3123
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 3124
(7) <wsa:To>xs:anyURI</wsa:To> 3125
(8) … 3126
(9) </s:Header> 3127
(10) <s:Body …> 3128
(11) <wsmen:Enumerate …> 3129
(12) <wsmen:EndTo>endpoint-reference</wsmen:EndTo> ? 3130
(13) <wsmen:Expires>[xs:dateTime | xs:duration]</wsmen:Expires> ? 3131
(14) <wsmen:Filter Dialect="xs:anyURI"?> xs:any </wsmen:Filter> ? 3132
(15) … 3133
(16) </wsmen:Enumerate> 3134
(17) </s:Body> 3135
(18) </s:Envelope> 3136

The following describes additional, normative constraints on the preceding outline: 3137

/s:Envelope/s:Header/wsa:Action 3138

This required element shall contain the value: 3139

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate. 3140

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3141
value. 3142

/s:Envelope/s:Body/*/wsmen:EndTo 3143

This optional element denotes where to send an EnumerationEnd message if the enumeration is 3144
terminated unexpectedly. If present, this element shall be of type wsa:EndpointReferenceType. 3145
The default is to not send this message. The endpoint referenced by this EPR shall implement a 3146
binding of the "EnumEndEndpoint" portType described in ANNEX H. 3147

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 75

/s:Envelope/s:Body/*/wsmen:Expires 3148

Requested expiration time for the enumeration. (No implied value.) The data source defines the 3149
actual expiration and is not constrained to use a time less or greater than the requested 3150
expiration. The expiration time may be a specific time or a duration from the enumeration's 3151
creation time. Both specific times and durations are interpreted based on the data source's clock. 3152

If this element does not appear, then the request is for an enumeration that will not expire. That 3153
is, the consumer is requesting the data source to create an enumeration with an indefinite 3154
lifetime. If the data source grants such an enumeration, it will terminate when the end of the 3155
enumeration is reached, or if the consumer sends a Release request, or by the data source at 3156
any time for reasons such as connection termination, resource constraints, or system shut-down. 3157

If the expiration time is either a zero duration or a specific time that occurs in the past according 3158
to the data source, then the request shall fail, and the data source may generate a 3159
wsmen:InvalidExpirationTime fault indicating that an invalid expiration time was requested. 3160

Some data sources may not have a "wall time" clock available, and so are able only to accept 3161
durations as expirations. If such a source receives an Enumerate request containing a specific 3162
time expiration, then the request shall fail; if so, the data source should generate a 3163
wsmen:UnsupportedExpirationType fault indicating that an unsupported expiration type was 3164
requested. 3165

/s:Envelope/s:Body/wsmen:Enumerate/wsmen:Filter 3166

This optional element contains a Boolean predicate in some dialect (see 3167
/s:Envelope/s:Body/*/wsmen:Filter/@Dialect) that all elements of interest must satisfy. The 3168
resultant enumeration context shall not return elements for which this predicate expression 3169
evaluates to the value false. If this element is absent, then the implied value is the expression 3170
true(), indicating that no filtering is desired. 3171

If the data source does not support filtering, the request shall fail, and the data source may 3172
generate a wsmen:FilteringNotSupported SOAP fault as follows: 3173

If the data source supports filtering but cannot honor the requested filter dialect, the request shall 3174
fail, and the data source may generate a wsmen:FilterDialectRequestedUnavailable SOAP fault 3175
as follows: 3176

If the data source supports filtering and the requested dialect but cannot process the requested 3177
filter content, the request shall fail, and the data source may generate a 3178
wsman:CannotProcessFilter SOAP fault as follows: 3179

/s:Envelope/s:Body/*/wsmen:Filter/@Dialect 3180

Implied value is "http://www.w3.org/TR/1999/REC-xpath-19991116". 3181

/s:Envelope/ s:Body/ */ wsmen:Filter/ @Dialect= "http://www.w3.org/TR/1999/REC-xpath-19991116" 3182

Value of /s:Envelope/s:Body/*/wsmen:Filter is an XPath [XPath 1.0] predicate expression 3183
(PredicateExpr); the context of the expression is: 3184

 Context Node: any XML element that could be returned as a direct child of the Items 3185
element 3186

 Context Position: 1 3187

 Context Size: 1 3188

 Variable Bindings: None 3189

 Function Libraries: Core Function Library [XPath 1.0] 3190

 Namespace Declarations: The [in-scope namespaces] property [XML Infoset] of 3191
/s:Envelope/s:Body/*/wsmen:Filter 3192

Other components of the preceding outline are not further constrained by this specification. 3193

Web Services for Management (WS-Management) Specification DSP0226

76 Work in Progress - Not a DMTF Standard Version 1.2.0b

Upon successful processing of an Enumerate request message, a data source is expected to create 3194
an enumeration context and return that context in an Enumerate response message, which shall 3195
adhere to the following form: 3196

(1) <s:Envelope …> 3197
(2) <s:Header …> 3198
(3) <wsa:Action> 3199
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse 3200
(5) </wsa:Action> 3201
(6) <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo> 3202
(7) <wsa:To>xs:anyURI</wsa:To> 3203
(8) … 3204
(9) </s:Header> 3205
(10) <s:Body …> 3206
(11) <wsmen:EnumerateResponse …> 3207
(12) <wsmen:Expires>[xs:dateTime | xs:duration]</wsmen:Expires> ? 3208
(13) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> 3209
(14) … 3210
(15) </wsmen:EnumerateResponse> 3211
(16) </s:Body> 3212
(17) </s:Envelope> 3213

The following describes additional, normative constraints on the preceding outline: 3214

/s:Envelope/s:Header/wsa:Action 3215

This required element shall contain the value: 3216

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse 3217

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3218
value. 3219

/s:Envelope/s:Body/*/wsmen:Expires 3220

The expiration time assigned by the data source. The expiration time may be either an absolute 3221
time or a duration but should be of the same type as the requested expiration (if any). 3222

If this element does not appear, then the enumeration will not expire. That is, the enumeration 3223
has an indefinite lifetime. It will terminate when the end of the enumeration is reached, if the 3224
consumer sends a Release request, or by the data source at any time for reasons such as 3225
connection termination, resource constraints, or system shut-down. 3226

/s:Envelope/s:Body/wsmen:EnumerateResponse/wsmen:EnumerationContext 3227

The required EnumerationContext element contains the XML representation of the new 3228
enumeration context. The consumer is required to pass this XML data in Pull requests for this 3229
enumeration context, until and unless a PullResponse message updates the enumeration 3230
context. 3231

8.2.1 General 3232

WS-Management qualifies the Enumerate operation as described in this clause. 3233

 A conformant service may accept a wsmen:Enumerate message with an EndTo R8.2.1-1:3234

address; however, if EnumerationEnd is not supported, a service may instead issue a 3235
wsman:UnsupportedFeature fault with the following detail code: 3236

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode 3237

 A conformant service shall accept an Enumerate message with an Expires timeout R8.2.1-2:3238

or fault with wsman:UnsupportedFeature and the following detail code: 3239

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ExpirationTime 3240

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 77

 The wsman:Filter element (see 8.3) in the Enumerate body shall be either simple R8.2.1-3:3241

text or a single complex XML element. A conformant service shall not accept mixed content of 3242
both text and elements, or multiple peer XML elements under the wsman:Filter element. 3243

Although this use of mixed content is allowed in the general case of Enumerate, it is unnecessarily 3244
complex for WS-Management implementations. 3245

A common filter dialect is XPath 1.0 (identified by the Dialect URI http://www.w3.org/TR/1999/REC-3246
xpath-19991116). Resource-constrained implementations might have difficulty exporting full XPath 3247
processing and yet still want to use a subset of XPath syntax. As long as the filter expression is a 3248
proper subset of the specified dialect, it is legal and can be described using that Dialect value. 3249

No rule mandates the use of XPath or any subset as a filtering dialect. If no Dialect is specified, the 3250
default interpretation is that the Filter value is XPath (as specified previously in this clause). 3251

 A conformant service may not support the entire syntax and processing power of R8.2.1-4:3252

the specified Filter Dialect. The only requirement is that the specified Filter is syntactically correct 3253
within the definition of the Dialect. Subsets are therefore legal. If the specified Filter exceeds the 3254
capability of the service, the service should return a wsmen:CannotProcessFilter fault with some 3255
text indicating what went wrong. 3256

Some services require filters to function because their search space is so large that simple 3257
enumeration is meaningless or impossible. 3258

 If a wsman:Filter is required, a conformant service shall fault any request without a R8.2.1-5:3259

wsman:Filter, by using a wsman:UnsupportedFeature fault with the following detail code: 3260

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired 3261

 A conformant service may block, fault (using wsman:Concurrency faults), or allow R8.2.1-6:3262

other concurrent operations on the resource for the duration of the enumeration, and may include 3263
or exclude the results of such operations as part of any enumeration still in progress. 3264

If clients execute other operations, such as Create or Delete, while an enumeration is occurring, this 3265
specification makes no restrictions on the behavior of the enumeration. The service can include or 3266
exclude the results of these operations in real-time, can produce an initial snapshot of the 3267
enumeration and execute the Pull requests from this snapshot, or can deny access to other 3268
operations while enumerations are in progress. 3269

8.2.2 Enumeration "Count" Option 3270

To give clients an estimate of the number of items in an enumeration, two optional SOAP headers are 3271
defined: one for use in the request message to return an approximate count of items in an 3272
enumeration sequence, and a corresponding header for use in the response to return this value to the 3273
client. 3274

These SOAP headers are defined for use with the Enumerate and Pull messages and their 3275
responses. The header used in Enumerate and Pull is as follows: 3276

(1) <s:Header> 3277
(2) ... 3278
(3) <wsman:RequestTotalItemsCountEstimate …/> 3279
(4) </s:Header> 3280

The header used by the service to return the value is as follows: 3281

(5) <s:Header> 3282
(6) ... 3283
(7) <wsman:TotalItemsCountEstimate> 3284

Web Services for Management (WS-Management) Specification DSP0226

78 Work in Progress - Not a DMTF Standard Version 1.2.0b

(8) xs:nonNegativeInteger 3285
(9) </wsman: TotalItemsCountEstimate> 3286
(10) </s:Header> 3287

The following definitions provide additional, normative constraints on the preceding headers: 3288

wsman:RequestTotalItemsCountEstimate 3289

when present as a SOAP header on an Enumerate or Pull message, indicates that the client is 3290
requesting that the associated response message includes an estimate of the total number of 3291
items in the enumeration sequence 3292

This SOAP header does not have any meaning defined by this specification when included with 3293
any other messages. 3294

wsman:TotalItemsCountEstimate 3295

when present as a SOAP header on an EnumerateResponse or PullResponse message, 3296
indicates the approximate number of items in the enumeration sequence 3297

This is the total number of items and not the remaining number of items in the sequence. This 3298
SOAP header does not have any meaning defined by this specification when included with any 3299
other messages. 3300

When a service understands the TotalItemsCountEstimate feature but cannot determine the 3301
number of items, the service responds with the wsman:TotalItemsCountEstimate element having 3302
an xsi:nil attribute with value ‘true’, and having no value, as follows: 3303

(1) <wsman:TotalItemsCountEstimate xsi:nil="true"/> 3304

 A conformant service may support the ability to return an estimate of the number of R8.2.2-1:3305

items in an enumeration sequence. If a service receives an Enumerate or Pull message without 3306
the wsman:RequestTotalItemsCountEstimate SOAP header, the service shall not return the 3307
wsman:TotalItemsCountEstimate SOAP header on the associated response message. 3308

 The value returned in the wsman:TotalItemsCountEstimate SOAP header is only an R8.2.2-2:3309

estimate of the number of items in the sequence. The client should not use the 3310
wsman:TotalItemsCountEstimate value for determining an end of enumeration instead of using 3311
EndOfSequence. 3312

This mechanism is intended to assist clients in determining the percentage of completion of an 3313
enumeration as it progresses. When a service sends a result count estimate after a previous estimate 3314
for the same enumeration sequence, the most recent total results count estimate is considered to be 3315
the more precise estimate. 3316

8.2.3 Optimization for Enumerations with Small Result Sets 3317

To optimize the number of round-trip messages required to enumerate the items in an enumerable 3318
resource, a client can request optimized enumeration behavior. This behavior is useful in cases 3319
where the enumeration has such a small number of items that the initial EnumerateResponse could 3320
reasonably include the entire result, without the need for a subsequent Pull to retrieve the items. This 3321
mechanism can be used even for large enumerations to get the first few results in the initial response. 3322

A client initiates an optimized enumeration by placing the wsman:OptimizeEnumeration element as a 3323
child element of the Enumerate element, and can optionally include the wsman:MaxElements 3324
element, as follows: 3325

EXAMPLE: 3326

(1) <s:Body> 3327

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 79

(2) <wsmen:Enumerate> 3328
(3) ... 3329
(4) <wsman:OptimizeEnumeration/> 3330
(5) <wsman:MaxElements>xs:positiveInteger</wsman:MaxElements> ? 3331
(6) </wsmen:Enumerate> 3332
(7) </s:Body> 3333

The following definitions provide additional, normative constraints on the preceding outline: 3334

wsmen:Enumerate/wsman:OptimizeEnumeration 3335

when present as a child of the Enumerate element, indicates that the client is requesting an 3336
optimized enumeration 3337

wsmen:Enumerate/wsman:MaxElements 3338

(optional) indicates the maximum number of items the consumer is willing to accept in the 3339
EnumerateResponse 3340

It plays the same role as wsmen:Pull/wsmen:MaxElements. When this element is absent, its 3341
implied value is 1. 3342

 A conformant service may support enumeration optimization. If a service receives R8.2.3-1:3343

the wsman:OptimizeEnumeration element in an Enumerate message and it does not support 3344
enumeration optimization, it should ignore the element and complete the enumeration request as 3345
if the element were not present. 3346

If the service ignores the element, the client continues with a subsequent Pull as if the option was not 3347
in force. The client requires no special mechanisms over what was needed for normal enumeration if 3348
the optimization request is ignored. 3349

 A conformant service that receives an Enumerate message without the R8.2.3-2:3350

wsman:OptimizeEnumeration element shall not return any enumeration items in the 3351
EnumerateResponse message and shall return a EnumerationContext initialized to return the first 3352
items when the first Pull message is received. 3353

If the service implements the optimization even if it was not requested, clients unaware of the 3354
optimization will incorrectly process the enumeration result. 3355

 A conformant service that receives an Enumerate message with the R8.2.3-3:3356

wsman:OptimizeEnumeration element shall not return more elements in the Enumerate response 3357
message than requested in the wsman:MaxElements element (or no more than1 item if the 3358
wsman:MaxElements element is not present). Implementations may return fewer items based on 3359
either the wsman:OperationTimeout SOAP header, wsman:MaxEnvelopeSize SOAP header, or 3360
implementation-specific constraints. 3361

When requested by the client, a service implementing the optimized enumeration will respond with 3362
the following additional content in an EnumerateResponse message: 3363

(1) <s:Body> 3364
(2) <wsmen:EnumerateResponse> 3365
(3) <wsmen:EnumerationContext> ... </wsmen:EnumerationContext> 3366
(4) <wsman:Items> 3367
(5) ...same as for wsmen:Items in wsmen:PullResponse 3368
(6) </wsman:Items> ? 3369
(7) <wsman:EndOfSequence/> ? 3370
(8) ... 3371
(9) </wsmen:EnumerateResponse> 3372
(10) </s:Body> 3373

Web Services for Management (WS-Management) Specification DSP0226

80 Work in Progress - Not a DMTF Standard Version 1.2.0b

The following definitions provide additional, normative constraints on the preceding outline: 3374

wsman:Items 3375

(optional) contains one or more enumeration-specific elements as would have been encoded for 3376
Items in a PullResponse 3377

The service will return no more than wsman:MaxElements elements in this list if 3378
wsman:MaxElements is specified in the request message, or one element if 3379
wsman:MaxElements was omitted. 3380

wsman:EndOfSequence 3381

(optional) indicates that no more elements are available from this enumeration and that the 3382
entire result (even if there are zero elements) is contained within the wsman:Items element 3383

wsmen:EnumerationContext 3384

required context for requesting additional items, if any, in subsequent Pull messages 3385

If the wsman:EndOfSequence is also present, the EnumerationContext cannot be used in a 3386
subsequent Pull request. The service should observe the same fault usage that would occur if 3387
the EnumerationContext were used in a Pull request after the EndOfSequence element occurred 3388
in a PullResponse. Although the EnumerationContext element must be present, no value is 3389
required; therefore, in cases where the wsman:EndOfSequence element is present, the value for 3390
EnumerationContext can be empty. 3391

EXAMPLE: 3392

(1) <s:Body> 3393
(2) <wsmen:EnumerateResponse> 3394
(3) <wsmen:EnumerationContext/> 3395
(4) <wsman:Items> 3396
(5) Items 3397
(6) </wsman:Items> 3398
(7) <wsman:EndOfSequence/> 3399
(8) ... 3400
(9) </wsmen:EnumerateResponse> 3401
(10) </s:Body> 3402

 A conformant service that supports optimized enumeration and is responding with R8.2.3-4:3403

an EnumerateResponse message shall include the wsman:Items element, the 3404
wsman:EndOfSequence element, or both in the response as an indication to the client that the 3405
optimized enumeration request was understood and honored. 3406

If neither wsman:Items nor wsman:EndOfSequence is in the EnumerateResponse message, the 3407
client can continue to use the enumeration message exchanges as defined in 8.2.1. 3408

 A conformant service that supports optimized enumeration and has not returned all R8.2.3-5:3409

items of the enumeration sequence in the EnumerateResponse message shall return an 3410
EnumerationContext element that is initialized such that a subsequent Pull message will return 3411
the set of items after those returned in the EnumerateResponse. If all items of the enumeration 3412
sequence have been returned in the EnumerateResponse message, the service should return an 3413
empty EnumerationContext element and shall return the wsman:EndOfSequence element in the 3414
response. 3415

A client that has requested optimized enumeration can determine if this request was understood and 3416
honored by the service by examining the response message. 3417

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 81

Clients concerned about the size of the initial response, irrespective of the number of items, can use 3418
the wsman:MaxEnvelopeSize mechanism described in 6.2. 3419

8.3 Filter Interpretation 3420

The Filter expression is constrained to be a Boolean predicate. To support ad hoc queries including 3421
projections, WS-Management defines a wsman:Filter element of exactly the same form as in the 3422
Enumeration filter except that the filter expression is not constrained to be a Boolean predicate. This 3423
allows the use of enumeration using existing query languages such as SQL and CQL, which combine 3424
predicate and projection information in the same syntax. The use of projections is defined by the filter 3425
dialect, not by WS-Management. 3426

(1) <wsman:Filter Dialect="xs:anyURI"?> xs:any </wsman:Filter> 3427

The Dialect attribute is optional. When not specified, it has the following implied value: 3428

http://www.w3.org/TR/1999/REC-xpath-19991116 3429

This dialect allows any full XPath expression or subset to be used. 3430

The wsman:Filter element is a child of the Enumerate element. 3431

If the filter dialect used for the Enumerate message is XPath 1.0, the context node is the same as that 3432
specified in 8.1. 3433

 If a service supports filtered enumeration using Filter, it shall also support filtering using R8.3-1:3434

wsman:Filter. This rule allows client stacks to always pick the wsman XML namespace for the 3435
Filter element. Even though a service supports wsman:Filter, it is not required to support 3436
projections. 3437

 If a service supports filtered enumeration using wsman:Filter, it should also support R8.3-2:3438

filtering using Filter. 3439

 If an Enumerate request contains both Filter and wsman:Filter, the service shall return R8.3-3:3440

a wsmen:CannotProcessFilter fault. 3441

Filters are generally intended to select entire XML document representations. However, most query 3442
languages have both filtering and compositional capabilities in that they can return subsets of the 3443
original representation, or perform complex operations on the original representation and return 3444
something entirely new. 3445

This specification places no restriction on the capabilities of the service, but services may elect to 3446
provide only simple filtering capability and no compositional capabilities. In general, filtering dialects 3447
fall into the following simple hierarchy: 3448

1) simple enumeration with no filtering 3449

2) filtered enumeration with no representation change (within the capabilities of XPath, for 3450
example) 3451

3) filtered enumeration in which a subset of each item is selected (within the capabilities of 3452
XPath, for example) 3453

4) composition of new output (XQuery), including simple projection 3454

Most services fall into the first or second category. However, if a service wants to support fragment-3455
level enumeration to complement fragment-level access (7.7), the service can implement category 3 3456
as well. Only rarely do services implement category 4. 3457

Web Services for Management (WS-Management) Specification DSP0226

82 Work in Progress - Not a DMTF Standard Version 1.2.0b

XPath 1.0 can be used simply for filtering, or it can be used to send back subsets of the 3458
representation (or even the values without XML wrappers). In cases where the result is not just 3459
filtered but also "altered," the technique in 8.6 applies. 3460

If full XPath cannot be supported, a common subset for this purpose is described in D.3 of this 3461
specification. 3462

EXAMPLE 1: Following is a typical example of the use of XPath in a filter. Assume that each item in the 3463
enumeration to be delivered has the following XML content: 3464

(1) <s:Body> 3465
(2) ... 3466
(3) <wsmen:Items> 3467
(4) <DiskInfo xmlns="..."> 3468
(5) <LogicalDisk>C:</LogicalDisk> 3469
(6) <CurrentMegabytes>12</CurrentMegabytes> 3470
(7) <BackupDrive> true </BackupDrive> 3471
(8) </DiskInfo> 3472
(9) ... 3473
(10) </wsmen:Items> 3474
(11) </s:Body> 3475

The anchor point for the XPath evaluation is at the first element of each item within the Items 3476
wrapper, and it does not reference the s:Body or Items elements. The XPath expression is evaluated 3477
as if each item in the Items block were a separate document. 3478

EXAMPLE 2: When used for simple document processing, the following four XPath expressions "select" the 3479
entire DiskInfo node: 3480

(12) / 3481
(13) /DiskInfo 3482
(14) ../DiskInfo 3483
(15) . 3484

If used as a "filter," this XPath expression does not filter out any instances and is the same as 3485
selecting all instances, or omitting the filter entirely. However, using the following syntax, the XPath 3486
expression selects the XML node only if the test expression in brackets evaluates to logical "true": 3487

(1) ../DiskInfo[LogicalDisk="C:"] 3488

In this case, the item is selected only if it refers to disk drive "C:"; otherwise the XML node is not 3489
selected. This XPath expression filters out all DiskInfo instances for other drives. 3490

EXAMPLE 3: Full XPath implementations may support more complex test expressions, as follows: 3491

(1) ../DiskInfo[CurrentMegabytes>"10" and CurrentMegabytes <"200"] 3492

This action selects only drives with free space within the range of values specified. 3493

In essence, the XML form of the event passes logically through the XPath processor to see if it would 3494
be selected. If so, it is delivered in the enumeration. If not, the item is discarded and not delivered as 3495
part of the enumeration. 3496

See the related clause (10.2.2) on filtering over subscriptions. 3497

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 83

8.4 Pull 3498

The Pull operation is initiated by sending a Pull request message to the data source. The Pull request 3499
message shall be of the following form: 3500

(1) <s:Envelope …> 3501
(2) <s:Header …> 3502
(3) <wsa:Action> 3503
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull 3504
(5) </wsa:Action> 3505
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 3506
(7) <wsa:ReplyTo>wsa:EndpointReference</wsa:ReplyTo> 3507
(8) <wsa:To>xs:anyURI</wsa:To> 3508
(9) … 3509
(10) </s:Header> 3510
(11) <s:Body …> 3511
(12) <wsmen:Pull …> 3512
(13) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> 3513
(14) <wsmen:MaxTime>xs:duration</wsmen:MaxTime> ? 3514
(15) <wsmen:MaxElements>xs:long</wsmen:MaxElements> ? 3515
(16) <wsmen:MaxCharacters>xs:long</wsmen:MaxCharacters> ? 3516
(17) … 3517
(18) </wsmen:Pull> 3518
(19) </s:Body> 3519
(20) </s:Envelope> 3520

The following describes additional, normative constraints on the preceding outline: 3521

/s:Envelope/s:Header/wsa:Action 3522

This required element shall contain the value: 3523

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull 3524

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3525
value. 3526

/s:Envelope/s:Body/wsmen:Pull/wsmen:EnumerationContext 3527

This required element contains the XML data that represents the current enumeration context. 3528

If the enumeration context is not valid, because it has been replaced in the response to another 3529
Pull request, it has completed (EndOfSequence has been returned in a Pull response), it has 3530
been Released, it has expired, or the data source has had to invalidate the context, then the 3531
data source should fail the request, and may generate a wsmen:InvalidEnumerationContext 3532
fault. 3533

The data source may not be able to determine that an enumeration context is not valid, 3534
especially if all of the state associated with the enumeration is kept in the enumeration context 3535
and refreshed on every PullResponse. 3536

/s:Envelope/s:Body/wsmen:Pull/wsmen:MaxTime 3537

This optional element (of type xs:duration) indicates the maximum amount of time the initiator is 3538
willing to allow the data source to assemble the Pull response. When this element is absent, the 3539
data source is not required to limit the amount of time it takes to assemble the Pull response. 3540

This is useful with data sources that accumulate elements over time and package them into a 3541
single Pull response. 3542

/s:Envelope/s:Body/wsmen:Pull/wsmen:MaxElements 3543

This optional element (of type xs:long) indicates the number of items (child elements of Items in 3544
the Pull response) the consumer is willing to accept. When this element is absent, its implied 3545
value is 1. Implementations shall not return more than this number of elements in the Pull 3546

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull

Web Services for Management (WS-Management) Specification DSP0226

84 Work in Progress - Not a DMTF Standard Version 1.2.0b

response message. Implementations may return fewer than this number based on either the 3547
MaxTime timeout, the MaxCharacters size limit, or implementation-specific constraints. 3548

/s:Envelope/s:Body/wsmen:Pull/wsmen:MaxCharacters 3549

This optional element (of type xs:long) indicates the maximum size of the returned elements, in 3550
Unicode characters, that the initiator is willing to accept. When this element is absent, the data 3551
source is not required to limit the number of characters in the Pull response. Implementations 3552
shall not return a Pull response message whose Items element is larger than MaxCharacters. 3553
Implementations may return a smaller message based on the MaxTime timeout, the 3554
MaxElements limit, or implementation-specific constraints. 3555

Even if a Pull request contains a MaxCharacters element, the consumer shall be prepared to 3556
receive a Pull response that contains more data characters than specified, as XML 3557
canonicalization or alternate XML serialization algorithms may change the size of the 3558
representation. 3559

It may happen that the next item the data source would return to the consumer is larger than 3560
MaxCharacters. In this case, the data source may skip the item, or may return an abbreviated 3561
representation of the item that fits inside MaxCharacters. If the data source skips the item, it may 3562
return it as part of the response to a future Pull request with a larger value of MaxCharacters, or 3563
it may omit it entirely from the enumeration. If the oversize item is the last item to be returned for 3564
this enumeration context and the data source skips it, it shall include the EndOfSequence item in 3565
the Pull response and invalidate the enumeration context; that is, it may not return zero items but 3566
not consider the enumeration completed. See the discussion of EndOfSequence later in this 3567
clause. 3568

Other components of the preceding outline are not further constrained by this specification. 3569

Upon receipt of a Pull request message, the data source may wait as long as it deems necessary (but 3570
not longer than the value of the MaxTime element, if present) to produce a message for delivery to 3571
the consumer. The data source shall recognize the MaxTime element and return the 3572
wsmen:TimedOut fault if no elements are available prior to the request message's deadline. 3573

However, this fault should not cause the enumeration context to become invalid (of course, the data 3574
source may invalidate the enumeration context for other reasons). That is, the requestor should be 3575
able to issue additional Pull requests using this enumeration context after receiving this fault. 3576

Upon successful processing of a Pull request message, a data source is expected to return a Pull 3577
response message, which shall adhere to the following form: 3578

(1) <s:Envelope …> 3579
(2) <s:Header …> 3580
(3) <wsa:Action> 3581
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse 3582
(5) </wsa:Action> 3583
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 3584
(7) <wsa:To>xs:anyURI</wsa:To> 3585
(8) … 3586
(9) </s:Header> 3587
(10) <s:Body …> 3588
(11) <wsmen:PullResponse …> 3589
(12) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> ? 3590
(13) <wsmen:Items> ? 3591
(14) <xs:any> enumeration-specific element </xs:any> + 3592
(15) </wsmen:Items> 3593
(16) <wsmen:EndOfSequence/> ? 3594
(17) … 3595
(18) </wsmen:PullResponse> 3596
(19) </s:Body> 3597
(20) </s:Envelope> 3598

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 85

The following describes additional, normative constraints on the preceding outline: 3599

/s:Envelope/s:Header/wsa:Action 3600

This required element shall contain the value: 3601

http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse 3602

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3603
value. 3604

/s:Envelope/s:Body/wsmen:PullResponse/wsmen:EnumerationContext 3605

The optional EnumerationContext element, if present, contains a new XML representation of the 3606
current enumeration context. The consumer is required to replace the prior representation with 3607
the contents of this element. 3608

/s:Envelope/s:Body/wsmen:PullResponse/wsmen:Items/any 3609

The optional Items element contains one or more enumeration-specific elements, one for each 3610
element being returned. 3611

/s:Envelope/s:Body/wsmen:PullResponse/wsmen:EndOfSequence 3612

This optional element indicates that no more elements are available from this enumeration. 3613
Additionally, once this element is returned in a Pull response message, subsequent Pull 3614
requests using that enumeration context should generate an InvalidEnumerationContext fault 3615
message; in any case, they shall not return a valid PullResponse. 3616

At least one of Items or EndOfSequence shall appear. It is possible for both to appear if items are 3617
returned and the sequence is exhausted. Similarly, EnumerationContext and EndOfSequence shall 3618
not both appear; neither may appear, or one without the other, but not both in the same 3619
PullResponse. 3620

The consumer should not issue additional Pull request messages after a Pull response containing an 3621
EndOfSequence element has been returned. Similarly, upon receipt of a Pull response containing an 3622
EndOfSequence element, the consumer should not issue a Release operation to signal that the 3623
enumeration context is no longer needed. 3624

If the consumer does issue a Pull or Release on an invalid enumeration context, the result is 3625
undefined: the data source may ignore the request or may return an InvalidEnumerationContext fault, 3626
as described previously in this clause, or may take some other action. 3627

Because Pull allows the client to specify a wide range of batching and timing parameters, it is often 3628
advisable for the client to know the valid ranges ahead of time. This information can be exported from 3629
the service in the form of metadata, which is beyond the scope of this specification. No message-3630
based negotiation is available for discovering the valid ranges of the parameters. 3631

Because wsman:MaxEnvelopeSize can be requested for any response in WS-Management, it is used 3632
in the Pull message instead of MaxCharacters, which is generally redundant and preferably is 3633
omitted. However, if wsman:MaxEnvelopeSize is present, it has the following characteristics: 3634

 If a service is exposing enumeration operations and supports Pull with the R8.4-1:3635

MaxCharacters element, the service should implement MaxCharacters as a general guideline or 3636
hint, but may ignore it if wsman:MaxEnvelopeSize is present, because it takes precedence. The 3637
service should not fault in the case of a conflict but should observe the wsman:MaxEnvelopeSize 3638
value. 3639

 If a service is exposing enumeration operations and supports Pull with the R8.4-2:3640

MaxCharacters element, and a single response element would cause the limit to be exceeded, 3641
the service may return the single element in violation of the hint. However, the service shall not 3642
violate wsman:MaxEnvelopeSize in any case. 3643

http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse

Web Services for Management (WS-Management) Specification DSP0226

86 Work in Progress - Not a DMTF Standard Version 1.2.0b

A service can send a PullResponse with fewer elements to ensure that the wsman:MaxEnvelopeSize 3644
is not exceeded. However, if a single item would cause this to be exceeded, then the rules from 6.2 3645
apply. 3646

In general, MaxCharacters is a hint, and wsman:MaxEnvelopeSize is a strict rule. 3647

 If any fault occurs during a Pull, a compliant service should allow the client to retry Pull R8.4-3:3648

with other parameters, such as a larger limit or with no limit, and attempt to retrieve the items. 3649
The service should not cancel the enumeration as a whole, but retain enough context to be able 3650
to retry if the client so wishes. However, the service may cancel the enumeration outright if an 3651
error occurs with an InvalidEnumerationContext fault. 3652

If a fault occurs with a Pull request, the service generally does not need to cancel the entire 3653
enumeration, but it can simply freeze the cursor and allow the client to try again. 3654

The EnumerationContext from only the latest response is considered to be valid. Although the service 3655
can return the same EnumerationContext values with each Pull, it is not required to do so and can in 3656
fact change the EnumerationContext unpredictably. 3657

 A conformant service may ignore MaxTime if wsman:OperationTimeout is also R8.4-4:3658

specified, as wsman:OperationTimeout takes precedence. These elements have precisely the 3659
same meaning and may be used interchangeably. If both are used, the service should observe 3660
only the wsman:OperationTimeout element. 3661

Clients can use wsman:OperationTimeout and wsman:MaxEnvelopeSize rather than MaxTime and 3662
MaxCharacters to allow for uniform message construction. 3663

Any fault issued for Pull applies to the Pull message itself, not the underlying enumeration that is in 3664
progress. The most recent EnumerationContext is still considered valid, and if the service allows a 3665
retry of the most recent Pull message, the client can continue. However, the service can terminate 3666

early upon encountering any kind of problem (as specified in). R8.4-73667

 This rule intentionally left blank. R8.4-5:3668

If no content is available, the enumerator is still considered active and the Pull message can be 3669
retried. 3670

 If a service cannot populate the PullResponse with any items before the timeout, it R8.4-6:3671

should return a wsman:TimedOut fault to indicate that true timeout conditions occurred and that 3672
the client is not likely to succeed by simply issuing another Pull message. If the service is only 3673
waiting for results at the point of the timeout, it should return a response with no items and an 3674
updated EnumerationContext, which may have changed, even though no items were returned, as 3675
follows: 3676
(1) <s:Body> 3677
(2) <wsmen:PullResponse> 3678
(3) <wsmen:EnumerationContext> ...possibly updated... 3679

</wsmen:EnumerationContext> 3680
(4) <wsmen:Items/> 3681
(5) </wsmen:PullResponse> 3682
(6) </s:Body> 3683

An empty Items block is essentially a directive from the service to try again. If the service faults with a 3684
wsman:TimedOut fault, it implies that a retry is not likely to succeed. Typically, the service knows 3685
which one to return based on its internal state. For example, on the very first Pull message, if the 3686
service is waiting for another component, a wsman:TimedOut fault could be likely. If the enumeration 3687
is continuing with no problem and after 50 requests a particular Pull message times out, the service 3688
can simply send back zero items in the expectation that the client can continue with another Pull 3689
message. 3690

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 87

 The service may terminate the entire enumeration early at any time, in which case an R8.4-7:3691

InvalidEnumerationContext fault is returned. No further operations are possible, including 3692
Release. In specific cases, such as internal errors or responses that are too large, other faults 3693
may also be returned. In all such cases, the service should invalidate the enumeration context as 3694
well. 3695

 If the EndOfSequence marker occurs in the PullResponse message, the R8.4-8:3696

EnumerationContext element shall be omitted, as the enumeration has completed. The client 3697
cannot subsequently issue a Release message. 3698

Normally, the end of an enumeration in all cases is reported by the EndOfSequence element being 3699
present in the PullResponse content, not through faults. If the client attempts to enumerate past the 3700
end of an enumeration, an InvalidEnumerationContext fault is returned. The client need not issue a 3701
Release message if the EndOfSequence actually occurs because the enumeration is then completed 3702
and the enumeration context is invalid. 3703

 If no MaxElements element is specified, the batch size is 1. R8.4-9:3704

 If the value of MaxElements is larger than the service supports, the service may ignore R8.4-10:3705

the value and use any default maximum of its own. 3706

The service can export its maximum MaxElements value in metadata, but the format and location of 3707
such metadata is beyond the scope of this specification. 3708

 The EnumerationContext element shall be present in all Pull requests, even if the R8.4-11:3709

service uses a constant value for the lifetime of the enumeration sequence. 3710

8.5 Release 3711

The Release operation is initiated by sending a Release request message to the data source. The 3712
Release request message shall be of the following form: 3713

(1) <s:Envelope …> 3714
(2) <s:Header …> 3715
(3) <wsa:Action> 3716
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release 3717
(5) </wsa:Action> 3718
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 3719
(7) <wsa:ReplyTo>wsa:EndpointReference</wsa:ReplyTo> 3720
(8) <wsa:To>xs:anyURI</wsa:To> 3721
(9) … 3722
(10) </s:Header> 3723
(11) <s:Body …> 3724
(12) <wsmen:Release …> 3725
(13) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> 3726
(14) … 3727
(15) </wsmen:Release> 3728
(16) </s:Body> 3729
(17) </s:Envelope> 3730

The following describes additional, normative constraints on the preceding outline: 3731

/s:Envelope/s:Header/wsa:Action 3732

This required element shall contain the value: 3733

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release 3734

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release

Web Services for Management (WS-Management) Specification DSP0226

88 Work in Progress - Not a DMTF Standard Version 1.2.0b

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3735
value. 3736

/s:Envelope/s:Body/wsmen:Release/wsmen:EnumerationContext 3737

This required element contains the XML data that represents the enumeration context being 3738
abandoned. 3739

Other components of the preceding outline are not further constrained by this specification. 3740

Upon successful processing of a Release request message, a data source is expected to return a 3741
Release response message, which shall adhere to the following form: 3742

(1) <s:Envelope …> 3743
(2) <s:Header …> 3744
(3) <wsa:Action> 3745
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse 3746
(5) </wsa:Action> 3747
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 3748
(7) <wsa:To>xs:anyURI</wsa:To> 3749
(8) … 3750
(9) </s:Header> 3751
(10) <s:Body /> 3752
(11) </s:Envelope> 3753

The following describes additional, normative constraints on the preceding outline: 3754

/s:Envelope/s:Header/wsa:Action 3755

This required element shall contain the value: 3756

http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse 3757

If a SOAP Action URI is also present in the underlying transport, its value shall convey the same 3758
value. 3759

Release is used only to perform an early cancellation of the enumeration. In cases in which it is not 3760
actually needed, the implementation can expose a dummy implementation that always succeeds. 3761
This promotes uniform client-side messaging. 3762

 The service shall recognize and process the Release message if the enumeration is R8.5-1:3763

terminated early. If an EndOfSequence marker occurs in a PullResponse message, the 3764
enumerator is already completed and a Release message cannot be issued because no up-to-3765
date EnumerationContext exists. 3766

 The client may fail to deliver the Release message in a timely fashion or may never R8.5-2:3767

send it. A conformant service may terminate the enumeration after a suitable idle time has 3768
expired, and any attempt to reuse the enumeration context shall result in an 3769
InvalidEnumerationContext fault. 3770

 This rule intentionally left blank. R8.5-3:3771

 The service may accept a Release message asynchronously to any Pull requests R8.5-4:3772

already in progress and cancel the enumeration. The service may refuse such an asynchronous 3773
request and fault it with a wsman:UnsupportedFeature fault with the following detail code: 3774

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AsynchronousRequest 3775

The service may also queue or block the request and serialize it so that it is processed after the Pull 3776
message. 3777

http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 89

In most cases, it is desirable to be able to asynchronously cancel an outstanding Pull message. This 3778
capability requires the service to be able to receive the Release message asynchronously while still 3779
processing a pending Pull message. Further, it requires that the EnumerationContext element contain 3780
information that is constant between Pull operations. 3781

NOTE: If the value of EnumerationContext is a simple increasing integer, Release always uses a previous value, 3782
so the service may consider it to be invalid. If the EnumerationContext element contains a value that is constant 3783
across Pull requests (as well as any other information that the service might need), the service can more easily 3784
implement the cancellation. 3785

8.6 Ad-Hoc Queries and Fragment-Level Enumerations 3786

As discussed in 7.7, it is desirable that clients be able to access subsets of a representation. This is 3787
especially important in the area of query processing, where users routinely want to execute XPath or 3788
XQuery operations over the representation to receive ad-hoc results. 3789

Because SOAP messages need to conform to known schemas, and ad-hoc queries return results 3790
that are dynamically generated and might conform to no schema, the wsman:XmlFragment wrapper 3791
from 7.7 is used to wrap the responses. 3792

 The service may support ad-hoc compositional queries, projections, or enumerations of R8.6-1:3793

fragments of the representation objects by supplying a suitable dialect in the wsman:Filter. The 3794
resulting set of Items in the PullResponse element (or EnumerateResponse element if 3795
OptimizedEnumeration is used) should be wrapped with wsman:XmlFragment wrappers as 3796
follows: 3797

(1) <s:Body> 3798
(2) <wsmen:PullResponse> 3799
(3) <wsmen:EnumerationContext> ..possibly updated.. 3800

</wsmen:EnumerationContext> 3801
(4) <wsmen:Items> 3802
(5) <wsman:XmlFragment> 3803
(6) XML content 3804
(7) </wsman:XmlFragment> 3805
(8) <wsman:XmlFragment> 3806
(9) XML content 3807
(10) </wsman:XmlFragment> 3808
(11) ... 3809
(12) </wsmen:Items> 3810
(13) </wsmen:PullResponse> 3811
(14) </s:Body> 3812

The schema for wsman:XmlFragment contains a directive to suppress schema validation, allowing a 3813
validating parser to accept ad-hoc content produced by the query processor acting behind the 3814
enumeration. 3815

XPath 1.0 and XQuery 1.0 already support returning subsets or compositions of representations, so 3816
they are suitable for use in this regard. 3817

 If the service does not support fragment-level enumeration, it should return a R8.6-2:3818

wsmen:FilterDialectRequestedUnavailable fault, the same as for any other unsupported dialect. 3819

The XPath expression used for filtering is still as described in the Enumeration clauses (see 8.2, 3820
8.2.2, 8.2.3). The wsman:XmlFragment wrappers are applied after the XPath is evaluated to prevent 3821
schema violations if the XPath selects node sets that are fragments and not legal according to the 3822
original schema. 3823

Web Services for Management (WS-Management) Specification DSP0226

90 Work in Progress - Not a DMTF Standard Version 1.2.0b

8.7 Enumeration of EPRs 3824

Typically, inferring the EPR of an enumerated object simply by inspection is not possible. In many 3825
cases, it is desirable to enumerate the EPRs of objects rather than the objects themselves. Such 3826
EPRs can be usable in subsequent Get or Delete requests, for example. Similarly, it is often desirable 3827
to enumerate both the objects and the associated EPRs. 3828

The default behavior for Enumerate is as defined in 8.1. However, WS-Management provides an 3829
additional extension for controlling the output of the enumeration. 3830

 A service may optionally support the wsman:EnumerationMode modifier element with a R8.7-1:3831

value of EnumerateEPR, which returns only the EPRs of the objects as the result of the 3832
enumeration. 3833

EXAMPLE 1: 3834

(1) <s:Envelope ...> 3835
(2) <s:Header> 3836
(3) ... 3837
(4) <wsa:Action> 3838
(5) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 3839
(6) </wsa:Action> 3840
(7) ... 3841
(8) </s:Header> 3842
(9) <s:Body> 3843
(10) <wsmen:Enumerate> 3844
(11) <wsman:Filter Dialect="..."> filter </wsman:Filter> 3845
(12) <wsman:EnumerationMode> EnumerateEPR </wsman:EnumerationMode> 3846
(13) ... 3847
(14) </wsmen:Enumerate> 3848
(15) </s:Body> 3849
(16) </s:Envelope> 3850

EXAMPLE 2: The hypothetical response would appear as in the following example: 3851

(17) <s:Body> 3852
(18) <wsmen:PullResponse> 3853
(19) <wsmen:Items> 3854
(20) <wsa:EndpointReference> ... </wsa:EndpointReference> 3855
(21) <wsa:EndpointReference> ... </wsa:EndpointReference> 3856
(22) <wsa:EndpointReference> ... </wsa:EndpointReference> 3857
(23) ... 3858
(24) </wsmen:Items> 3859
(25) </wsmen:PullResponse> 3860
(26) </s:Body> 3861

The filter, if any, is still applied to the enumeration, but the response contains only the EPRs of the 3862
items that would have been returned. These EPRs are intended for use in subsequent Get 3863
operations. 3864

 A service may optionally support the wsman:EnumerationMode modifier with the value R8.7-2:3865

of EnumerateObjectAndEPR. If present, the enumerated objects are wrapped in a wsman:Item 3866
element that juxtaposes two XML representations: the payload representation followed by the 3867
associated wsa:EndpointReference. 3868

EXAMPLE 3: The wsman:EnumerationMode example appears as follows: 3869

(1) <s:Header> 3870
(2) ... 3871
(3) <wsa:Action> 3872

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 91

(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 3873
(5) </wsa:Action> 3874
(6) </s:Header> 3875
(7) <s:Body> 3876
(8) <wsmen:Enumerate> 3877
(9) <wsman:Filter Dialect="..."> filter </wsman:Filter> 3878
(10) <wsman:EnumerationMode> EnumerateObjectAndEPR 3879

</wsman:EnumerationMode> 3880
(11) ... 3881
(12) </wsmen:Enumerate> 3882
(13) </s:Body> 3883

EXAMPLE 4: The response appears as follows: 3884

(1) <s:Body> 3885
(2) <wsmen:PullResponse> 3886
(3) <wsmen:Items> 3887
(4) <wsman:Item> 3888
(5) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object --> 3889
(6) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR --> 3890
(7) </wsman:Item> 3891
(8) <wsman:Item> 3892
(9) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object --> 3893
(10) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR --> 3894
(11) </wsman:Item> 3895
(12) ... 3896
(13) </wsmen:Items> 3897
(14) </wsmen:PullResponse> 3898
(15) </s:Body> 3899

In the preceding example, each item is wrapped in a wsman:Item wrapper (line 8), which itself contains the 3900
representation object (line 9) followed by its EPR (line 10). As many wsman:Item objects may be present as is 3901
consistent with other encoding limitations. 3902

 If a service does not support the wsman:EnumerationMode modifier, it shall return a R8.7-3:3903

fault of wsman:UnsupportedFeature with the following detail code: 3904

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EnumerationMode 3905

8.8 Renew 3906

To renew an enumeration, the consumer sends a request of the following form to the data source: 3907

(1) <s:Envelope …> 3908
(2) <s:Header …> 3909
(3) <wsa:Action> 3910
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew 3911
(5) </wsa:Action> 3912
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 3913
(7) <wsa:FaultTo>endpoint-reference</wsa:FaultTo> ? 3914
(8) <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo> 3915
(9) <wsa:To>xs:anyURI</wsa:To> 3916
(10) … 3917
(11) </s:Header> 3918
(12) <s:Body …> 3919
(13) <wsmen:Renew …> 3920
(14) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> 3921
(15) <wsmen:Expires>[xs:dateTime | xs:duration]</wsmen:Expires> ? 3922
(16) … 3923
(17) </wsmen:Renew> 3924

Web Services for Management (WS-Management) Specification DSP0226

92 Work in Progress - Not a DMTF Standard Version 1.2.0b

(18) </s:Body> 3925
(19) </s:Envelope> 3926

Components of the preceding outline are additionally constrained as for a request to create an 3927
enumeration with the following addition(s): 3928

/s:Envelope/s:Body/*/wsmen:EnumerationContext 3929

This required element contains the XML data that represents the current enumeration context. 3930

If the enumeration context is not valid, either because it has been replaced in the response to 3931
another Pull request, or because it has completed (EndOfSequence has been returned in a Pull 3932
response), or because it has been Released, or because it has expired, or because the data 3933
source has had to invalidate the context, then the data source should fail the request, and may 3934
generate a wsmen:InvalidEnumerationContext fault. 3935

The data source may not be able to determine that an enumeration context is not valid, 3936
especially if all of the state associated with the enumeration is kept in the enumeration context 3937
and refreshed on every PullResponse. 3938

Other components of the preceding outline are not further constrained by this specification. 3939

If the data source accepts a request to renew an enumeration, it shall reply with a response of the 3940
following form: 3941

(1) <s:Envelope …> 3942
(2) <s:Header …> 3943
(3) <wsa:Action> 3944
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewResponse 3945
(5) </wsa:Action> 3946
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 3947
(7) <wsa:To>xs:anyURI</wsa:To> 3948
(8) … 3949
(9) </s:Header> 3950
(10) <s:Body …> 3951
(11) <wsmen:RenewResponse …> 3952
(12) <wsmen:Expires>[xs:dateTime | xs:duration]</wsmen:Expires> ? 3953
(13) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> ? 3954
(14) … 3955
(15) </wsmen:RenewResponse> 3956
(16) </s:Body> 3957
(17) </s:Envelope> 3958

Components of the preceding outline listed are constrained as for a response to an Enumerate 3959
request with the following addition: 3960

/s:Envelope/s:Body/wsmen:RenewResponse/wsmen:Expires 3961

If the requested expiration is a duration, then the implied start of that duration is the time when 3962
the data source starts processing the Renew request. 3963

/s:Envelope/s:Body/wsmen:RenewResponse/wsmen:EnumerationContext 3964

This element is optional in this response. 3965

If the data source chooses not to renew this enumeration, the request shall fail, and the data 3966
source should generate a wsmen:UnableToRenew fault indicating that the renewal was not 3967
accepted. 3968

Other components of the preceding outline are not further constrained by this specification. 3969

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 93

8.9 GetStatus 3970

To get the status of an enumeration, the subscriber sends a request of the following form to the data 3971
source: 3972

(1) <s:Envelope …> 3973
(2) <s:Header …> 3974
(3) <wsa:Action> 3975
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus 3976
(5) </wsa:Action> 3977
(6) <wsa:MessageID>xs:anyURI</wsa:MessageID> 3978
(7) <wsa:FaultTo>endpoint-reference</wsa:FaultTo> ? 3979
(8) <wsa:ReplyTo>endpoint-reference</wsa:ReplyTo> 3980
(9) <wsa:To>xs:anyURI</wsa:To> 3981
(10) … 3982
(11) </s:Header> 3983
(12) <s:Body …> 3984
(13) <wsmen:GetStatus …> 3985
(14) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> ? 3986
(15) … 3987
(16) </wsmen:GetStatus> 3988
(17) </s:Body> 3989
(18) </s:Envelope> 3990

Components of the preceding outline are additionally constrained as for a request to renew an 3991
enumeration. Other components of the preceding outline are not further constrained by this 3992
specification. 3993

If the enumeration is valid and has not expired, the data source shall reply with a response of the 3994
following form: 3995

(1) <s:Envelope …> 3996
(2) <s:Header …> 3997
(3) <wsa:Action> 3998
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusResponse 3999
(5) </wsa:Action> 4000
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 4001
(7) <wsa:To>xs:anyURI</wsa:To> 4002
(8) … 4003
(9) </s:Header> 4004
(10) <s:Body …> 4005
(11) <wsmen:GetStatusResponse …> 4006
(12) <wsmen:Expires>[xs:dateTime | xs:duration]</wsmen:Expires> ? 4007
(13) … 4008
(14) </wsmen:GetStatusResponse> 4009
(15) </s:Body> 4010
(16) </s:Envelope> 4011

Components of the preceding outline are constrained as for a response to a Renew request. Other 4012
components of the preceding outline are not further constrained by this specification. 4013

8.10 EnumerationEnd 4014

If the data source terminates an enumeration unexpectedly, the data source should send an 4015
EnumerationEnd SOAP message to the endpoint reference indicated when the enumeration was 4016
created. The message shall be of the following form: 4017

(1) <s:Envelope …> 4018
(2) <s:Header …> 4019
(3) <wsa:Action> 4020
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd 4021

Web Services for Management (WS-Management) Specification DSP0226

94 Work in Progress - Not a DMTF Standard Version 1.2.0b

(5) </wsa:Action> 4022
(6) <wsa:To>xs:anyURI</wsa:To> 4023
(7) … 4024
(8) </s:Header> 4025
(9) <s:Body …> 4026
(10) <wsmen:EnumerationEnd …> 4027
(11) <wsmen:EnumerationContext>…</wsmen:EnumerationContext> 4028
(12) <wsmen:Code> 4029
(13) [4030
(14) http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceShuttingDown 4031
(15) | http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceCancelling 4032
(16)] 4033
(17) </wsmen:Code> 4034
(18) <wsmen:Reason xml:lang="language identifier" > 4035
(19) xs:string 4036
(20) </wsmen:Reason> ? 4037
(21) … 4038
(22) </wsmen:EnumerationEnd> 4039
(23) </s:Body> 4040
(24) </s:Envelope> 4041

The following describes additional, normative constraints on the preceding outline: 4042

/s:Envelope/s:Body/wsmen:Release/wsmen:EnumerationContext 4043

This required element contains the XML data that represents the enumeration context being 4044
terminated. It is recommended that consumers DO NOT attempt to compare this element 4045
against any collection of wsmen:EnumerationContext elements for purposes of correlation, 4046
because that requires the ability to compare arbitrary XML elements. If consumers wish to 4047
correlate this message against their outstanding contexts, it is recommend that they use the 4048
reference parameters of the /wsmen:Enumerate/wsmen:EndTo EPR. 4049

/s:Envelope/s:Body/wsmen:EnumerationEnd/wsmen:Code = 4050
"http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceShuttingDown" 4051

This value shall be used if the data source terminated the enumeration because the source is 4052
being shut down in a controlled manner; that is, if the data source is being shut down but has the 4053
opportunity to send an EnumerationEnd message before it exits. 4054

/s:Envelope/s:Body/wsmen:EnumerationEnd/wsmen:Code = 4055
"http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceCancelling" 4056

This value shall be used if the data source terminated the enumeration for some other reason 4057
before it expired. 4058

/s:Envelope/s:Body/wsmen:EnumerationEnd/wsmen:Reason 4059

This optional element contains text, in the language specified by the @xml:lang attribute, 4060
describing the reason for the unexpected enumeration termination. 4061

Other components of the preceding outline are not further constrained by this specification. 4062

9 Custom Actions (Methods) 4063

Custom actions, or "methods," are ordinary SOAP messages with unique Actions. An implementation 4064
can support resource-specific methods in any form, subject to the addressing model and restrictions 4065
described in clause 5 of this specification. 4066

 A conformant service may expose any custom actions or methods. R9-1:4067

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 95

 If custom methods are exported, Addressing rules, as described elsewhere in this R9-2:4068

specification, shall be observed, and each custom method shall have a unique wsa:Action. 4069

 If a request does not contain the correct parameters for the custom action, the service R9-3:4070

may return a wsman:InvalidParameter fault. Fault details for incorrect type and incorrect name 4071
may also be included. 4072

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch (incorrect type) 4073

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName (incorrect name) 4074

As defined by Addressing, the Action URI is used to describe the semantics of the operation and the 4075
wsa:To element describes the destination of the message. A custom method thus has a dedicated 4076
Addressing Action URI. 4077

Because options are a parameterization technique for message types that are not user-extensible, 4078
such as the resource access operations, they are not appropriate for use as a custom method or 4079
combined with a custom method. Custom operations defined in a WSDL document define any 4080
required parameters and thus expose naming and type checking in a stringent way. Mixing 4081
wsman:OptionSet with a strongly typed WSDL operation is likely to lead to confusion. 4082

10 Notifications (Eventing) 4083

10.1 General 4084

Management infrastructures often want to receive messages when events occur in remote 4085
management services and applications. A mechanism for registering interest is needed because the 4086
set of Web services interested in receiving such messages is often unknown in advance or changes 4087
over time. This specification defines a set of operations for one management Web service (called a 4088
"subscriber") to register interest (called a "subscription") with another management Web service 4089
(called an "event source") in receiving messages about events (called "notifications" or "event 4090
messages"). The subscriber may manage the subscription by interacting with a Web service (called 4091
the "subscription manager") designated by the event source. 4092

To improve robustness, a subscription may be leased by an event source to a subscriber, and the 4093
subscription expires over time. The subscription manager provides the ability for the subscriber to 4094
renew or cancel the subscription before it expires. 4095

There are many mechanisms by which event sources may deliver events to event sinks. This 4096
specification provides an extensible way for subscribers to identify the delivery mechanism they 4097
prefer. While asynchronous, pushed delivery is defined here; the intent is that there should be no 4098
limitation or restriction on the delivery mechanisms capable of being supported by this specification. 4099

To create, renew, and delete subscriptions, subscribers send request messages to event sources and 4100
subscription managers. 4101

When an event source accepts a request to create a subscription, it typically does so for a given 4102
amount of time, although an event source may accept an indefinite subscription with no time-based 4103
expiration. If the subscription manager accepts a renewal request, it updates that amount of time. 4104
During that time, notifications are delivered by the event source to the requested event sink. An event 4105
source may support filtering to limit notifications that are delivered to the event sink; if it does, and a 4106
subscribe request contains a filter, the event source sends only notifications that match the requested 4107
filter. The event source sends notifications until one of the following happens: the subscription 4108
manager accepts an unsubscribe request for the subscription, the subscription expires without being 4109
renewed, or the event source cancels the subscription prematurely. In this last case, the event source 4110
makes a best effort to indicate why the subscription ended. 4111

Web Services for Management (WS-Management) Specification DSP0226

96 Work in Progress - Not a DMTF Standard Version 1.2.0b

In the absence of reliable messaging at the application layer (for example, [WS-ReliableMessaging]), 4112
messages defined herein are delivered using the quality of service of the underlying transport(s) and 4113
on a best-effort basis at the application layer. 4114

If a managed entity emits events, it can publish those events using this publish-and-subscribe 4115
mechanism and paradigms. 4116

 If a resource can emit events and allows clients to subscribe to and receive notification R10.1-1:4117

messages, it shall do so by implementing the operations as specified in this clause. 4118

 If the eventing mechanism as described in this clause is supported, the R10.1-2:4119

wsme:Subscribe, wsme:Renew, and wsme:Unsubscribe messages shall be supported. The 4120
wsme:SubscriptionEnd message is optional. The wsme:GetStatus message in a constrained 4121
environment is a candidate for exclusion. If this message is not supported, then a 4122
wsa:ActionNotSupported fault shall be returned in response to this request. 4123

10.2 Subscribe 4124

In some scenarios the event source itself manages the subscriptions it has created. In other 4125
scenarios, for example a geographically distributed publish-and-subscribe system, it may be useful to 4126
delegate the management of a subscription to another Web service. To support this flexibility, the 4127
response to a subscription request to an event source includes the EPR of a service that the 4128
subscriber may interact with to manage this subscription. This EPR should be the target for future 4129
requests to renew or cancel the subscription. It may address the same Web service (Address and 4130
ReferenceParameters) as the event source itself, or it may address some other Web service to which 4131
the event source has delegated management of this subscription; however, the full subscription 4132
manager EPR (Address and ReferenceParameters) must be unique for each subscription. 4133

We use the term "subscription manager" in this specification to refer to the Web service that manages 4134
the subscription, whether it is the event source itself or some separate Web service. 4135

To create a subscription, a subscriber sends a request message of the following form to an event 4136
source: 4137

(1) <s:Envelope …> 4138
(2) <s:Header …> 4139
(3) <wsa:Action> 4140
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe 4141
(5) </wsa:Action> 4142
(6) … 4143
(7) </s:Header> 4144
(8) <s:Body …> 4145
(9) <wsme:Subscribe …> 4146
(10) <wsme:EndTo>endpoint-reference</wsme:EndTo> ? 4147
(11) <wsme:Delivery Mode="xs:anyURI"? >xs:any</wsme:Delivery> 4148
(12) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> ? 4149
(13) <wsme:Filter Dialect="xs:anyURI"? > xs:any </wsme:Filter> ? 4150
(14) … 4151
(15) </wsme:Subscribe> 4152
(16) </s:Body> 4153
(17) </s:Envelope> 4154

The following describes additional, normative constraints on the preceding outline: 4155

/s:Envelope/s:Header/wsa:Action 4156

If a SOAP Action URI is used in the binding for SOAP, the value indicated herein shall be used 4157
for that URI. 4158

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 97

/s:Envelope/s:Body/*/wsme:EndTo 4159

Where to send a SubscriptionEnd message if the subscription is terminated unexpectedly. If 4160
present, this element shall be of type wsa:EndpointReferenceType. The default is not to send 4161
this message. The endpoint referenced by this EPR shall implement a binding of the 4162
"EndToEndpoint" portType described in ANNEX I. 4163

/s:Envelope/s:Body/*/wsme:Delivery 4164

A delivery destination for notification messages, using some delivery mode. 4165

/s:Envelope/s:Body/*/wsme:Delivery/@Mode 4166

The delivery mode to be used for notification messages sent in relation to this subscription. 4167
Implied value is "http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push", which 4168
indicates that Push Mode delivery should be used. 4169

If the event source does not support the requested delivery mode, the request shall fail, and the 4170
event source may generate a wsme:DeliveryModeRequestedUnavailable fault indicating that the 4171
requested delivery mode is not supported. 4172

/s:Envelope/s:Body/*/wsme:Delivery/@Mode="http://schemas.xmlsoap.org/ws/2004/08/eventing/Deliv4173
eryModes/Push" 4174

The value of /s:Envelope/s:Body/*/wsme:Delivery is a single element, NotifyTo, that contains the 4175
endpoint reference to which notification messages should be sent. 4176

/s:Envelope/s:Body/*/wsme:Expires 4177

Requested expiration time for the subscription. (No implied value.) The event source defines the 4178
actual expiration and is not constrained to use a time less or greater than the requested 4179
expiration. The expiration time may be a specific time or a duration from the subscription's 4180
creation time. Both specific times and durations are interpreted based on the event source's 4181
clock. 4182

If this element does not appear, then the request is for a subscription that will not expire. That is, 4183
the subscriber is requesting the event source to create a subscription with an indefinite lifetime. If 4184
the event source grants such a subscription, it may be terminated by the subscriber using an 4185
Unsubscribe request, or it may be terminated by the event source at any time for reasons such 4186
as connection termination, resource constraints, or system shut-down. 4187

If the expiration time is either a zero duration or a specific time that occurs in the past according 4188
to the event source, then the request shall fail, and the event source may generate a 4189
InvalidExpirationTime fault indicating that an invalid expiration time was requested. 4190

Some event sources may not have a "wall time" clock available, and so are only able to accept 4191
durations as expirations. If such a source receives a Subscribe request containing a specific time 4192
expiration, then the request may fail; if so, the event source may generate an 4193
UnsupportedExpirationType fault indicating that an unsupported expiration type was requested. 4194

/s:Envelope/s:Body/*/wsme:Filter 4195

A Boolean expression in some dialect, either as a string or as an XML fragment. If the 4196
expression evaluates to false for a notification, the notification shall not be sent to the event sink. 4197
Implied value is an expression that always returns true. If the event source does not support 4198
filtering, then a request that specifies a filter shall fail, and the event source may generate a 4199
wsme:FilteringNotSupported fault indicating that filtering is not supported. 4200

Web Services for Management (WS-Management) Specification DSP0226

98 Work in Progress - Not a DMTF Standard Version 1.2.0b

If the event source supports filtering but cannot honor the requested filtering, the request shall 4201
fail, and the event source may generate a wsme:FilteringRequestedUnavailable fault indicating 4202
that the requested filter dialect is not supported. 4203

/s:Envelope/s:Body/*/wsme:Filter/@Dialect 4204

Implied value is "http://www.w3.org/TR/1999/REC-xpath-19991116". 4205

While an XPath predicate expression provides great flexibility and power, alternate filter dialects 4206
may be defined. For instance, a simpler, less powerful dialect might be defined for resource-4207
constrained implementations, or a new dialect might be defined to support filtering based on data 4208
not included in the notification message itself. If desired, a filter dialect could allow the definition 4209
of a composite filter that contained multiple filters from other dialects. 4210

/s:Envelope/s:Body/*/wsme:Filter/@Dialect=" http://www.w3.org/TR/1999/REC-xpath-19991116" 4211

Value of /s:Envelope/s:Body/*/wsme:Filter is an XPath [XPath 1.0] predicate expression 4212
(PredicateExpr); the context of the expression is: 4213

 Context Node: the SOAP Envelope containing the notification 4214

 Context Position: 1 4215

 Context Size: 1 4216

 Variable Bindings: None 4217

 Function Libraries: Core Function Library [XPath 1.0] 4218

 Namespace Declarations: The [in-scope namespaces] property [XML Infoset] of 4219
/s:Envelope/s:Body/*/wsme:Filter 4220

Other message information headers defined by Addressing may be included in the request and 4221
response messages, according to the usage and semantics defined in Addressing. 4222

Other components of the preceding outline are not further constrained by this specification. 4223

If the event source accepts a request to create a subscription, it shall reply with a response of the 4224
following form: 4225

(1) <s:Envelope …> 4226
(2) <s:Header …> 4227
(3) <wsa:Action> 4228
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse 4229
(5) </wsa:Action> 4230
(6) … 4231
(7) </s:Header> 4232
(8) <s:Body …> 4233
(9) <wsme:SubscribeResponse …> 4234
(10) <wsme:SubscriptionManager> 4235
(11) wsa:EndpointReferenceType 4236
(12) </wsme:SubscriptionManager> 4237
(13) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> 4238
(14) … 4239
(15) </wsme:SubscribeResponse> 4240
(16) </s:Body> 4241
(17) </s:Envelope> 4242

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 99

The following describes additional, normative constraints on the preceding outline: 4243

/s:Envelope/S:Header/wsa:RelatesTo 4244

Shall be the value of the wsa:MessageID of the corresponding request. 4245

/s:Envelope/s:Body/*/wsme:SubscriptionManager 4246

The EPR of the subscription manager for this subscription. 4247

In some cases, it is convenient for all EPRs issued by a single event source to address a single 4248
Web service and use a reference parameter to distinguish among the active subscriptions. For 4249
convenience in this common situation, this specification defines a global element, Identifier of 4250
type xs:anyURI, that may be used as a distinguishing reference parameter if desired by the 4251
event source. 4252

/s:Envelope/s:Body/*/wsme:Expires 4253

The expiration time assigned by the event source. The expiration time may be either an absolute 4254
time or a duration but should be of the same type as the requested expiration (if any). 4255

If this element does not appear, then the subscription will not expire. That is, the subscription 4256
has an indefinite lifetime. It may be terminated by the subscriber using an Unsubscribe request, 4257
or it may be terminated by the event source at any time for reasons such as connection 4258
termination, resource constraints, or system shut-down. 4259

Other components of the preceding outline are not further constrained by this specification. 4260

If the event source chooses not to accept a subscription, the request shall fail, and the event source 4261
may generate a wsme:EventSourceUnableToProcess fault indicating that the request was not 4262
accepted. 4263

This specification does not constrain notifications because any message may be a notification. 4264

However, if a subscribing event sink wishes to have notifications specifically marked, it may specify 4265
literal SOAP header blocks in the Subscribe request, in the 4266
/s:Envelope/s:Body/wsme:Subscribe/wsme:NotifyTo/wsa:ReferenceParameters elements; per 4267
Addressing, the event source shall include each such literal SOAP header block in every notification 4268
sent to the endpoint addressed by /s:Envelope/s:Body/wsme:Subscribe/wsme:NotifyTo. 4269

10.2.1 General 4270

WS-Management uses Subscribe substantially as documented here, except that the 4271
WS-Management default addressing model is incorporated as described in 5.1. 4272

 The identity of the event source shall be based on the Addressing EPR. R10.2.1-1:4273

 If the service cannot support the requested addressing, it should return a R10.2.1-2:4274

wsman:UnsupportedFeature fault with the following detail code: 4275

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode 4276

Verifying that the address is usable allows errors to be detected at the time the subscription is 4277
created. For example, if the address cannot be reached due to firewall configuration and the service 4278
can detect this, telling the client allows for it to be corrected immediately. 4279

 Because many delivery modes require a separate connection to deliver the event, R10.2.1-3:4280

the service should comply with the security profiles defined in clause 11 of this specification, if 4281
HTTP or HTTPS is used to deliver events. If no security is specified, the service may attempt to 4282

Web Services for Management (WS-Management) Specification DSP0226

100 Work in Progress - Not a DMTF Standard Version 1.2.0b

use default security mechanisms, or return a wsman:UnsupportedFeature fault with the following 4283
detail code: 4284

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsecureAddress 4285

Because clients might need to have client-side context sent back with each event delivery, the 4286
NotifyTo address in the Delivery block can be used for this purpose. This NotifyTo EPR can contain 4287
any number of client-defined reference parameters. 4288

 A service may validate the address by attempting a connection while the Subscribe R10.2.1-4:4289

request is being processed to ensure delivery can occur successfully. If the service determines 4290
that the address is not valid or permissions cannot be acquired, it should emit a 4291
wsman:EventDeliverToUnusable fault. 4292

This situation can occur when the address is incorrect or when the event source cannot acquire 4293
permissions to deliver events properly. 4294

 Any reference parameters supplied in the NotifyTo address shall be included with R10.2.1-5:4295

each event delivery as top-level headers as specified 5.4. If EndTo is supported, this behavior 4296
applies as well. 4297

When the default addressing model is used by the service, the ResourceURI is often used to 4298
reference the logical event source, and selector values can additionally be used to indicate a real or 4299
virtual log within the scope of that source, or might even be used to limit the types or groups of events 4300
available. This action can logically overlap with the Filter mechanism in the subscription body itself, so 4301
due consideration should be given to the interplay among the address of the event source, the types 4302
of events it can publish, and the subscription-level filtering. 4303

If a client needs to have events delivered to more than one destination, more than one subscription is 4304
required. 4305

 If the events contain localized content, the service should accept a subscription with R10.2.1-6:4306

a wsman:Locale block acting as a hint (see 6.3) within the Delivery block of the Subscribe 4307
message. The language is encoded in an xml:lang attribute using RFC 5646 language codes. 4308

The service attempts to localize any descriptive content to the specified language when delivering 4309
such events, which is outlined as follows: 4310

(1) <wsme:Subscribe> 4311
(2) <wsme:Delivery> 4312
(3) <wsme:NotifyTo> ... </wsme:NotifyTo> 4313
(4) <wsman:Locale xml:lang="language-code"/> 4314
(5) </wsme:Delivery> 4315
(6) </wsme:Subscribe> 4316

NOTE: In this context, the wsman:Locale element (defined in 6.3) is not a SOAP header and mustUnderstand 4317
cannot be used. 4318

 The service should accept a subscription with a wsman:ContentEncoding block R10.2.1-7:4319

within the Delivery block of the Subscribe message. This block acts as a hint to indicate how the 4320
delivered events are to be encoded. The two standard xs:language tokens defined for this 4321
purpose are "UTF-8" or "UTF-16", although other encoding formats may be specified if 4322
necessary. The service should attempt to encode the events using the requested language token, 4323
as in the following example: 4324

EXAMPLE: 4325

(1) <wsme:Subscribe> 4326
(2) <wsme:Delivery> 4327
(3) ... 4328

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 101

(4) <wsme:NotifyTo> ... </wsme:NotifyTo> 4329
(5) <wsman:ContentEncoding> UTF-16 </wsman:ContentEncoding> 4330
(6) </wsme:Delivery> 4331
(7) </wsme:Subscribe> 4332

10.2.2 Filtering 4333

Filter expression is constrained to be a Boolean predicate. To support ad hoc queries including 4334
projections, WS-Management defines a wsman:Filter element of exactly the same form as what is 4335
used in the Subscribe operation except that the filter expression is not constrained to be a Boolean 4336
predicate. This allows the use of subscriptions using existing query languages such as SQL and CQL, 4337
which combine predicate and projection information in the same syntax. The use of projections is 4338
defined by the filter dialect, not by WS-Management. 4339

If the filter dialect for either Filter or wsman:Filter used for the Subscribe message is 4340
http://www.w3.org/TR/1999/REC-xpath-19991116 (the default dialect in both cases), the context node 4341
is the SOAP Envelope element. 4342

WS-Management defines the wsman:Filter element as a child of the Subscribe element. 4343

WS-Management defines the wsman:Filter element to allow projections, which is outlined as follows: 4344

(1) <wsman:Filter Dialect="xs:anyURI"?> xs:any </wsman:Filter> 4345

The Dialect attribute is optional. When not specified, it has the following implied value: 4346

http://www.w3.org/TR/1999/REC-xpath-19991116 4347

This dialect allows any full XPath expression or subset to be used. 4348

 If a service supports filtered subscriptions using Filter, it shall also support filtering R10.2.2-1:4349

using wsman:Filter. This rule allows client stacks to always pick the wsman XML namespace for 4350
the Filter element. Even though a service supports wsman:Filter, it is not required to support 4351
projections. 4352

 If a service supports filtered subscriptions using wsman:Filter, it should also support R10.2.2-2:4353

filtering using Filter. 4354

 If a Subscribe request contains both Filter and wsman:Filter, the service shall return R10.2.2-3:4355

a wsa:InvalidMessage fault. 4356

To allow eventing filter expressions to be defined independently of the delivery mode, 4357
WS-Management defines a new filter dialect that is the same as previously defined except that the 4358
context node is defined as the element that would be returned as the first child of the SOAP Body 4359
element if the Push delivery mode were used. The URI for this filter dialect is: 4360

http://schemas.dmtf.org/wbem/wsman/1/wsman/filter/eventRootXPath 4361

The context node for this expression is as follows: 4362

 Context Node: any XML element that could be returned as a direct child of the s:Body 4363
element if the delivery mode was Push 4364

 Context Position: 1 4365

 Context Size: 1 4366

 Variable Bindings: none 4367

 Function Libraries: Core Function Library [XPath 1.0] 4368

http://www.w3.org/TR/1999/REC-xpath-19991116

Web Services for Management (WS-Management) Specification DSP0226

102 Work in Progress - Not a DMTF Standard Version 1.2.0b

 Namespace Declarations: the [in-scope namespaces] property [XML Infoset] of 4369
/s:Envelope/s:Body/wsme:Subscribe/wsman:Filter 4370

 Services should support this filter dialect when they want to use an XPath-based R10.2.2-4:4371

filter, rather than the default filter dialect defined in 10.2.1. 4372

The considerations described in 8.3 regarding the XPath 1.0 filter dialect also apply to the preceding 4373
eventing filter. 4374

Resource-constrained implementations might have difficulty providing full XPath processing and yet 4375
still want to use a subset of XPath syntax. This does not require the addition of a new dialect if the 4376
expression specified in the filter is a true XPath expression. The use of the filter dialect URI does not 4377
imply that the service supports the entire specification for that dialect, only that the expression 4378
conforms to the rules of that dialect. Most services use XPath only for filtering, but they will not 4379
support the composition of new XML or removing portions of XML that would result in the XML 4380
fragment violating the schema of the event. 4381

EXAMPLE 1: A typical example of the use of XPath in a subscription follows. Assume that each event that would 4382
be delivered has the following XML content: 4383

(1) <s:Body> 4384
(2) <LowDiskSpaceEvent xmlns="..."> 4385
(3) <LogicalDisk>C:</LogicalDisk> 4386
(4) <CurrentMegabytes>12</CurrentMegabytes> 4387
(5) <Megabytes24HoursAgo>17</Megabytes24HoursAgo> 4388
(6) </LowDiskSpaceEvent> 4389
(7) </s:Body> 4390

The event is wholly contained within the s:Body of the SOAP message. The anchor point for the 4391
XPath evaluation is the first element of each event, and it does not reference the <s:Body> element 4392
as such. The XPath expression is evaluated as if the event content were a separate XML document. 4393

EXAMPLE 2: When used for simple document processing, the following four XPath expressions "select" the 4394
entire <LowDiskSpaceEvent> node: 4395

(8) / 4396
(9) /LowDiskSpaceEvent 4397
(10) ../LowDiskSpaceEvent 4398
(11) . 4399

If used as a "filter", this XPath expression does not filter out any instances and is the same as selecting all 4400
instances of the event, or omitting the filter entirely. 4401

EXAMPLE 3: However, using the following syntax, the XPath expression selects the XML node only if the test 4402
expression in brackets evaluates to logical "true": 4403

(1) ../LowDiskSpaceEvent[LogicalDisk="C:"] 4404

In this case, the event is selected if it refers to disk drive "C:"; otherwise the XML node is not selected. This 4405
XPath expression would filter out all <LowDiskSpaceEvent> events for other drives. 4406

EXAMPLE 4: Full XPath implementations may support more complex test expressions: 4407

(1) ../LowDiskSpaceEvent[LogicalDisk="C:" and CurrentMegabytes < "20"] 4408

In essence, the XML form of the event is logically passed through the XPath processor to see if it 4409
would be selected. If so, it is delivered as an event. If not, the event is discarded and not delivered to 4410
the subscriber. 4411

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 103

XPath 1.0 can be used simply for filtering or to send back subsets of the representation (or even the 4412
values without XML wrappers). In cases where the result is not just filtered but is "altered," the 4413
technique in 8.6 applies. 4414

If full XPath cannot be supported, a common subset for this purpose is described in ANNEX D of this 4415
specification. 4416

 The wsman:Filter element shall contain either simple text or a single XML element R10.2.2-5:4417

of a single or complex type. A service should reject any filter with mixed content or multiple peer 4418
XML elements using a wsme:EventSourceUnableToProcess fault. 4419

 A conformant service may not support the entire syntax and processing power of R10.2.2-6:4420

the specified filter dialect. The only requirement is that the specified filter is syntactically correct 4421
within the definition of the dialect. Subsets are therefore legal. If the specified filter exceeds the 4422
capability of the service, the service should return a wsman:CannotProcessFilter fault with text 4423
explaining why the filter was problematic. 4424

 If a service requires complex initialization parameters in addition to the filter, these R10.2.2-7:4425

should be part of the wsman:Filter block because they logically form part of the filter initialization, 4426
even if some of the parameters are not strictly used in the filtering process. In this case, a unique 4427
dialect URI shall be devised for the event source and the schema and usage published. 4428

 If the service supports composition of new XML or filtering to the point where the R10.2.2-8:4429

resultant event would not conform to the original schema for that event, the event delivery should 4430
be wrapped in the same way as content for the fragment-level access operations (see 7.7). 4431

Events, regardless of how they are filtered or reduced, need to conform to some kind of XML schema 4432
definition when they are actually delivered. Simply sending out unwrapped XML fragments during 4433
delivery is not legal. 4434

 If the service requires specific initialization XML in addition to the filter to formulate R10.2.2-9:4435

a subscription, this initialization XML shall form part of the filter body and be documented as part 4436
of the filter dialect. 4437

This rule promotes a consistent location for initialization content, which may be logically seen as part 4438
of the filter. The filter XML schema is more understandable if it separates the initialization and filtering 4439
parts into separate XML elements. 4440

For information about filtering over enumerations, see 8.3. 4441

10.2.3 Connection Retries 4442

Due to the nature of event delivery, the subscriber might not be reachable at event-time. Rather than 4443
terminate all subscriptions immediately, typically the service attempts to connect several times with 4444
suitable timeouts before giving up. 4445

 A service may observe any connection retry policy or allow the subscriber to define R10.2.3-1:4446

it by including the following wsman:ConnectionRetry element in a subscription. If the service does 4447
not accept the wsman:ConnectionRetry element, it should return a wsman:UnsupportedFeature 4448
fault with the following detail code: 4449

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DeliveryRetries 4450

This only applies to failures to connect and does not include replay of actual SOAP deliveries. 4451

(1) <wsme:Subscribe> 4452
(2) <wsme:Delivery> 4453
(3) <wsme:NotifyTo> ... </wsme:NotifyTo> 4454

Web Services for Management (WS-Management) Specification DSP0226

104 Work in Progress - Not a DMTF Standard Version 1.2.0b

(4) <wsman:ConnectionRetry Total="count"> xs:duration 4455
</wsman:ConnectionRetry> 4456

(5) </wsme:Delivery> 4457
(6) </wsme:Subscribe> 4458

The following definitions provide additional, normative constraints on the preceding outline: 4459

wsman:ConnectionRetry 4460

an xs:duration for how long to wait between retries while trying to connect 4461

wsman:ConnectionRetry/@Total 4462

how many retries to attempt, observing the specified interval between the attempts 4463

 If the retry counts are exhausted, the subscription should be considered abnormally R10.2.3-2:4464

terminated. 4465

The retry mechanism applies only to attempts to connect. Failures to deliver on an established 4466
connection can result in terminating the connection according to the rules of the transport in use, and 4467
terminating the subscription. Other Web services mechanisms can be used to synthesize reliable 4468
delivery or safe replay of the actual deliveries. 4469

10.2.4 SubscribeResponse 4470

The service returns any service-specific reference parameters in the SubscriptionManager EPR, and 4471
these are included by the subscriber (client) later when issuing Unsubscribe and Renew messages. 4472

 In SubscribeResponse, the service may specify any EPR for the R10.2.4-1:4473

SubscriptionManager. However, it is recommended that the address contain the same wsa:To 4474
address as the original Subscribe request and differ only in other parts of the address, such as 4475
the reference parameters. 4476

 A conformant service may not return the Expires field in the response, but, as R10.2.4-2:4477

specified in 10.2, this implies that the subscription does not expire until explicitly canceled. 4478

10.2.5 Heartbeats 4479

A typical problem with event subscriptions is a situation in which no event traffic occurs. It is difficult 4480
for clients to know whether no events matching the subscription have occurred or whether the 4481
subscription has simply failed and the client was not able to receive any notification. 4482

Because of this, WS-Management defines a "heartbeat" pseudo-event that can be sent periodically 4483
for any subscription. This event is sent if no regular events occur so that the client knows the 4484
subscription is still active. If the heartbeat event does not arrive, the client knows that connectivity is 4485
bad or that the subscription has expired, and it can take corrective action. 4486

The heartbeat event is sent in place of the events that would have occurred and is never intermixed 4487
with "real" events. In all modes, including batched, it occurs alone. 4488

To request heartbeat events as part of a subscription, the Subscribe request has an additional field in 4489
the Delivery section: 4490

(1) <wsme:Delivery> 4491
(2) ... 4492
(3) <wsman:Heartbeats> xs:duration </wsman:Heartbeats> 4493
(4) ... 4494
(5) </wsme:Delivery> 4495

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 105

wsman:Heartbeats specifies that heartbeat events are added to the event stream at the specified 4496
interval. 4497

 A service should support heartbeat events. If the service does not support them, it R10.2.5-1:4498

shall return a wsman:UnsupportedFeature fault with the following detail code: 4499

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Heartbeats 4500

Heartbeats apply to all delivery modes. 4501

Heartbeats apply to "pull" mode deliveries as well, in that they are a hint to the publisher about how 4502
often to expect a Pull request. The service can refuse to deliver events if the client does not regularly 4503
call back at the heartbeat interval. If no events are available at the heartbeat interval, the service 4504
simply includes a heartbeat event as the result of the Pull. 4505

 While a subscription with heartbeats is active, the service shall ensure that either R10.2.5-2:4506

real events or heartbeats are sent out within the specified wsman:Heartbeat interval. The service 4507
may send out heartbeats at this interval in addition to the events, as long as the heartbeat events 4508
are sent separately (not batched with other events). The goal is to ensure that some kind of event 4509
traffic always occurs within the heartbeat interval. 4510

 A conformant service may send out heartbeats at earlier intervals than specified in R10.2.5-3:4511

the subscription. However, the events should not be intermixed with other events when batching 4512
delivery modes are used. Typically, heartbeats are sent out only when no real events occur. A 4513
service may fail to produce heartbeats at the specified interval if real events have been delivered. 4514

 A conformant service shall not send out heartbeats asynchronously to any event R10.2.5-4:4515

deliveries already in progress. They shall be delivered in sequence like any other events, 4516
although they are delivered alone as single events or as the only event in a batch. 4517

In practice, heartbeat events are based on a countdown timer. If no events occur, the heartbeat is 4518
sent out alone. However, every time a real event is delivered, the heartbeat countdown timer is reset. 4519
If a steady stream of events occurs, heartbeats might never be delivered. 4520

Heartbeats need to be acknowledged like any other event if one of the acknowledged delivery modes 4521
is in effect. 4522

The client assumes that the subscription is no longer active if no heartbeats are received within the 4523
specified interval, so the service can proceed to cancel the subscription and send any requested 4524
SubscriptionEnd messages, because the client will likely resubscribe shortly. Used in combination 4525
with bookmarks (see 10.2.6), heartbeats can achieve highly reliable delivery with known latency 4526
behavior. 4527

The heartbeat event itself is simply an event message with no body and is identified by its wsa:Action 4528
URI as follows: 4529

(1) <s:Envelope ...> 4530
(2) <s:Header> 4531
(3) <wsa:To> </wsa:To> 4532
(4) <wsa:Action s:mustUnderstand="true"> 4533
(5) http://schemas.dmtf.org/wbem/wsman/1/wsman/Heartbeat 4534
(6) </wsa:Action> 4535
(7) ... 4536
(8) </s:Header> 4537
(9) <s:Body/> 4538
(10) </s:Envelope> 4539

Web Services for Management (WS-Management) Specification DSP0226

106 Work in Progress - Not a DMTF Standard Version 1.2.0b

10.2.6 Bookmarks 4540

Reliable delivery of events is difficult to achieve, so management subscribers need to have a way to 4541
be certain of receiving all events from a source. When subscriptions expire or when deliveries fail, 4542
windows of time can occur in which the client cannot be certain whether critical events have occurred. 4543
Rather than using a highly complex, transacted delivery model, WS-Management defines a simple 4544
mechanism for ensuring that all events are delivered or that dropped events can be detected. 4545

This mechanism requires event sources to be backed by logs, whether short-term or long-term. The 4546
client subscribes in the same way as a normal Subscribe operation, and specifies that bookmarks are 4547
to be used. The service then sends a new bookmark with each event delivery, which the client is 4548
responsible for persisting. This bookmark is essentially a context or a pointer to the logical event 4549
stream location that matches the subscription filter. As each new delivery occurs, the client updates 4550
the bookmark in its own space. If the subscription expires or is terminated unexpectedly, the client 4551
can subscribe again, using the last known bookmark. In essence, the subscription filter identifies the 4552
desired set of events, and the bookmark tells the service where to start in the log. The client may then 4553
pick up where it left off. 4554

This mechanism is immune to transaction problems, because the client can simply start from any of 4555
several recent bookmarks. The only requirement for the service is to have some type of persistent log 4556
in which to apply the bookmark. If the submitted bookmark is too old (temporally or positionally within 4557
the log), the service can fault the request, and at least the client reliably knows that events have been 4558
dropped. 4559

 A conformant service may support the WS-Management bookmark mechanism. If R10.2.6-1:4560

the service does not support bookmarks, it should return a wsman:UnsupportedFeature fault with 4561
the following detail code: 4562

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Bookmarks 4563

To request bookmark services, the client includes the wsman:SendBookmarks element in the 4564
Subscribe request as follows: 4565

(1) <s:Body> 4566
(2) <wsme:Subscribe> 4567
(3) <wsme:Delivery> 4568
(4) ... 4569
(5) </wsme:Delivery> 4570
(6) <wsman:SendBookmarks/> 4571
(7) </wsme:Subscribe> 4572
(8) </s:Body> 4573

wsman:SendBookmarks instructs the service to send a bookmark with each event delivery. 4574
Bookmarks apply to all delivery modes. 4575

The bookmark is a token that represents an abstract pointer in the event stream, but whether it points 4576
to the last delivered event or the last event plus one (the upcoming event) makes no difference 4577
because the token is supplied to the same implementation during a subsequent Subscribe operation. 4578
The service can thus attach any service-specific meaning and structure to the bookmark with no 4579
change to the client. 4580

If bookmarks are requested, each event delivery contains a new bookmark value as a SOAP header, 4581
as shown in the following outline. The format of the bookmark is entirely determined by the service 4582
and is treated as an opaque value by the client. 4583

(1) <s:Envelope 4584
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 4585
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 4586
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 4587

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 107

(5) <s:Header> 4588
(6) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To> 4589
(7) ... 4590
(8) <wsman:Bookmark> xs:any </wsman:Bookmark> 4591
(9) ... 4592
(10) </s:Header> 4593
(11) <s:Body> 4594
(12) ...event content... 4595
(13) </s:Body> 4596
(14) </s:Envelope> 4597

wsman:Bookmark contains XML content supplied by the service that indicates the logical position of 4598
this event or event batch in the event stream implied by the subscription. 4599

 If bookmarks are supported, the wsman:Bookmark element content shall be either R10.2.6-2:4600

simple text or a single complex XML element. A conformant service shall not accept mixed 4601
content of both text and elements, or multiple peer XML elements, under the wsman:Bookmark 4602
element. 4603

 If bookmarks are supported, the service shall use a wsman:Bookmark element in R10.2.6-3:4604

the header to send an updated bookmark with each event delivery. Bookmarks accompany only 4605
event deliveries and are not part of any SubscriptionEnd message. 4606

After the subscription has terminated, for whatever reason, a subsequent Subscribe message on the 4607
part of the client can include the bookmark in the subscription request. The service then knows where 4608
to start. 4609

The last-known bookmark received by the client is added to the Subscribe message as a new block, 4610
positioned after the child elements of Subscribe, as in the following outline: 4611

(1) <s:Body> 4612
(2) <wsme:Subscribe> 4613
(3) <wsme:Delivery> ... </wsme:Delivery> 4614
(4) <wsme:Expires> ... </wsme:Expires> 4615
(5) <wsman:Filter> ... </wsman:Filter> 4616
(6) <wsman:Bookmark> 4617
(7) ...last known bookmark from a previous delivery... 4618
(8) </wsman:Bookmark> 4619
(9) <wsman:SendBookmarks/> 4620
(10) </wsme:Subscribe> 4621
(11) </s:Body> 4622

The following definitions provide additional, normative constraints on the preceding outline: 4623

wsman:Bookmark 4624

arbitrary XML content previously supplied by the service as a wsman:Bookmark during event 4625
deliveries from a previous subscription 4626

wsman:SendBookmarks 4627

an instruction to continue delivering updated bookmarks with each event delivery 4628

 The bookmark is a pointer to the last event delivery or batched delivery. The service R10.2.6-4:4629

shall resume delivery at the first event or events after the event represented by the bookmark. 4630
The service shall not replay events associated with the bookmark or skip any events since the 4631
bookmark. 4632

 The service may support a short queue of previous bookmarks, allowing the R10.2.6-5:4633

subscriber to start using any of several previous bookmarks. If bookmarks are supported, the 4634

Web Services for Management (WS-Management) Specification DSP0226

108 Work in Progress - Not a DMTF Standard Version 1.2.0b

service is required only to support the most recent bookmark for which delivery had apparently 4635
succeeded. 4636

 If the bookmark cannot be honored, the service shall fault with a R10.2.6-6:4637

wsman:InvalidBookmark fault with one of the following detail codes: 4638

 bookmark has expired (the source is not able to back up and replay from that point): 4639

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired 4640

 format is unknown: 4641

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFormat 4642

If multiple new subscriptions are made using a previous bookmark, the service can allow multiple 4643
reuse or may limit bookmarks to a single subscriber, and can even restrict how long bookmarks can 4644
be used before becoming invalid. 4645

The following predefined, reserved bookmark value indicates that the subscription starts at the 4646
earliest possible point in the event stream backed by the publisher: 4647

http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest 4648

If a subscription is received with this bookmark, the event source replays all possible events that 4649
match the filter and any events that subsequently occur for that event source. The absence of any 4650
bookmark means "begin at the next available event". 4651

 A conformant service may support the reserved bookmark R10.2.6-7:4652

http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest and not support any other type 4653
of bookmark. If the http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest bookmark 4654
is supported, the event source should send all previous and future events that match the filter 4655
starting with the earliest such event. 4656

10.2.7 Delivery Modes 4657

While the general pattern of asynchronous, event-based messages is extremely common, different 4658
applications often require different event message delivery mechanisms. For instance, in some cases 4659
a simple asynchronous message is optimal, while other situations may work better if the event 4660
consumer can poll for event messages in order to control the flow and timing of message arrival. 4661
Some consumers require event messages to be wrapped in a standard "event" SOAP envelope, 4662
while others prefer messages to be delivered unwrapped. Some consumers may require event 4663
messages to be delivered reliably, while others may be willing to accept best-effort event delivery. 4664

In order to support this broad variety of event delivery requirements, this specification introduces an 4665
abstraction called a Delivery Mode. This concept is used as an extension point, so that event sources 4666
and event consumers may freely create new delivery mechanisms that are tailored to their specific 4667
requirements. This specification provides a minimal amount of support for delivery mode negotiation 4668
by allowing an event source to provide a list of supported delivery modes in response to a 4669
subscription request specifying a delivery mode it does not support. 4670

A WS-Management implementation can support a variety of event delivery modes. 4671

In essence, delivery consists of the following items: 4672

 a delivery mode (how events are packaged) 4673

 an address (the transport and network location) 4674

 an authentication profile to use when connecting or delivering the events (security) 4675

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 109

The standard security profiles are discussed in clause 12 and may be required for subscriptions if the 4676
service needs hints or other indications of which security model to use at event-time. 4677

If the delivery mode is supported but not actually usable due to firewall configuration, the service can 4678
return a wsme:DeliveryModeRequestedUnavailable fault with additional detail to this effect. 4679

 For any given transport, a conformant service should support at least one of the R10.2.7-1:4680

following delivery modes to interoperate with standard clients: 4681

http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push 4682

http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck 4683

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4684

http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull 4685

The delivery mode does not imply any specific transport. 4686

Modes describe SOAP message behavior and are unrelated to the transport that is in use. A delivery 4687
mode implies a specific SOAP message format, so a message that deviates from that format requires 4688
a new delivery mode. 4689

 The NotifyTo address in the Subscribe message shall support only a single delivery R10.2.7-2:4690

mode. 4691

This requirement is for the client because the service cannot verify whether this statement is true. If 4692
this requirement is not observed by the client, the service might not operate correctly. If the 4693
subscriber supports multiple delivery modes, the NotifyTo address needs to be differentiated in some 4694
way, such as by adding an additional reference parameter. 4695

10.2.8 Event Action URI 4696

Typically, each event type has its own wsa:Action URI to quickly identify and route the event. If an 4697
event type does not define its own wsa:Action URI, the following URI can be used as a default: 4698

 http://schemas.dmtf.org/wbem/wsman/1/wsman/Event 4699

This URI can be used in cases where event types are inferred in real-time from other sources and not 4700
published as Web service events, and thus do not have a designated wsa:Action URI. This 4701
specification places no restrictions on the wsa:Action URI for events. More specific URIs can act as a 4702
reliable dispatching point. In many cases, a fixed schema can serve to model many different types of 4703
events, in which case the event "ID" is simply a field in the XML content of the event. The URI in this 4704
case might reflect the schema and be undifferentiated for all of the various event IDs that might occur 4705
or it might reflect the specific event by suffixing the event ID to the wsa:Action URI. This specification 4706
places no restrictions on the granularity of the URI, but careful consideration of these issues is part of 4707
designing the URIs for events. 4708

10.2.9 Delivery Sequencing and Acknowledgement 4709

The delivery mode indicates how the service will exchange events with interested parties. This clause 4710
describes delivery modes in detail. 4711

Web Services for Management (WS-Management) Specification DSP0226

110 Work in Progress - Not a DMTF Standard Version 1.2.0b

10.2.9.1 General 4712

For some event types, ordered and acknowledged delivery is important, but for other types of events 4713
the order of arrival is not significant. WS-Management defines four standard delivery modes: 4714

 http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push 4715

With this mode, each SOAP message has only one event and no acknowledgement or 4716
SOAP response. The service can deliver events for the subscription asynchronously without 4717
regard to any events already in transit. This mode is useful when the order of events does 4718
not matter, such as with events containing running totals in which each new event can 4719
replace the previous one completely and the time stamp is sufficient for identifying the most 4720
recent event. 4721

 http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck 4722

With this mode, each SOAP message has only one event, but each event is acknowledged 4723
before another is sent. The service queues all undelivered events for the subscription and 4724
delivers each new event only after the previous one has been acknowledged. 4725

 http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4726

With this mode, each SOAP message can have many events, but each batch is 4727
acknowledged before another is sent. The service queues all events for the subscription 4728
and delivers them in that order, maintaining the order in the batches. 4729

 http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull 4730

With this mode, each SOAP message can have many events, but each batch is 4731
acknowledged. Because the receiver uses Pull to synchronously retrieve the events, 4732
acknowledgement is implicit. The order of delivery is maintained. 4733

Ordering of events across subscriptions is not implied. 4734

The acknowledgement model is discussed in 10.8. 4735

10.2.9.2 Push Mode 4736

The standard delivery mode is 4737
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push, in which each delivery 4738
consists of a single event. No acknowledgement occurs, so the delivery cannot be faulted to cancel 4739
the subscription. 4740

Therefore, subscriptions made with this delivery mode can have short durations to prevent a situation 4741
in which deliveries cannot be stopped if the SubscriptionManager content from the 4742
SubscribeResponse information is corrupted or lost. 4743

To promote fast routing of events, the required wsa:Action URI in each event message can be distinct 4744
for each event type, regardless of how strongly typed the event body is. 4745

 A service may support the R10.2.9.2-1:4746

http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push delivery mode. 4747

 To precisely control how to deal with events that are too large, the service may R10.2.9.2-2:4748

accept the following additional instruction in a subscription: 4749

(1) <wsme:Delivery> 4750
(2) <wsme:NotifyTo> ... </wsme:NotifyTo> 4751
(3) ... 4752
(4) <wsman:MaxEnvelopeSize Policy="enumConstant"> 4753

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 111

(5) xs:positiveInteger 4754
(6) </wsman:MaxEnvelopeSize> 4755
(7) ... 4756
(8) </wsme:Delivery> 4757

The following definitions provide additional, normative constraints on the preceding outline: 4758

wsme:Delivery/wsman:MaxEnvelopeSize 4759

the maximum number of octets for the entire SOAP envelope in a single event delivery 4760

wsme:Delivery/wsman:MaxEnvelopeSize/@Policy 4761

an optional value with one of the following enumeration values: 4762

 CancelSubscription: cancel on the first oversized event 4763

 Skip: silently skip oversized events 4764

 Notify: notify the subscriber that events were dropped as specified in 10.9 4765

 If wsman:MaxEnvelopeSize is requested, the service shall not send an event R10.2.9.2-3:4766

body larger than the specified limit. The default behavior is to notify the subscriber as specified in 4767
10.9, unless otherwise instructed in the subscription, and to attempt to continue delivery. If the 4768
event exceeds any internal default maximums, the service should also attempt to notify as 4769
specified in 10.9 rather than terminate the subscription, unless otherwise specified in the 4770
subscription. If wsman:MaxEnvelopeSize is too large for the service, the service shall return a 4771
wsman:EncodingLimit fault with the following detail code: 4772

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize 4773

In the absence of any other Policy instructions, services are to deliver notifications of dropped events 4774
to subscribers, as specified in 10.9. 4775

10.2.9.3 PushWithAck Mode 4776

This delivery mode is identical to the standard "Push" mode except that each delivery is 4777
acknowledged. Each delivery still has one event, and the wsa:Action element indicates the event 4778
type. However, a SOAP-based acknowledgement occurs as described in 10.7. 4779

The delivery mode URI is: 4780

http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck 4781

In every other respect except the delivery mode URI, this mode is identical to Push mode as 4782
described in 10.2.9.2. 4783

 A service should support the R10.2.9.3-1:4784

http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck delivery mode. If the delivery mode 4785
is not supported, the service should return a fault of wsme:DeliveryModeRequestedUnavailable. 4786

10.2.9.4 Batched Delivery Mode 4787

Batching events is an effective way to minimize event traffic from a high-volume event source without 4788
sacrificing event timeliness. WS-Management defines a custom event delivery mode that allows an 4789
event source to bundle multiple outgoing event messages into a single SOAP envelope. Delivery is 4790
always acknowledged, using the model defined in 10.7. 4791

 A service may support the http://schemas.dmtf.org/wbem/wsman/1/wsman/Events R10.2.9.4-1:4792

delivery mode. If the delivery mode is not supported, the service should return a fault of 4793
wsme:DeliveryModeRequestedUnavailable. 4794

Web Services for Management (WS-Management) Specification DSP0226

112 Work in Progress - Not a DMTF Standard Version 1.2.0b

For this delivery mode, the Delivery element has the following format: 4795

(1) <wsme:Delivery Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Events"> 4796
(2) <wsme:NotifyTo> 4797
(3) wsa:EndpointReferenceType 4798
(4) </wsme:NotifyTo> 4799
(5) <wsman:MaxElements> xs:positiveInteger </wsman:MaxElements> ? 4800
(6) <wsman:MaxTime> xs:duration </wsman:MaxTime> ? 4801
(7) <wsman:MaxEnvelopeSize Policy="enumConstant"> 4802
(8) xs:positiveInteger 4803
(9) </wsman:MaxEnvelopeSize> ? 4804
(10) </wsme:Delivery> 4805

The following definitions provide additional, normative constraints on the preceding outline: 4806

wsme:Delivery/@Mode 4807

required attribute that shall be defined as 4808

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4809

wsme:Delivery/wsme:NotifyTo 4810

required element that shall contain the EPR to which event messages are to be sent for this 4811
subscription 4812

wsme:Delivery/wsman:MaxElements 4813

optional element that contains a positive integer that indicates the maximum number of event 4814
bodies to batch into a single SOAP envelope 4815

The resource shall not deliver more than this number of items in a single delivery, although it 4816
may deliver fewer. 4817

wsme:Delivery/wsman:MaxEnvelopeSize 4818

optional element that contains a positive integer that indicates the maximum number of octets in 4819
the SOAP envelope used to deliver the events 4820

wsman:MaxEnvelopeSize/@Policy 4821

an optional attribute with one of the following enumeration values: 4822

 CancelSubscription: cancel on the first oversized event 4823

 Skip: silently skip oversized events 4824

 Notify: notify the subscriber that events were dropped as specified in 10.9 4825

wsme:Delivery/wsman:MaxTime 4826

optional element that contains a duration that indicates the maximum amount of time the service 4827
should allow to elapse while batching Event bodies 4828

This time may not be exceeded between the encoding of the first event in the batch and the 4829
dispatching of the batch for delivery. Some publisher implementations may choose more 4830
complex schemes in which different events included in the subscription are delivered at different 4831
latencies or at different priorities. In such cases, a specific filter dialect can be designed for the 4832
purpose and used to describe the instructions to the publisher. In such cases, wsman:MaxTime 4833
can be omitted if it is not applicable; if present, however, it serves as an override of anything 4834
defined within the filter. 4835

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 113

In the absence of any other instructions in any part of the subscription, services are to deliver 4836
notifications of dropped events to subscribers, as specified in 10.9. 4837

If a client wants to discover the appropriate values for wsman:MaxElements or 4838
wsman:MaxEnvelopeSize, the client can query for service-specific metadata. The format of such 4839
metadata is beyond the scope of this particular specification. 4840

 If batched mode is requested in a Subscribe message, and MaxElements, R10.2.9.4-2:4841

MaxEnvelopeSize, and MaxTime elements are not present, the service may pick any applicable 4842
defaults. The following faults apply: 4843

 If MaxElements is not supported, wsman:UnsupportedFeature is returned with the following 4844
fault detail code: 4845

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxElements 4846

 If MaxEnvelopeSize is not supported, wsman:UnsupportedFeature is returned with the 4847
following fault detail code: 4848

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize 4849

 If MaxTime is not supported, wsman:UnsupportedFeature is returned with the following fault 4850
detail code: 4851

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxTime 4852

 If MaxEnvelopeSize/@Policy is not supported, wsman:UnsupportedFeature is returned with 4853
the following fault detail code: 4854

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopePolicy 4855

 If wsman:MaxEnvelopeSize is requested, the service shall not send an event R10.2.9.4-3:4856

body larger than the specified limit. The default behavior is to notify the subscriber as specified in 4857
10.9, unless otherwise instructed in the subscription, and to attempt to continue delivery. If the 4858
event exceeds any internal default maximums, the service should also attempt notification as 4859
specified in 10.9 rather than terminate the subscription, unless otherwise specified in the 4860
subscription. 4861

If a subscription has been created using batched mode, all event delivery messages shall have 4862
the following format: 4863

(1) <s:Envelope ...> 4864
(2) <s:Header> 4865
(3) ... 4866
(4) <wsa:Action> 4867
(5) http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4868
(6) </wsa:Action> 4869
(7) ... 4870
(8) </s:Header> 4871
(9) <s:Body> 4872
(10) <wsman:Events> 4873
(11) <wsman:Event Action="event action URI"> 4874
(12) ...event body... 4875
(13) </wsman:Event> + 4876
(14) </wsman:Events> 4877
(15) </s:Body> 4878
(16) </s:Envelope> 4879

Web Services for Management (WS-Management) Specification DSP0226

114 Work in Progress - Not a DMTF Standard Version 1.2.0b

The following definitions provide additional, normative constraints on the preceding outline: 4880

s:Envelope/s:Header/wsa:Action 4881

required element that shall be defined as 4882

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4883

s:Envelope/s:Body/wsman:Events/wsman:Event 4884

required elements that shall contain the body of the corresponding event message, as if 4885
wsman:Event were the s:Body element 4886

s:Envelope/s:Body/wsman:Events/wsman:Event/@Action 4887

required attribute that shall contain the wsa:Action URI that would have been used for the 4888
contained event message 4889

 If batched mode is requested, deliveries shall be acknowledged as described in R10.2.9.4-4:4890

10.7. 4891

Dropped events (as specified in 10.9) are encoded with any other events. 4892

EXAMPLE: The following example shows batching parameters supplied to a Subscribe operation. The 4893
service is instructed to send no more than 10 items per batch, to wait no more than 20 seconds from the 4894
time the first event is encoded until the entire batch is dispatched, and to include no more than 8192 octets 4895
in the SOAP message. 4896

(1) ... 4897
(2) <wsme:Delivery 4898
(3) Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Events"> 4899
(4) <wsme:NotifyTo> 4900
(5) <wsa:Address>http://2.3.4.5/client</wsa:Address> 4901
(6) </wsme:NotifyTo> 4902
(7) <wsman:MaxElements>10</wsman:MaxElements> 4903
(8) <wsman:MaxTime>PT20S</wsman:MaxTime> 4904
(9) <wsman:MaxEnvelopeSize>8192</wsman:MaxEnvelopeSize> 4905
(10) </wsme:Delivery> 4906

EXAMPLE: Following is an example of batched delivery that conforms to this specification: 4907

(1) <s:Envelope 4908
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 4909
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing 4910
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 4911
(5) xmlns:wsme="http://schemas.xmlsoap.org/ws/2004/08/eventing"> 4912
(6) <s:Header> 4913
(7) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To> 4914
(8) <wsa:Action> 4915
(9) http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 4916
(10) </wsa:Action> 4917
(11) ... 4918
(12) </s:Header> 4919
(13) <s:Body> 4920
(14) <wsman:Events> 4921
(15) <wsman:Event 4922
(16) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 4923
(17) <DiskChange 4924
(18) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 4925
(19) <Drive> C: </Drive> 4926

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 115

(20) <FreeSpace> 802012911 </FreeSpace> 4927
(21) </DiskChange> 4928
(22) </wsman:Event> 4929
(23) <wsman:Event 4930
(24) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 4931
(25) <DiskChange 4932
(26) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 4933
(27) <Drive> D: </Drive> 4934
(28) <FreeSpace> 1402012913 </FreeSpace> 4935
(29) </DiskChange> 4936
(30) </wsman:Event> 4937
(31) </wsman:Events> 4938
(32) </s:Body> 4939
(33) </s:Envelope> 4940

The Action URI in line 9 specifies that this is a batch that contains distinct events. The individual 4941
event bodies are at lines 15–22 and lines 23–30. The actual Action attribute for the individual events 4942
is an attribute of the wsman:Event wrapper. 4943

10.2.9.5 Pull Delivery Mode 4944

In some circumstances, polling for events is an effective way of controlling data flow and balancing 4945
timeliness against processing ability. Also, in some cases, network restrictions prevent "push" modes 4946
from being used; that is, the service cannot initiate a connection to the subscriber. 4947

WS-Management defines a custom event delivery mode, "pull mode," which allows an event source 4948
to maintain a logical queue of event messages received by enumeration. This delivery mode borrows 4949
the Pull message to retrieve events from the logical queue. However, all of the other pub/sub 4950
operations defined in this clause can continue to be used. (For example, Unsubscribe, rather than 4951
Release, is used to cancel a subscription.) 4952

For this delivery mode, the Delivery element has the following format: 4953

(1) <wsme:Delivery Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull"> 4954
(2) ... 4955
(3) </wsme:Delivery> 4956

wsme:Delivery/@Mode shall be 4957

http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull 4958

 A service may support the http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull R10.2.9.5-1:4959

delivery mode. If pull mode is requested but not supported, the service shall return a fault of 4960
wsme:DeliveryModeRequestedUnavailable. 4961

wsman:MaxElements, wsman:MaxEnvelopeSize, and wsman:MaxTime do not apply in the Subscribe 4962
message when using this delivery mode because the Pull message contains all of the necessary 4963
functionality for controlling the batching and timing of the responses. 4964

 If a subscription incorrectly specifies parameters that are not compatible with pull R10.2.9.5-2:4965

mode, the service should issue a wsman:UnsupportedFeature fault with the following detail code: 4966

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FormatMismatch 4967

 If pull mode is requested in a Subscribe message and the event source accepts R10.2.9.5-3:4968

the subscription request, the SubscribeResponse element in the REPLY message shall contain 4969
an EnumerationContext element suitable for use in a subsequent Pull operation. 4970

Web Services for Management (WS-Management) Specification DSP0226

116 Work in Progress - Not a DMTF Standard Version 1.2.0b

EXAMPLE: 4971

(1) <s:Body ...> 4972
(2) <wsme:SubscribeResponse ...> 4973
(3) <wsme:SubscriptionManager> 4974
(4) wsa:EndpointReferenceType 4975
(5) </wsme:SubscriptionManager> 4976
(6) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> 4977
(7) <wsmen:EnumerationContext>...</wsmen:EnumerationContext> 4978
(8) ... 4979
(9) </wsme:SubscribeResponse> 4980
(10) </s:Body> 4981

The subscriber extracts the EnumerationContext and uses it thereafter in Pull requests. 4982

 If pull mode is active, Pull messages shall use the EPR of the subscription R10.2.9.5-4:4983

manager obtained from the SubscribeResponse message. The EPR reference parameters are of 4984
a service-specific addressing model, but may use the WS-Management default addressing model 4985
if it is suitable. 4986

 If pull mode is active and a Pull request returns no events (because none have R10.2.9.5-5:4987

occurred since the last "pull"), the service should return a wsman:TimedOut fault. The 4988
EnumerationContext is still considered active, and the subscriber may continue to issue Pull 4989
requests with the most recent EnumerationContext for which event deliveries actually occurred. 4990

 If pull mode is active and a Pull request returns events, the service may return an R10.2.9.5-6:4991

updated EnumerationContext as specified for Pull, and the subscriber is expected to use the 4992
update, if any, in the subsequent Pull, as specified for the Enumeration operations. Bookmarks, if 4993
active, may also be returned in the header and shall also be updated by the service. 4994

In practice, the service might not actually change the EnumerationContext, but the client cannot 4995
depend on it remaining constant. It is updated conceptually, if not actually. 4996

In pull mode, the Pull request controls the batching. If no defaults are specified, the batch size is 1 4997
and the maximum envelope size and timeouts are service-defined. 4998

 If pull mode is active, the service shall not return an EndOfSequence element in R10.2.9.5-7:4999

the event stream because no concept of a "last event" exists in this mode. Rather, the 5000
enumeration context should become invalid if the subscription expires or is canceled for any 5001
reason. 5002

 If pull mode is used, the service shall accept the wsman:MaxEnvelopeSize used R10.2.9.5-8:5003

in the Pull as the limitation on the event size that can be delivered. 5004

The batching properties used in batched mode do not apply to pull mode. The client controls the 5005
maximum event size using the normal mechanisms in Pull. 5006

10.3 GetStatus 5007

To get the status of a subscription, the subscriber sends a request of the following form to the 5008
subscription manager: 5009

(1) <s:Envelope …> 5010
(2) <s:Header …> 5011
(3) <wsa:Action> 5012
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus 5013
(5) </wsa:Action> 5014
(6) … 5015
(7) </s:Header> 5016

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 117

(8) <s:Body …> 5017
(9) <wsme:GetStatus …> 5018
(10) … 5019
(11) </wsme:GetStatus> 5020
(12) </s:Body> 5021
(13) </s:Envelope> 5022

Components of the preceding outline are additionally constrained as for a request to renew a 5023
subscription. Other components of the preceding outline are not further constrained by this 5024
specification. 5025

If the subscription is valid and has not expired, the subscription manager shall reply with a response 5026
of the following form: 5027

(1) <s:Envelope …> 5028
(2) <s:Header …> 5029
(3) <wsa:Action> 5030
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse 5031
(5) </wsa:Action> 5032
(6) … 5033
(7) </s:Header> 5034
(8) <s:Body …> 5035
(9) <wsme:GetStatusResponse …> 5036
(10) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> ? 5037
(11) … 5038
(12) </wsme:GetStatusResponse> 5039
(13) </s:Body> 5040
(14) </s:Envelope> 5041

Components of the preceding outline are constrained as for a response to a renew request. Other 5042
components of the preceding outline are not further constrained by this specification. 5043

The wsme:GetStatus message is optional for WS-Management. 5044

 The wse:GetStatus message in a constrained environment is a candidate for exclusion. R10.3-1:5045

If this message is not supported, then a wsa:ActionNotSupported fault shall be returned in 5046
response to this request. 5047

Heartbeat support may be implemented rather than the wsme:GetStatus message. 5048

10.4 Unsubscribe 5049

Though subscriptions expire eventually, to minimize resources the subscribing event sink should 5050
explicitly delete a subscription when it no longer wants notifications associated with the subscription. 5051

To explicitly delete a subscription, a subscribing event sink sends a request of the following form to 5052
the subscription manager: 5053

(1) <s:Envelope …> 5054
(2) <s:Header …> 5055
(3) <wsa:Action> 5056
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe 5057
(5) </wsa:Action> 5058
(6) … 5059
(7) </s:Header> 5060
(8) <s:Body> 5061
(9) <wsme:Unsubscribe …> 5062
(10) … 5063
(11) </wsme:Unsubscribe> 5064
(12) </s:Body> 5065
(13) </s:Envelope> 5066

Web Services for Management (WS-Management) Specification DSP0226

118 Work in Progress - Not a DMTF Standard Version 1.2.0b

Components of the preceding outline are additionally constrained only as for a request to renew a 5067
subscription. For example, the faults listed there are also defined for a request to delete a 5068
subscription. 5069

If the subscription manager accepts a request to delete a subscription, it shall reply with a response 5070
of the following form: 5071

(1) <s:Envelope …> 5072
(2) <s:Header …> 5073
(3) <wsa:Action> 5074
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse 5075
(5) </wsa:Action> 5076
(6) <wsa:RelatesTo>xs:anyURI</wsa:RelatesTo> 5077
(7) … 5078
(8) </s:Header> 5079
(9) <s:Body /> 5080
(10) </s:Envelope> 5081

Components of the preceding outline are not further constrained by this specification. 5082

 If a service supports Subscribe, it shall implement the Unsubscribe message and R10.4-1:5083

ensure that event delivery will be terminated if the message is accepted as valid. Delivery of 5084
events may occur after responding to the Unsubscribe message as long as the event traffic stops 5085
at some point. 5086

 A service may unilaterally cancel a subscription for any reason, including internal R10.4-2:5087

timeouts, reconfiguration, or unreliable connectivity. 5088

Clients need to be prepared to receive any events already in transit even though they have issued an 5089
Unsubscribe message. Clients have the option to either fault any such deliveries or accept them. 5090

The EPR to use for this message is received from the SubscribeResponse element in the 5091
SubscriptionManager element. 5092

10.5 Renew 5093

To update the expiration for a subscription, subscription managers shall support requests to renew 5094
subscriptions. 5095

To renew a subscription, the subscriber sends a request of the following form to the subscription 5096
manager: 5097

(1) <s:Envelope …> 5098
(2) <s:Header …> 5099
(3) <wsa:Action> 5100
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew 5101
(5) </wsa:Action> 5102
(6) … 5103
(7) </s:Header> 5104
(8) <s:Body …> 5105
(9) <wsme:Renew …> 5106
(10) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> ? 5107
(11) … 5108
(12) </wsme:Renew> 5109
(13) </s:Body> 5110
(14) </s:Envelope> 5111

Components of the preceding outline are additionally constrained as for a request to create a 5112
subscription. Other components of the preceding outline are not further constrained by this 5113
specification. 5114

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 119

If the subscription manager accepts a request to renew a subscription, it shall reply with a response 5115
of the following form: 5116

(1) <s:Envelope …> 5117
(2) <s:Header …> 5118
(3) <wsa:Action> 5119
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse 5120
(5) </wsa:Action> 5121
(6) … 5122
(7) </s:Header> 5123
(8) <s:Body …> 5124
(9) <wsme:RenewResponse …> 5125
(10) <wsme:Expires>[xs:dateTime | xs:duration]</wsme:Expires> ? 5126
(11) … 5127
(12) </wsme:RenewResponse> 5128
(13) </s:Body> 5129
(14) </s:Envelope> 5130

Components of the preceding outline are constrained as for a response to a subscribe request with 5131
the following addition(s): 5132

/s:Envelope/s:Body/*/wsme:Expires 5133

If the requested expiration is a duration, then the implied start of that duration is the time when 5134
the subscription manager starts processing the Renew request. 5135

If the subscription manager chooses not to renew this subscription, the request shall fail, and the 5136
subscription manager may generate a wsme:UnableToRenew fault indicating that the renewal was 5137
not accepted. 5138

Other components of the preceding outline are not further constrained by this specification. 5139

Processing of the Renew message is required, but it is not required to succeed. 5140

 Although a conformant service shall accept the Renew message as a valid action, the R10.5-1:5141

service may always fault the request with a wsme:UnableToRenew fault, forcing the client to 5142
subscribe from scratch. 5143

Renew has no effect on deliveries in progress, bookmarks, heartbeats, or other ongoing activity. It 5144
simply extends the lifetime of the subscription. 5145

The EPR to use for this message is received from the SubscribeResponse element in the 5146
SubscriptionManager element. 5147

10.6 SubscriptionEnd 5148

If the event source terminates a subscription unexpectedly, the event source should send a 5149
Subscription End SOAP message to the endpoint reference indicated when the subscription was 5150
created. The message shall be of the following form: 5151

(1) <s:Envelope …> 5152
(2) <s:Header …> 5153
(3) <wsa:Action> 5154
(4) http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd 5155
(5) </wsa:Action> ? 5156
(6) … 5157
(7) </s:Header> 5158
(8) <s:Body …> 5159
(9) <wsme:SubscriptionEnd …> 5160
(10) <wsme:SubscriptionManager> 5161
(11) endpoint-reference 5162

Web Services for Management (WS-Management) Specification DSP0226

120 Work in Progress - Not a DMTF Standard Version 1.2.0b

(12) </wsme:SubscriptionManager> 5163
(13) <wsme:Status> 5164
(14) [5165
(15) http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryFailure | 5166
(16) http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceShuttingDown | 5167
(17) http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceCancelling 5168
(18)] 5169
(19) </wsme:Status> 5170
(20) <wsme:Reason xml:lang="language identifier" >xs:string</wsme:Reason> 5171
? 5172
(21) … 5173
(22) </wsme:SubscriptionEnd> 5174
(23) … 5175
(24) </s:Body> 5176
(25) </s:Envelope> 5177

The following describes additional, normative constraints on the preceding outline: 5178

/s:Envelope/s:Body/*/wsme:SubscriptionManager 5179

Endpoint reference of the subscription manager. It is recommended that event sinks ignore this 5180
element as its usage requires the ability to compare EPRs for equality when no such mechanism 5181
exists. Event sinks are advised to use reference parameters in the 5182
/wsme:Subscribe/wsme:EndTo EPR if they wish to correlate this message against their 5183
outstanding subscriptions. 5184

/s:Envelope/s:Body/wsme:SubscriptionEnd/wsme:Status = 5185
"http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryFailure" 5186

This value shall be used if the event source terminated the subscription because of problems 5187
delivering notifications. 5188

/s:Envelope/s:Body/wsme:SubscriptionEnd/wsme:Status = 5189
"http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceShuttingDown" 5190

This value shall be used if the event source terminated the subscription because the source is 5191
being shut down in a controlled manner (that is, if the event source is being shut down but has 5192
the opportunity to send a SubscriptionEnd message before it exits). 5193

/s:Envelope/s:Body/wsme:SubscriptionEnd/wsme:Status = 5194
"http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceCancelling" 5195

This value shall be used if the event source terminated the subscription for some other reason 5196
before it expired. 5197

/s:Envelope/s:Body/wsme:SubscriptionEnd/wsme:Reason 5198

This optional element contains text, in the language specified by the @xml:lang attribute, 5199
describing the reason for the unexpected subscription termination. 5200

Other message information headers defined in 5.4 may be included in the message, according to the 5201
usage and semantics defined in 5.4. 5202

Other components of the preceding outline are not further constrained by this specification. 5203

This SubscriptionEnd message is optional for WS-Management. In effect, it is the "last event" for a 5204
subscription. Because its primary purpose is to warn a subscriber that a subscription has ended, it is 5205
not suitable for use with pull-mode delivery. 5206

 A conformant service may implement the SubscriptionEnd message. R10.6-1:5207

 A conformant service shall not implement the SubscriptionEnd message when event R10.6-2:5208

delivery is done using pull mode as defined in 10.2.9.4. 5209

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 121

 If SubscriptionEnd is supported, the message shall contain any reference parameters R10.6-3:5210

specified by the subscriber in the EndTo address in the original subscription. 5211

 This rule intentionally left blank. R10.6-4:5212

If the service delivers events over the same connection as the Subscribe operation, the client typically 5213
knows that a subscription has been terminated because the connection itself closes or terminates. 5214

When the delivery connection is distinct from the subscribe connection, a SubscriptionEnd message 5215
is highly recommended; otherwise, the client has no immediate way of knowing that a subscription is 5216
no longer active. 5217

10.7 Acknowledgement of Delivery 5218

To ensure that delivery is acknowledged at the application level, the original subscriber can request 5219
that the event sink physically acknowledge event deliveries, rather than relying entirely on transport-5220
level guarantees. 5221

In other words, the transport might have accepted delivery of the events but not forwarded them to 5222
the actual event sink process, and the service would move on to the next set of events. System 5223
failures might result in dropped events. Therefore, a mechanism is needed in which a message-level 5224
acknowledgement can occur. This allows acknowledgement to be pushed up to the application level, 5225
increasing the reliability of event deliveries. 5226

The client selects acknowledged delivery by selecting a delivery mode in which each event has a 5227
response. In this specification, the two acknowledged delivery modes are 5228

 http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck 5229

 http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 5230

 A conformant service may support the PushWithAck or Events delivery mode. R10.7-1:5231

However, if either of these delivery modes is requested, to maintain an ordered queue of events, 5232
the service shall wait for the acknowledgement from the client before delivering the next event or 5233
events that match the subscription. 5234

 If an acknowledged delivery mode is selected for the subscription, the service shall R10.7-2:5235

include the following SOAP headers in each event delivery: 5236

(1) <s:Header> 5237
(2) <wsa:ReplyTo> where to send the acknowledgement </wsa:ReplyTo> 5238
(3) <wsman:AckRequested/> 5239
(4) ... 5240
(5) </s:Header> 5241

The following definitions provide additional, normative constraints on the preceding outline: 5242

wsa:ReplyTo 5243

address that shall always be present in the event delivery as a consequence of the presence of 5244
wsman:AckRequested 5245

The client extracts this address and sends the acknowledgement to the specified EPR as 5246
required by Addressing. 5247

wsman:AckRequested 5248

no content; requires that the subscriber acknowledge all deliveries as described later in this 5249
clause 5250

The client then replies to the delivery with an acknowledgement or a fault. 5251

Web Services for Management (WS-Management) Specification DSP0226

122 Work in Progress - Not a DMTF Standard Version 1.2.0b

 A service may request receipt acknowledgement by using the wsman:AckRequested R10.7-3:5252

block and subsequently expect an http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack message. 5253
If this message is not received as a reply, the service may terminate the subscription. 5254

The acknowledgement message format returned by the event sink (receiver) to the event source is 5255
identical for all delivery modes. As shown in the following outline, it contains a unique wsa:Action, and 5256
the wsa:RelatesTo field is set to the MessageID of the event delivery to which it applies: 5257

(1) <s:Envelope ...> 5258
(2) <s:Header> 5259
(3) ... 5260
(4) <wsa:To> endpoint reference from the event ReplyTo field </wsa:To> 5261
(5) <wsa:Action> http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack 5262

 </wsa:Action> 5263
(6) <wsa:RelatesTo> message ID of original event delivery 5264

</wsa:RelatesTo> 5265
(7) ... 5266
(8) </s:Header> 5267
(9) <s:Body/> 5268
(10) </s:Envelope> 5269

The following definitions provide additional, normative constraints on the preceding outline: 5270

s:Envelope/s:Header/wsa:Action 5271

URI that shall be defined as 5272

http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack 5273

s:Envelope/s:Header/wsa:RelatesTo 5274

element that shall contain the wsa:MessageID of the event delivery to which it refers 5275

wsa:RelatesTo is the critical item that ensures that the correct delivery is being acknowledged, 5276
and thus it shall not be omitted. 5277

s:Envelope/s:Header/wsa:To 5278

EPR address extracted from the ReplyTo field in the event delivery 5279

All reference parameters shall be extracted and added to the SOAP header as well. 5280

In spite of the request to acknowledge, the event sink can refuse delivery with a fault or fail to 5281
respond with the acknowledgement. In this case, the event source can terminate the subscription and 5282
send any applicable SubscriptionEnd messages. 5283

If the event sink does not support acknowledgement, it can respond with a 5284
wsman:UnsupportedFeature fault with the following detail code: 5285

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Ack 5286

However, this action is just as difficult as acknowledging the delivery, so most clients can scan for the 5287
wsman:AckRequested field and be prepared to acknowledge delivery or fault it. 5288

10.8 Refusal of Delivery 5289

With all acknowledged delivery modes as described in 10.7, an event sink can refuse to take delivery 5290
of events, either for security reasons or a policy change. It then responds with a fault rather than an 5291
acknowledgement. 5292

In this case, the event source needs to be prepared to end the subscription even though an 5293
Unsubscribe message is not issued by the subscriber. 5294

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 123

 During event delivery, if the receiver faults the delivery with a wsman:DeliveryRefused R10.8-1:5295

fault, the service shall immediately cancel the subscription and may also issue a SubscriptionEnd 5296
message to the EndTo endpoint in the original subscription, if supported. 5297

Thus, the receiver can issue the fault as a way to cancel the subscription when it does not have the 5298
SubscriptionManager information. 5299

10.9 Dropped Events 5300

Events that cannot be delivered are not to be silently dropped from the event stream, or the 5301
subscriber gets a false picture of the event history. WS-Management defines three behaviors for 5302
events that cannot be delivered with push modes or that are too large to fit within the delivery 5303
constraints requested by the subscriber: 5304

 Terminate the subscription. 5305

 Silently skip such events. 5306

 Send a special event in place of the dropped events. 5307

These options are discussed in 10.2.9.2 and 10.2.9.3. 5308

During delivery, the service might have to drop events for the following reasons: 5309

 The events exceed the maximum size requested by the subscriber. 5310

 The client cannot keep up with the event flow, and there is a backlog. 5311

 The service might have been reconfigured or restarted and the events permanently lost. 5312

In these cases, a service can inform the client that events have been dropped. 5313

 If a service drops events, it should issue an R10.9-1:5314

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event, which indicates this drop 5315
to the client. Any reference parameters specified in the NotifyTo address in the subscription shall 5316
also be copied into this message. This event is normal and implicitly considered part of any 5317
subscription. 5318

 If an http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event is issued, it R10.9-2:5319

shall take the ordinal position of the original dropped event in the delivery stream. The 5320
DroppedEvents event is considered the same as any other event with regard to its location and 5321
other behavior (bookmarks, acknowledged delivery, location in batch, and so on). It simply takes 5322
the place of the event that was dropped. 5323

EXAMPLE: 5324

(1) <s:Envelope ...> 5325
(2) <s:Header> 5326
(3) ...subscriber endpoint-reference... 5327
(4) 5328
(5) <wsa:Action> 5329
(6) http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents 5330
(7) </wsa:Action> 5331
(8) </s:Header> 5332
(9) <s:Body> 5333
(10) <wsman:DroppedEvents Action="wsa:Action URI of dropped event"> 5334
(11) xs:int 5335
(12) </wsman:DroppedEvents> 5336
(13) ... 5337
(14) </s:Body> 5338

Web Services for Management (WS-Management) Specification DSP0226

124 Work in Progress - Not a DMTF Standard Version 1.2.0b

(15) </s:Envelope> 5339

The following definitions provide additional, normative constraints on the preceding outline: 5340

s:Envelope/s:Header/wsa:Action 5341

URI that shall be defined as 5342

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents 5343

s:Body/wsman:DroppedEvents/@Action 5344

the Action URI of the event that was dropped 5345

s:Body/wsman:DroppedEvents 5346

a positive integer that represents the total number of dropped events since the subscription was 5347
created 5348

Renew has no effect on the running total of dropped events. Dropped events are like any other 5349
events and can require acknowledgement, affect the bookmark location, and so on. 5350

EXAMPLE: Following is an example of how a dropped event would appear in the middle of a batched 5351
event delivery: 5352

(1) <wsman:Events> 5353
(2) <wsman:Event Action="https://foo.com/someEvent"> 5354
(3) …event body 5355
(4) </wsman:Event> 5356
(5) <wsman:Event 5357
(6) Action="http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents"> 5358
(7) <wsman:DroppedEvents Action="https://foo.com/someEvent"> 5359
(8) 1 5360
(9) </wsman:DroppedEvents> 5361
(10) </wsman:Event> 5362
(11) <wsman:Event Action="https://foo.com/someEvent"> 5363
(12) ...event body... 5364
(13) </wsman:Event> 5365
(14) <wsman:Events> 5366

 If a service cannot deliver an event and does not support the R10.9-3:5367

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event, it should terminate the 5368
subscription rather than silently skipping events. 5369

Because this requirement cannot be enforced, and some dropped events are irrelevant when 5370
replaced by a subsequent event (running totals, for example), it is not a firm requirement that dropped 5371
events are signaled or that they result in a termination of the subscription. 5372

10.10 Access Control 5373

It is important for event sources to properly authorize requests. This is especially true for Subscribe 5374
requests, because otherwise the ability to subscribe on behalf of a third-party event sink could be 5375
used to create a distributed denial-of-service attack. 5376

Some possible schemes for validating Subscribe requests include: 5377

 Send a message to the event sink that describes the requested subscription, and then wait 5378
for a confirmation message to be returned by the event sink, before the event source 5379
accepts the subscription request. While this provides strong assurance that the event sink 5380
actually desires the requested subscription, it does not work for event sinks that are not 5381
capable of sending a confirmation, and requires additional logic on the event sink. 5382

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 125

 Require user authentication on the Subscribe request, and allow only authorized users to 5383
Subscribe. 5384

Other mechanisms are also possible. Be aware that event sources that are not reachable from the 5385
Internet have less need to control Subscribe requests. 5386

10.11 Implementation Considerations 5387

Implementations should generate expirations in Subscribe and Renew request and response 5388
messages that are significantly larger than expected network latency. 5389

Event sinks should be prepared to receive notifications after sending a Subscribe request but before 5390
receiving a Subscribe response message. Event sinks should also be prepared to receive 5391
notifications after receiving an Unsubscribe response message. 5392

10.12 Advertisement of Notifications 5393

An Event Source can choose to advertise the Notification messages that it might send by including a 5394
well-defined portType, called "EventSink", in its WSDL. Subscribers can examine this portType to 5395
determine which messages they might need to support. Each Notification appears as an independent 5396
operation within the portType, as shown in the following example: 5397

EXAMPLE: 5398

(1) <wsdl:portType name="EventSink"> 5399
(2) <wsdl:operation name="WeatherReport"> 5400
(3) <wsdl:input message="wr:ThunderStormMessage" 5401
(4) wsa:Action="urn:weatherReport:ThunderStorm" 5402
(5) wsam:Action="urn:weatherReport:ThunderStorm" /> 5403
(6) <wsdl:input message="wr:TyphoonMessage" 5404
(7) wsa:Action="urn:weatherReport:Typhoon" 5405
(8) wsam:Action="urn:weatherReport:Typhoon" /> 5406
(9) </wsdl:operation> 5407
(10) </wsdl:portType> 5408

In the preceding example this Event Source can send two types of Notifications (a ThunderStorm and a Typhoon 5409
message). 5410

Unless otherwise noted, Event Sinks should assume that the Notifications will be sent using SOAP1.2 5411
and will use document-literal encoding. 5412

11 Metadata and Discovery 5413

The WS-Management protocol is compatible with many techniques for discovery of resources 5414
available through a service. 5415

In addition, this specification defines a simple request-response operation to facilitate the process of 5416
establishing communications with a WS-Management service implementation in a variety of network 5417
environments without prior knowledge of the protocol version or versions supported by the 5418
implementation. This operation is used to discover the presence of a service that is compatible with 5419
WS-Management, assuming that a transport address over which the message can be delivered is 5420
known. Typically, a simple HTTP address would be used. 5421

To ensure forward compatibility, the message content of this operation is defined in an XML 5422
namespace that is separate from the core protocol namespace and that will not change as the 5423
protocol evolves. Further, this operation does not depend on any SOAP envelope header or body 5424
content other than the types explicitly defined for this operation. In this way, WS-Management clients 5425
are assured of the ability to use this operation against all implementations and versions to confirm the 5426

Web Services for Management (WS-Management) Specification DSP0226

126 Work in Progress - Not a DMTF Standard Version 1.2.0b

presence of WS-Management services without knowing the supported protocol versions or features in 5427
advance. 5428

The request message is defined as follows: 5429

(1) <s:Envelope 5430
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 5431
(3) xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/ 5432

 wsmanidentity.xsd" 5433
(4) <s:Header> 5434
(5) ... 5435
(6) </s:Header> 5436
(7) <s:Body> 5437
(8) <wsmid:Identify> 5438
(9) ... 5439
(10) </wsmid:Identify> 5440
(11) </s:Body> 5441
(12) </s:Envelope> 5442

The following definitions provide additional, normative constraints on the preceding outline: 5443

wsmid:Identify 5444

the body of the Identify request operation, which may contain additional vendor-specific 5445
extension content, but is otherwise empty 5446

The presence of this body element constitutes the request. 5447

Notice the absence of any Addressing namespace, WS-Management namespace, or other version-5448
specific concepts. This message is compatible only with the basic SOAP specification, and the 5449
presence of the wsmid:Identify block in the s:Body is the embodiment of the request operation. 5450

The response message is defined as follows: 5451

(13) <s:Envelope 5452
(14) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 5453
(15) xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/ 5454

 wsmanidentity.xsd"> 5455
(16) <s:Header> 5456
(17) ... 5457
(18) </s:Header> 5458
(19) <s:Body> 5459
(20) <wsmid:IdentifyResponse> 5460
(21) <wsmid:ProtocolVersion> xs:anyURI </wsmid:ProtocolVersion> + 5461
(22) <wsmid:ProductVendor> xs:string </wsmid:ProductVendor> ? 5462
(23) <wsmid:ProductVersion> xs:string </wsmid:ProductVersion> ? 5463
(24) <wsmid:InitiativeSupport> 5464
(25) <wsmid:InitiativeName> xs:string </wsmid:InitiativeName> ? 5465
(26) <wsmid:InitiativeVersion> xs:string </wsmid:InitiativeVersion> ? 5466
(27) </wsmid:InitiativeSupport> ? 5467
(28) <wsmid:SecurityProfiles> 5468
(29) <wsmid:SecurityProfileName> xs:anyURI 5469

</wsmid:SecurityProfileName> * 5470
(30) </wsmid:SecurityProfiles> ? 5471
(31) <wsmid:AddressingVersionURI> xs:anyURI 5472

</wsmid:AddressingVersionURI> * 5473
(32) ... 5474
(33) </wsmid:IdentifyResponse> 5475
(34) </s:Body> 5476
(35) </s:Envelope> 5477

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 127

The following definitions provide additional, normative constraints on the preceding outline: 5478

wsmid:IdentifyResponse 5479

the body of the response, which packages metadata about the WS-Management implementation 5480

wsmid:IdentifyResponse/wsmid:ProtocolVersion 5481

a required element or elements, each of which is a URI whose value shall be equal to the core 5482
XML namespace that identifies a supported version of the WS-Management specification 5483

One element shall be provided for each supported version of the protocol. Services should also 5484
include the XML namespace URI for supported dependent specifications such as Addressing. 5485
For example, if a future version of WS-Management supports multiple versions of Addressing, 5486
the IdentifyResponse can indicate which of the versions are supported. 5487

wsmid:IdentifyResponse/wsmid:ProductVendor 5488

an optional element that identifies the vendor of the WS-Management service implementation by 5489
using a widely recognized name or token, such as the official corporate name of the vendor or its 5490
stock symbol 5491

Alternatively, a DNS name, e-mail address, or Web URL may be used. 5492

wsmid:IdentifyResponse/wsmid:ProductVersion 5493

an optional version string for the WS-Management implementation 5494

This specification places no constraints on the format or content of this element. 5495

wsmid:IdentifyResponse/wsmid:InitiativeSupport 5496

an optional element that identifies an initiative supported by the WS-Management 5497
implementation. 5498

wsmid:IdentifyResponse/wsmid:InitiativeSupport/wsmid:InitiativeName 5499

an element that identifies the name of an initiative supported by the WS-Management 5500
implementation. 5501

wsmid:IdentifyResponse/wsmid:InitiativeSupport/wsmid:InitiativeVersion 5502

an element that identifies the version of an initiative supported by the WS-Management 5503
implementation. 5504

In addition, vendor-specific content can follow the preceding standardized elements. After the vendor-5505
specific content, the following elements can follow: 5506

wsmid:IdentifyResponse/wsmid:SecurityProfiles 5507

an optional element that identifies the set of security profiles supported by the WS-Management 5508
implementation. 5509

wsmid:IdentifyResponse/wsmid:SecurityProfiles/wsmid:SecurityProfileName 5510

an optional element which is a URI that identifies a security profile supported by the WS-5511
Management implementation. 5512

wsmid:IdentifyResponse/wsmid:AddressingVersionURI 5513

an optional element which is a URI that identifies a version of Addressing supported by the WS-5514
Management implementation. 5515

When a service supports this element, the value shall be the XML Schema namespace URI of 5516
the addressing version in use. XML Schema namespaces used in this specification are listed in 5517
ANNEX A. A service may support and advertise more than none version of addressing. 5518

 A WS-Management service should support the wsmid:Identify operation. A service R11-1:5519

implementation that supports the operation shall do so irrespective of the versions of 5520
WS-Management supported by that service. The operation shall be accessible at the same 5521

Web Services for Management (WS-Management) Specification DSP0226

128 Work in Progress - Not a DMTF Standard Version 1.2.0b

transport-level address at which the resource instances are made accessible. 5522

It is recommended that client applications not include any SOAP header content in the wsmid:Identify 5523
operation delivered to the transport address against which the inquiry is being made. If SOAP header 5524
elements are present, the s:mustUnderstand attribute on all such elements can be set to "false". 5525
Doing otherwise reduces the likelihood of a successful, version-independent response from the 5526
service. 5527

 A service that supports the wsmid:Identify operation shall not require the presence of any R11-2:5528

SOAP header elements in order to dispatch execution of the request. If a service receives a 5529
wsmid:Identify operation that contains unexpected or unsupported header content with the 5530
s:mustUnderstand attribute set to "false", the service shall not fault the request and shall process 5531
the body of the request as though the header elements were not present. 5532

 A service that is processing the wsmid:Identify request should not request the presence R11-3:5533

of any Addressing header values, including the wsa:Action URI. 5534

The entire purpose of this mechanism is to be able to identify the presence of specific versions of 5535
WS-Management (and the corresponding dependent protocols) in a version-independent manner. 5536

Because Addressing is not used, the address to which this message is delivered is defined entirely at 5537
the transport level and not present in the SOAP content. 5538

If a client does not have any prior knowledge about a service including credentials, it is desirable to 5539
allow a service to process an Identify message without requiring authentication. 5540

 A service that supports the wsmid:Identify operation may expose this operation without R11-4:5541

requiring client or server authentication in order to process the message. In the absence of other 5542
requirements, it is recommended that the network address be suffixed by the token sequence 5543
/wsman-anon/identify. 5544

Services that support unauthenticated wsmid:Identify requests might choose not to reveal descriptive 5545
information about protocol, vendor, or other versioning information that could potentially represent or 5546
contribute to a vulnerability. To accommodate this scenario, this specification defines a URI that 5547
services can use in place of a valid WS-Management protocol version URI. This value can be 5548
returned as a value for the wsmid:ProtocolVersion element of the wsmid:IdentifyResponse message. 5549

 A service supporting an unauthenticated wsmid:Identify message may respond using the R11-5:5550

following URI for the value of the wsmid:ProtocolVersion element: 5551

http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity/NoAnonymousDisclosure 5552

 A service that provides unauthenticated access to the wsmid:Identify operation but does R11-6:5553

not respond to such requests with the WS-Management protocol versions that are supported by 5554
the service shall support authenticated access to the wsmid:Identify operation. Such services 5555
shall respond to authenticated requests with the WS-Management protocol version identifiers for 5556
each version of the WS-Management protocol supported by the service. 5557

12 Security 5558

12.1 General 5559

In general, management operations and responses need to be protected against attacks such as 5560
snooping, interception, replay, and modification during transmission. Authenticating the user who has 5561
sent a request is also generally necessary so that access control rules can be applied to determine 5562
whether to process a request. 5563

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 129

This specification establishes the minimum interoperation standards and predefined profiles using 5564
transport-level security. 5565

This approach provides the best balance between simple implementations (HTTP and HTTPS stacks 5566
are readily available, even for hardware) and the security mechanisms that sit in front of any SOAP 5567
message processing, limiting the attack surface. 5568

 More sophisticated transport and SOAP-level profiles, published separately from this specification, 5569
may be defined and used. 5570

Implementations that expect to interoperate can adopt one or more of the transport and security 5571
models defined in this clause and are free to define any additional profiles under different URI-based 5572
designators. 5573

12.2 Security Profiles 5574

For this specification, a profile is any arbitrary mix of transport or SOAP behavior that describes a 5575
common security need. In some cases, the profile is defined for documentation and metadata 5576
purposes, but might not be part of the actual message exchange. Rather, it describes the message 5577
exchange involved. 5578

Metadata retrieval can be employed to discover which profiles the service supports, and that is 5579
beyond the scope of this particular specification. 5580

For all predefined profiles, the transport is responsible for all message integrity, protection, 5581
authentication, and security. 5582

This specification makes no assumptions about the security requirements of the applications that use 5583
WS-Eventing. However, once those requirements have been satisfied within a given operational 5584
context, the addition of WS-Eventing to this operational context cannot undermine the fulfillment of 5585
those requirements; the use of WS-Eventing SHOULD NOT create additional attack vectors within an 5586
otherwise secure system. 5587

The authentication profiles do not appear in the SOAP traffic, with the exception of the Subscribe 5588
message when using any delivery mode that causes a new connection to be created from the event 5589
source to the event sink (push and batched modes, for example). When a subscription is created, the 5590
authentication technique for event-delivery needs to be specified by the subscriber, because the 5591
event sink has to authenticate the event source (acting as publisher) at event delivery-time. 5592

In this specification, security profiles are identified by a URI. As profiles are defined, they can be 5593
assigned a URI and published. WS-Management defines a set of standardized security profiles for 5594
the common transports HTTP and HTTPS as described in C.3.1. 5595

12.3 Security Considerations for Event Subscriptions 5596

When specifying the NotifyTo address in subscriptions, it is often important to hint to the service 5597
about which authentication model to use when delivering the event. 5598

If no hints are present, the service can simply infer from the wsa:To address what needs to be done. 5599
However, if the service can support multiple modes and has a certificate or password store, it might 5600
not know which authentication model to choose or which credentials to use without being told in the 5601
subscription. 5602

WS-Management provides a default mechanism to communicate the desired authentication mode 5603
and credentials. However, more sophisticated mechanisms are beyond the scope of this version of 5604
WS-Management. For example, the event sink service could export metadata that describes the 5605
available options, allowing the publisher to negotiate an appropriate option. Extension profiles can 5606
define other mechanisms enabled through a SOAP header with mustUnderstand=”true”. 5607

Web Services for Management (WS-Management) Specification DSP0226

130 Work in Progress - Not a DMTF Standard Version 1.2.0b

WS-Management defines an additional field in the Delivery block that can communicate 5608
authentication information, as shown in the following outline: 5609

(1) <s:Body> 5610
(2) <wsme:Subscribe> 5611
(3) <wsme:Delivery> 5612
(4) <wsme:NotifyTo> Delivery EPR </wsme:NotifyTo> 5613
(5) <wsman:Auth Profile="authentication-profile-URI"/> 5614
(6) </wsme:Delivery> 5615
(7) </wsme:Subscribe> 5616
(8) </s:Body> 5617

The following definitions provide additional, normative constraints on the preceding outline: 5618

wsman:Auth 5619

block that contains authentication information to be used by the service (acting as publisher) 5620
when authenticating to the event sink at event delivery time 5621

wsman:Auth/@Profile 5622

a URI that indicates which security profile to use when making the connection to deliver events 5623

If the wsman:Auth block is not present, by default the service infers what to do by using the NotifyTo 5624
address and any preconfigured policy or settings it has available. If the wsman:Auth block is present 5625
and no security-related tokens are communicated, the service needs to know which credentials to use 5626
by its own internal configuration. 5627

If the service is already configured to use a specific certificate when delivering events, the subscriber 5628
can request standard mutual authentication, as shown in the following outline: 5629

(1) <s:Body> 5630
(2) <wsme:Subscribe> 5631
(3) <wsme:Delivery> 5632
(4) <wsme:NotifyTo> HTTPS address </wsme:NotifyTo> 5633
(5) <wsman:Auth 5634
(6) Profile="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 5635

 mutual"/> 5636
(7) </wsme:Delivery> 5637
(8) </wsme:Subscribe> 5638
(9) </s:Body> 5639

If the service knows how to retrieve a proper user name and password for event delivery, simple 5640
HTTP Basic or Digest authentication can be used, as shown in the following outline: 5641

(1) <s:Body> 5642
(2) <wsme:Subscribe> 5643
(3) <wsme:Delivery> 5644
(4) <wsme:NotifyTo> HTTP address </wsme:NotifyTo> 5645
(5) <wsman:Auth 5646
(6) Profile="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/ 5647

 digest"/> 5648
(7) </wsme:Delivery> 5649
(8) </wsme:Subscribe> 5650
(9) </s:Body> 5651

Services are not required to support any specific profile. The rest of this clause defines special-case 5652
profiles for event delivery in which the service needs additional information to select the proper 5653
credentials to use when delivering events. 5654

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 131

12.4 Including Credentials with a Subscription 5655

This clause intentionally left blank. 5656

12.5 Correlating Events with a Subscription 5657

In many cases, the subscriber will want to ensure that the event delivery corresponds to a valid 5658
subscription issued by an authorized party. In this case, it is recommended that reference parameters 5659
be introduced into the NotifyTo definition. 5660

EXAMPLE: At subscription time, a UUID could be supplied as a correlation token: 5661

(1) <s:Body> 5662
(2) <wsme:Subscribe> 5663
(3) <wsme:Delivery> 5664
(4) <wsme:NotifyTo> 5665
(5) <wsa:Address> address <wsa:Address> 5666
(6) <wsa:ReferenceParameters> 5667
(7) <MyNamespace:uuid> 5668
(8) uuid:b0f685ec-e5c9-41b5-b91c-7f580419093e 5669
(9) </MyNamespace:uuid> 5670
(10) </wsa:ReferenceParameters> 5671
(11) </wsme:NotifyTo> 5672
(12) ... 5673
(13) </wsme:Delivery> 5674
(14) ... 5675
(15) </wsme:Subscribe> 5676
(16) </s:Body> 5677

This definition requires that the service include the MyNamespace:uuid value as a SOAP header with 5678
each event delivery (see 5.1). The service can use this value to correlate the event with any 5679
subscription that it issued and to validate its origin. 5680

This is not a transport-level or SOAP-level authentication mechanism as such, but it does help to 5681
maintain and synchronize valid lists of subscriptions and to determine whether the event delivery is 5682
authorized, even though the connection itself could have been authenticated. 5683

This mechanism still can require the presence of the wsman:Auth block to specify which security 5684
mechanism to use to actually authenticate the connection at event-time. 5685

Each new subscription can receive at least one unique reference parameter that is never reused, 5686
such as the illustrated UUID, for this mechanism to be of value. 5687

Other reference parameters can be present to help route and correlate the event delivery as required 5688
by the subscriber. 5689

12.6 Transport-Level Authentication Failure 5690

Because transports typically go through their own authentication mechanisms prior to any SOAP 5691
traffic occurring, the first attempt to connect might result in a transport-level authentication failure. In 5692
such cases, SOAP faults will not occur, and the means of communicating the denial to the client is 5693
implementation- and transport-specific. 5694

12.7 Security Implications of Third-Party Subscriptions 5695

Without proper authentication and authorization, WS-Management implementations can be 5696
vulnerable to distributed denial-of-service attacks through third-party subscriptions to events. This 5697
vulnerability is discussed in 10.10. 5698

Web Services for Management (WS-Management) Specification DSP0226

132 Work in Progress - Not a DMTF Standard Version 1.2.0b

13 Transports and Message Encoding 5699

This clause describes encoding rules that apply to all transports. 5700

13.1 SOAP 5701

WS-Management qualifies the use of SOAP as indicated in this clause. 5702

 A service shall at least receive and send SOAP 1.2 SOAP Envelopes. R13.1-1:5703

 A service may reject a SOAP Envelope with more than 32,767 octets. R13.1-2:5704

 A service should not send a SOAP Envelope with more than 32,767 octets unless the R13.1-3:5705

client has specified a wsman:MaxEnvelopeSize header that overrides this limit. 5706

Large SOAP Envelopes are expected to be serialized using attachments. 5707

 Any Request Message may be encoded using either Unicode 3.0 (UTF-16) or UTF-8 R13.1-4:5708

encoding. A service shall accept the UTF-8 encoding type for all operations and should accept 5709
UTF-16 as well. 5710

 A service shall emit Responses using the same encoding as the original request. If the R13.1-5:5711

service does not support the requested encoding or cannot determine the encoding, it should use 5712
UTF-8 encoding to return a wsman:EncodingLimit fault with the following detail code: 5713

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/CharacterSet 5714

 For UTF-8 encodings, the service may fail to process any message that begins with the R13.1-6:5715

UTF-8 BOM (0xEF 0xBB 0xBF), and shall send UTF-8 responses without the BOM. 5716

The presence of BOM in 8-bit character encodings reduces interoperation. Where extended 5717
characters are a requirement, UTF-16 can be used. 5718

 If UTF-16 is the encoding, the service shall support either byte-order mark (BOM) R13.1-7:5719

U+FEFF (big-endian) or U+FFFE (little-endian) as defined in the Unicode 3.0 specification as the 5720
first character in the message (see the Unicode BOM FAQ). 5721

 If a request includes contradictory encoding information in the BOM and HTTP charset R13.1-8:5722

header or if the information does not fully specify the encoding, the service shall fault with an 5723
HTTP status of "bad request message" (400). 5724

Repeated headers with the same QName but different values that imply contradictory behavior are 5725
considered a defect originating on the client side of the conversation. Returning a fault helps identify 5726
faulty clients. However, an implementation might be resource-constrained and unable to detect 5727
duplicate headers, so the repeated headers can be ignored. Repeated headers with the same 5728
QName that contains informational or non-contradictory instructions are possible, but none are 5729
defined by this specification or its dependencies. 5730

 If a request contains multiple SOAP headers with the same QName from R13.1-9:5731

WS-Management, Addressing, or clause 10 of this specification, the service should not process 5732
them and should issue a wsa:InvalidMessageInformationHeaders fault if they are detected. (No 5733
SOAP headers are defined in clause 7 "Resource Access" or clause 8 "Enumeration of 5734
Datasets".) 5735

 By default, a compliant service should not fault requests with leading and trailing R13.1-10:5736

whitespace in XML element values and should trim such whitespace by default as if the 5737
whitespace had not occurred. Services should not emit messages containing leading or trailing 5738

http://www.unicode.org/faq/utf_bom.html#BOM

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 133

whitespace within element values unless the whitespace values are properly part of the value. If 5739
the service cannot accept whitespace usage within a message because the XML schema 5740
establishes other whitespace usage, the service should emit a wsman:EncodingLimit fault with 5741
the following detail code: 5742

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Whitespace 5743

Clients can send messages with leading or trailing whitespace in the values, and services are 5744
permitted to eliminate unneeded "cosmetic" whitespace on both sides of the element value without 5745
faulting. (See XML Schema Part 2: Datatypes.) 5746

 Services should not fault messages that contain XML comments, because this is part R13.1-11:5747

of the XML standard. Services may emit messages that contain comments that relate to the origin 5748
and processing of the message or add comments for debugging purposes. 5749

13.2 Lack of Response 5750

If an operation succeeds but a response cannot be computed or actually delivered because of run-5751
time difficulties or transport problems, no response is sent and the connection is terminated. 5752

This behavior is preferable to attempting a complex model for sending responses in a delayed 5753
fashion. Implementations can generally keep a log of all requests and their results, and allow the 5754
client to reconnect later to enumerate the operation log (using Enumerate) if it failed to get a 5755
response. The format and behavior of such a log is beyond the scope of this specification. In any 5756
case, the client needs to be coded to take into account a lack of response; all abnormal message 5757
conditions can safely revert to this scenario. 5758

 If correct responses or faults cannot be computed or generated due to internal service R13.2-1:5759

failure, a response should not be sent. 5760

Regardless, the client has to deal with cases of no response, so the service can simply force the 5761
client into that mode rather than send a response or fault that is not defined in this specification. 5762

13.3 Replay of Messages 5763

This section intentionally left blank. 5764

 This rule intentionally left blank. R13.3-1:5765

13.4 Encoding Limits 5766

Most of the following limits are in characters. However, the maximum overall SOAP envelope size is 5767
defined in octets. Implementations are free to exceed these limits. A service is considered conformant 5768
if it observes these limits. Any limit violation results in a wsman:EncodingLimit fault. 5769

 A service may fail to process any URI with more than 2048 characters and should R13.4-1:5770

return a wsman:EncodingLimit fault with the following detail code: 5771

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/URILimitExceeded 5772

 A service should not generate a URI with more than 2048 characters. R13.4-2:5773

 A service may fail to process an Option Name of more than 2048 characters. R13.4-3:5774

 A service may fail to process an Option value of more than 4096 characters. R13.4-4:5775

 A service may fault any operation that would require a single reply exceeding 32,767 R13.4-5:5776

octets. 5777

Web Services for Management (WS-Management) Specification DSP0226

134 Work in Progress - Not a DMTF Standard Version 1.2.0b

 A service may always emit faults that are 4096 octets or less in length, regardless of R13.4-6:5778

any requests by the client to limit the response size. Clients need to be prepared for this minimum 5779
in case of an error. 5780

 When the default addressing model is in use, a service may fail to process a Selector R13.4-7:5781

Name of more than 2048 characters. 5782

 A service may have a maximum number of selectors that it can process. If the request R13.4-8:5783

contains more selectors than this limit, the service should return a wsman:EncodingLimit fault 5784
with the following detail code: 5785

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/SelectorLimit 5786

 A service may have a maximum number of options that it can process. If the request R13.4-9:5787

contains more options than this limit, the service should return a wsman:EncodingLimit fault with 5788
the following detail code: 5789

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OptionLimit 5790

13.5 Binary Attachments 5791

SOAP Message Transmission Optimization Mechanism (MTOM) is used to support binary 5792
attachments to WS-Management. If a service supports attachments, the following rules apply: 5793

 A conformant service may optionally support binary attachments to any operation using R13.5-1:5794

the SOAP MTOM proposal. 5795

 If a service supports attachments, the service shall support the Abstract Transmission R13.5-2:5796

Optimization Feature. 5797

 If a service supports attachments, the service shall support the Optimized MIME R13.5-3:5798

Multipart Serialization Feature. 5799

Other attachment types are not prohibited. Specific transports can impose additional encoding rules. 5800

13.6 Case-Sensitivity 5801

While XML and SOAP are intrinsically case-sensitive with regard to schematic elements, 5802
WS-Management can be used with many underlying systems that are not intrinsically case-sensitive. 5803
This support primarily applies to values, but can also apply to schemas that are automatically and 5804
dynamically generated from other sources. 5805

A service can observe any case usage required by the underlying execution environment. 5806

The only requirement is that messages are able to pass validation tests against any schema 5807
definitions. At any time, a validation engine could be interposed between the client and server in the 5808
form of a proxy, so schematically valid messages are a practical requirement. 5809

Otherwise, this specification makes no requirements as to case usage. A service is free to interpret 5810
values in a case-sensitive or case-insensitive manner. 5811

It is recommended that case usage not be altered in transit by any part of the WS-Management 5812
processing chain. The case usage established by the sender of the message is to be retained 5813
throughout the lifetime of that message. 5814

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 135

14 Faults 5815

Many of the operations outlined in WS-Management can generate faults. This clause describes how 5816
these faults should be formatted into SOAP messages. 5817

14.1 Introduction 5818

Faults are returned when the SOAP message is successfully delivered by the transport and 5819
processed by the service, but the message cannot be processed properly. If the transport cannot 5820
successfully deliver the message to the SOAP processor, a transport error occurs. 5821

 A service should support only SOAP 1.2 (or later) faults. R14.1-1:5822

Generally, faults are not to be issued unless they are expected as part of a request-response pattern. 5823
For example, it would not be valid for a client to issue a Get message, receive the GetResponse 5824
message, and then fault that response. 5825

14.2 Fault Encoding 5826

This clause discusses XML fault encoding. 5827

 A conformant service shall use the following fault encoding format and normative R14.2-1:5828

constraints for faults in the WS-Management space or any of its dependent specifications: 5829

(1) <s:Envelope> 5830
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 5831
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 5832
(4) <s:Header> 5833
(5) <wsa:Action> 5834
(6) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault 5835
(7) <wsa:Action> 5836
(8) <wsa:MessageID> 5837
(9) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 5838
(10) </wsa:MessageID> 5839
(11) <wsa:RelatesTo> 5840
(12) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85 5841
(13) </wsa:RelatesTo> 5842
(14) </s:Header> 5843
(15) 5844
(16) <s:Body> 5845
(17) <s:Fault> 5846
(18) <s:Code> 5847
(19) <s:Value> [Code] </s:Value> 5848
(20) <s:Subcode> 5849
(21) <s:Value> [Subcode] </s:Value> 5850
(22) </s:Subcode> 5851
(23) </s:Code> 5852
(24) <s:Reason> 5853
(25) <s:Text xml:lang="en"> [Reason] </s:Text> 5854
(26) </s:Reason> 5855
(27) <s:Detail> 5856
(28) [Detail] 5857
(29) </s:Detail> 5858
(30) </s:Fault> 5859
(31) </s:Body> 5860
(32) </s:Envelope> 5861

Web Services for Management (WS-Management) Specification DSP0226

136 Work in Progress - Not a DMTF Standard Version 1.2.0b

The following definitions provide additional, normative constraints on the preceding outline: 5862

s:Envelope/s:Header/wsa:Action 5863

a valid fault Action URI from the relevant specification that defined the fault 5864

s:Envelope/s:Header/wsa:MessageId 5865

element that shall be present for the fault, like any non-fault message 5866

s:Envelope/s:Header/wsa:RelatesTo 5867

element that shall, like any other reply, contain the MessageID of the original request that 5868
caused the fault 5869

s:Body/s:Fault/s:Value 5870

element that shall be either s:Sender or s:Receiver, as specified in 14.6 in the "Code" field 5871

s:Body/s:Fault/s:Subcode/s:Value 5872

for WS-Management-related messages, shall be one of the subcode QNames defined in 14.6 5873

If the service exposes custom methods or other messaging, this value may be another QName 5874
not in the Master Faults described in 14.6. 5875

s:Body/s:Fault/s:Reason 5876

optional element that should contain localized text that explains the fault in more detail 5877

Typically, this text is extracted from the "Reason" field in the Master Fault tables (14.6). 5878
However, the text may be adjusted to reflect a specific circumstance. This element may be 5879
repeated for multiple languages. The xml:lang attribute shall be present on the s:Text element. 5880

s:Body/s:Fault/s:Detail 5881

optional element that should reflect the recommended content from the Master Fault tables 5882
(14.6) 5883

The preceding fault template is populated by examining entries from the Master Fault tables in 14.6, 5884
which includes all relevant faults from WS-Management and its underlying specifications. 5885

s:Reason and s:Detail are always optional, but they are recommended. In addition, s:Reason/s:Text 5886
contains an xml:lang attribute to indicate the language used in the descriptive text. 5887

: Fault wsa:Action URI values vary from fault to fault. The service shall issue a fault R14.2-25888

using the correct URI, based on the specification that defined the fault. Faults defined in this 5889
specification shall have the following URI value: 5890

http://schemas.dmtf.org/wbem/wsman/1/wsman/fault 5891

The Master Fault tables in 14.6 contain the relevant wsa:Action URIs. The URI values are directly 5892
implied by the QName for the fault. 5893

14.3 NotUnderstood Faults 5894

There is a special case for faults relating to mustUnderstand attributes on SOAP headers. SOAP 5895
specifications define the fault differently than the encoding in 14.2 (see 5.4.8 in SOAP 1.2). In 5896
practice, the fault varies only in indicating the SOAP header that was not understood, the QName, 5897
and the namespace (see line 5 in the following outline). 5898

(1) <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" 5899
(2) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 5900
(3) 5901
(4) <s:Header> 5902
(5) <s:NotUnderstood qname="QName of header" xmlns:ns="XML namespace of 5903

 header"/> 5904

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 137

(6) <wsa:Action> 5905
(7) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault 5906
(8) </wsa:Action> 5907
(9) <wsa:MessageID> 5908
(10) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 5909
(11) </wsa:MessageID> 5910
(12) <wsa:RelatesTo> 5911
(13) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85 5912
(14) </wsa:RelatesTo> 5913
(15) </s:Header> 5914
(16) 5915
(17) <s:Body> 5916
(18) <s:Fault> 5917
(19) <s:Code> 5918
(20) <s:Value>s:MustUnderstand</s:Value> 5919
(21) </s:Code> 5920
(22) <s:Reason> 5921
(23) <s:Text xml:lang="en-US">Header not understood</s:Text> 5922
(24) </s:Reason> 5923
(25) </s:Fault> 5924
(26) </s:Body> 5925
(27) 5926
(28) </s:Envelope> 5927

The preceding fault template can be used in all cases of failure to process mustUnderstand attributes. 5928
Lines 5–8 show the important content, indicating which header was not understood and including a 5929
generic wsa:Action that specifies that the current message is a fault. 5930

The wsa:RelatesTo element is included so that the client can correlate the fault with the original 5931
request. Over transports other than HTTP in which requests might be interlaced, this might be the 5932
only way to respond to the correct sender. 5933

If the original wsa:MessageID itself is faulty and the connection is request-response oriented, the 5934
service can attempt to send back a fault without the wsa:RelatesTo field, or can simply fail to 5935
respond, as discussed in 14.4. 5936

14.4 Degenerate Faults 5937

In rare cases, the SOAP message might not contain enough information to properly generate a fault. 5938
For example, if the wsa:MessageID is garbled, the service will have difficulty returning a fault that 5939
references the original message. Some transports might not be able to reference the sender to return 5940
the fault. 5941

If the transport guarantees a simple request-response pattern, the service can send back a fault with 5942
no wsa:RelatesTo field. However, in some cases, there is no guarantee that the sender can be 5943
reached (for example, if the wsa:FaultTo contains an invalid address, so there is no way to deliver the 5944
fault). 5945

In all cases, the service can revert to the rules of 13.3, in which no response is sent. The service can 5946
attempt to log the requests in some way to help identify the defective client. 5947

14.5 Fault Extensibility 5948

A service can include additional fault information beyond what is defined in this specification. The 5949
appropriate extension element is the s:Detail element, and the service-specific XML can appear at 5950
any location within this element, provided that it is properly mapped to an XML namespace that 5951
defines the schema for that content. WS-Management makes use of this extension technique for the 5952
wsman:FaultDetail URI values, as shown in the following outline: 5953

Web Services for Management (WS-Management) Specification DSP0226

138 Work in Progress - Not a DMTF Standard Version 1.2.0b

(1) <s:Detail> 5954
(2) <wsman:FaultDetail>... </wsman:FaultDetail> 5955
(3) <ExtensionData xmlns="vendor-specific-namespace">...</ExtensionData> 5956
(4) ... 5957
(5) </s:Detail> 5958

The extension data elements can appear before or after any WS-Management-specific extensions 5959
mandated by this specification. More than one extension element is permitted. 5960

14.6 Master Faults 5961

This clause includes all faults from this specification and all underlying specifications. This list is the 5962
normative fault list for WS-Management. 5963

 A service shall return faults from the following list when the operation that caused them R14.6-1:5964

was a message in this specification for which faults are specified. A conformant service may 5965
return other faults for messages that are not part of WS-Management. 5966

It is critical to client interoperation that the same fault be used in identical error cases. If each service 5967
returns a distinct fault for "Not Found", for example, constructing interoperable clients would be 5968
impossible. In Table 5 through Table 43, the source specification of a fault is based on its QName. 5969

Table 5 – wsman:AccessDenied 5970

Fault Subcode wsman:AccessDenied

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The sender was not authorized to access the resource.

Detail None

Comments This fault is returned generically for all access denials that relate to authentication or
authorization failures. This fault does not indicate locking or concurrency conflicts or other
types of denials unrelated to security by itself.

Applicability Any message

Remedy The client acquires the correct credentials and retries the operation.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 139

Table 6 – wsa:ActionNotSupported 5971

Fault Subcode wsa:ActionNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason The action is not supported by the service.

Detail <s:Detail>

 <wsa:Action> Incorrect Action URI </wsa:Action>
</s:Detail>

<!-- The unsupported Action URI is returned, if possible -->

Comments This fault means that the requested action is not supported by the implementation.

As an example, read-only implementations (supporting only Get and Enumerate) return this
fault for any operations other than these two.

If the implementation never supports the action, the fault can be generated as shown in the
"Detail" row of this table. However, if the implementation supports the action in a general
sense, but it is not an appropriate match for the resource, an additional detail code can be
added to the fault, as follows:

 <s:Detail>

 <wsa:Action> The offending Action URI </wsa:Action>

 <wsman:FaultDetail>

 http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ActionMismatch

 </wsman:FaultDetail>
 </s:Detail>

This situation can occur when the implementation supports Put, for example, but the client
attempts to update a read-only resource.

Applicability All messages

Remedy The client consults metadata provided by the service to determine which operations are
supported.

Table 7 – wsman:AlreadyExists 5972

Fault Subcode wsman:AlreadyExists

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The sender attempted to create a resource that already exists.

Detail None

Comments This fault is returned in cases where the user attempted to create a resource that already
exists.

Applicability Create

Remedy The client uses Put or creates a resource with a different identity.

Web Services for Management (WS-Management) Specification DSP0226

140 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 8 – wsmen:CannotProcessFilter 5973

Fault Subcode wsmen:CannotProcessFilter

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filter could not be processed.

Detail <s:Detail>

 <wsman:SupportedSelectorName> Valid selector name for use in filter expression
</wsman:SupportedSelectorName> *

</s:Detail>

Comments This fault is returned for syntax errors or other semantic problems with the filter.

For use with the SelectorFilter dialect (see ANNEX E), the service can include one or more
SupportedSelectorName elements to provide a list of supported selector names in the event
that the client has requested filtering on one or more unsupported selector names.

If the filter is valid, but the service cannot execute the filter due to misconfiguration, lack of
resources, or other service-related problems, more specific faults can be returned, such as
wsman:QuotaLimit or wsman:InternalError.

Applicability Enumerate

Remedy The client fixes the filter problem and tries again.

Table 9 – wsman:CannotProcessFilter 5974

Fault Subcode wsman:CannotProcessFilter

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The requested filter could not be processed.

Detail <s:Detail>

 <wsman:SupportedSelectorName> Valid selector name for use in filter expression
</wsman:SupportedSelectorName> *

</s:Detail>

Comments This fault is returned for syntax errors or other semantic problems with the filter such as
exceeding the subset supported by the service.

For use with the SelectorFilter dialect (see ANNEX E), the service can include one or more
SupportedSelectorName elements to provide a list of supported selector names in the event
that the client has requested filtering on one or more unsupported selector names.

If the filter is valid, but the service cannot execute the filter due to misconfiguration, lack of
resources, or other service-related problems, more specific faults can be returned, such as
wsman:QuotaLimit, wsman:InternalError, or wsme:EventSourceUnableToProcess.

Applicability Subscribe, fragment-level resource access operations

Remedy The client fixes the filter problem and tries again.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 141

Table 10 – wsman:Concurrency 5975

Fault Subcode wsman:Concurrency

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The action could not be completed due to concurrency or locking problems.

Detail None

Comments This fault means that the requested action could not be carried out either due to internal
concurrency or locking problems or because another user is accessing the resource.

This fault can occur if a resource is being enumerated using Enumerate and another client
attempts operations such as Delete, which would affect the result of the enumeration in
progress.

Applicability All messages

Remedy The client waits and tries again.

Table 11 – wsme:DeliveryModeRequestedUnavailable 5976

Fault Subcode wsme:DeliveryModeRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested delivery mode is not supported.

Detail <s:Detail>

 <wsme:SupportedDeliveryMode>... </wsme:SupportedDeliveryMode>

 <wsme:SupportedDeliveryMode>...</wsme:SupportedDeliveryMode>

 ...
</s:Detail>

<!-- This is a simple, optional list of one or more supported delivery mode URIs. It may be
left empty. -->

Comments This fault is returned for unsupported delivery modes for the specified resource.

If the stack supports the delivery mode in general, but not for the specific resource, this fault
is still returned.

Other resources might support the delivery mode. The fault does not imply that the delivery
mode is not supported by the implementation.

Applicability Subscribe

Remedy The client selects one of the supported delivery modes.

Web Services for Management (WS-Management) Specification DSP0226

142 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 12 – wsman:DeliveryRefused 5977

Fault Subcode wsman:DeliveryRefused

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The receiver refuses to accept delivery of events and requests that the subscription be
canceled.

Detail None

Comments This fault is returned by event receivers to force a cancellation of a subscription.

This fault can happen when the client tried to Unsubscribe, but failed, or when the client lost
knowledge of active subscriptions and does not want to keep receiving events that it no
longer owns. This fault can help clean up spurious or leftover subscriptions when clients are
reconfigured or reinstalled and their previous subscriptions are still active.

Applicability Any event delivery message in any mode

Remedy The service stops delivering events for the subscription and cancels the subscription,
sending any applicable SubscriptionEnd messages.

Table 13 – wsa:DestinationUnreachable 5978

Fault Subcode wsa:DestinationUnreachable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason No route can be determined to reach the destination role defined by the Addressing To
header.

Detail <s:Detail>

 <wsman:FaultDetail>
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI
</wsman:FaultDetail> ?

</s:Detail>

When the default addressing model is in use, the wsman:FaultDetail field may contain
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI.

Comments This fault is returned as the general "Not Found" case for a resource, in which the resource
EPR cannot be mapped to the real-world resource.

This fault is not used merely to indicate that the resource is temporarily offline, which is
indicated by wsa:EndpointUnavailable.

Applicability All request messages

Remedy The client attempts to diagnose the version of the service, query any metadata, and perform
other diagnostic operations to determine why the request cannot be routed.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 143

Table 14 – wsman:EncodingLimit 5979

Fault Subcode wsman:EncodingLimit

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason An internal encoding limit was exceeded in a request or would be violated if the message
were processed.

Detail <s:Detail>

 <wsman:FaultDetail>

 Optional; one of the following enumeration values

 </wsman:FaultDetail>

 ...any service-specific additional XML content...

</s:Detail>

Possible enumeration values in the <wsman:FaultDetail> element are as follows:

Unsupported character set:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/CharacterSet

Unsupported MTOM or other encoding types:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EncodingType

Requested maximum was too large:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

Requested maximum envelope size was too small:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MinimumEnvelopeLimit

Too many options:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OptionLimit

Used when the default addressing model is in use and indicates that too many selectors
were used for the corresponding ResourceURI:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/SelectorLimit

Service reached its own internal limit when computing response:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ServiceEnvelopeLimit

Operation succeeded and cannot be reversed, but result is too large to send:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess

Request contained a character outside of the range that is supported by the service:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnsupportedCharacter

URI was too long:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/URILimitExceeded

Client-side whitespace usage is not supported:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Whitespace

Comments This fault is returned when a system limit is exceeded, whether a published limit or a
service-specific limit.

Applicability All request messages

Remedy The client sends messages that fit the encoding limits of the service.

Table 15 – wsa:EndpointUnavailable 5980

Fault Subcode wsa:EndpointUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Receiver

Reason The specified endpoint is currently unavailable.

Web Services for Management (WS-Management) Specification DSP0226

144 Work in Progress - Not a DMTF Standard Version 1.2.0b

Detail <s:Detail>

 <wsa:RetryAfter> xs:duration </wsa:RetryAfter> <!-- optional -->

 ...optional service-specific XML content

 <wsman:FaultDetail> A detail URI value </wsman:FaultDetail>

</s:Detail>

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ResourceOffline
Used when the resource is known, but temporarily unavailable

Comments This fault is returned if the message was correct and the EPR was valid, but the specified
resource is offline.

In practice, it is difficult for a service to distinguish between "Not Found" cases and "Offline"
cases. In general, wsa:DestinationUnreachable is preferable.

Applicability All request messages

Remedy The client can retry later, after the resource is again online.

Table 16 – wsman:EventDeliverToUnusable 5981

Fault Subcode wsman:EventDeliverToUnusable

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The event source cannot process the subscription because it cannot connect to the event
delivery endpoint as requested in the Delivery element.

Detail <s:Detail>

 ...any service-specific content to identify the error...

</s:Detail>

Comments This fault is limited to cases of connectivity issues in contacting the “deliver to” address.
These issues include:

 The NotifyTo address is not usable because it is incorrect (system or device not
reachable, badly formed address, and so on).

 Permissions cannot be acquired for event delivery (for example, the wsman:Auth
element does not refer to a supported security profile, and so on).

 The credentials associated with the NotifyTo are not valid (for example, the account
does not exist, the certificate thumbprint is not a hex string, and so on).

The service can include extra information that describes the connectivity error to help in
troubleshooting the connectivity problem.

Applicability Subscribe

Remedy The client ensures connectivity from the service computer back to the event sink including
firewalls and authentication/authorization configuration.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 145

Table 17 – wsme:EventSourceUnableToProcess 5982

Fault Subcode wsme:EventSourceUnableToProcess

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Receiver

Reason The event source cannot process the subscription.

Detail None

Comments This event source is not capable of fulfilling a Subscribe request for local reasons unrelated
to the specific request.

Applicability Subscribe

Remedy The client retries the subscription later.

Table 18 – wsmen:FilterDialectRequestedUnavailable 5983

Fault Subcode wsmen:FilterDialectRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filtering dialect is not supported.

Detail <s:Detail>

 <wsmen:SupportedDialect> </wsmen:SupportedDialect> +

</s:Detail>

Comments This fault is returned when the client requests a filter type or query language not supported
by the service.

The filter dialect can vary from resource to resource or can apply to the entire service.

Applicability Enumerate

Remedy The client switches to a supported dialect or performs a simple enumeration with no filter.

Table 19 – wsme:FilteringNotSupported 5984

Fault Subcode wsme:FilteringNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason Filtering over the event source is not supported.

Detail None

Comments This fault is returned when the service does not support filtered subscriptions for the
specified event source, but supports only simple delivery of all events for the resource.

NOTE: The service might support filtering over a different event resource or might not support filtering
for any resource. The same fault applies.

Applicability Subscribe

Remedy The client subscribes using unfiltered delivery.

Web Services for Management (WS-Management) Specification DSP0226

146 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 20 – wsmen:FilteringNotSupported 5985

Fault Subcode wsmen:FilteringNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason Filtered enumeration is not supported.

Detail None

Comments This fault is returned when the service does not support filtering of enumerations at all, but
supports only simple enumeration. If enumeration as a whole is not supported, the correct
fault is wsa:ActionNotSupported.

NOTE: The service might support filtering over a different enumerable resource or might not support
filtering for any resource. The same fault applies.

Applicability Enumerate

Remedy The client switches to a simple enumeration.

Table 21 – wsme:FilteringRequestedUnavailable 5986

Fault Subcode wsme:FilteringRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested filter dialect is not supported.

Detail <s:Detail>

 <wsme:SupportedDialect>.. </wsme:SupportedDialect> +

 <wsman:FaultDetail> ..the following URI, if applicable </wsman:FaultDetail>

</s:Detail>

Possible URI value:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired

Comments This fault is returned when the client requests a filter dialect not supported by the service.

In some cases, a subscription requires a filter because the result of an unfiltered
subscription may be infinite or extremely large. In these cases, the URI
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired needs to be
included in the s:Detail element.

Applicability Subscribe

Remedy The client switches to a supported filter dialect or uses no filtering.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 147

Table 22 – wsman:FragmentDialectNotSupported 5987

Fault Subcode wsman:FragmentDialectNotSupported

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The requested fragment filtering dialect or language is not supported.

Detail <s:Detail>

 <wsman:FragmentDialect> xs:anyURI </wsman:FragmentDialect>

 <wsman:FragmentDialect> xs:anyURI </wsman:FragmentDialect>

</s:Detail>

The preceding optional URI values indicate supported dialects.

Comments This fault is returned when the service does not support the requested fragment-level
filtering dialect.

If the implementation supports the fragment dialect in general, but not for the specific
resource, this fault is still returned.

Other resources might support the fragment dialect. This fault does not imply that the
fragment dialect is not supported by the implementation.

Applicability Enumerate, Get, Create, Put, Delete

Remedy The client uses a supported filtering dialect or no filtering.

Table 23 – wsman:InternalError 5988

Fault Subcode wsman:InternalError

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The service cannot comply with the request due to internal processing errors.

Detail <s:Detail>

 ...service-specific extension XML elements....

<s:Detail>

Comments This fault is a generic error for capturing internal processing errors within the service. For
example, this is the correct fault if the service cannot load necessary executable images, its
configuration is corrupted, hardware is not operating properly, or any unknown or
unexpected internal errors occur.

It is expected that the service needs to be reconfigured, restarted, or reinstalled, so merely
asking the client to retry will not succeed.

Applicability All messages

Remedy The client repairs the service out-of-band to WS-Management.

Web Services for Management (WS-Management) Specification DSP0226

148 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 24 – wsman:InvalidBookmark 5989

Fault Subcode wsman:InvalidBookmark

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The bookmark supplied with the subscription is not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

The service is not able to back up and replay from that point:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired

The service is not able to decode the bookmark:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFormat

Comments This fault is returned if a bookmark has expired, is corrupt, or is otherwise unknown.

Applicability Subscribe

Remedy The client issues a new subscription without any bookmarks or locates the correct
bookmark.

Table 25 – wsmen:InvalidEnumerationContext 5990

Fault Subcode wsmen:InvalidEnumerationContext

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The supplied enumeration context is invalid.

Detail None

Comments An invalid enumeration context was supplied with the message. Typically, this fault will
happen with Pull.

The enumeration context may be invalid due to expiration, an invalid format, or reuse of an
old context no longer being tracked by the service.

The service also can return this fault for any case where the enumerator has been
terminated unilaterally on the service side, although one of the more descriptive faults is
preferable, because this usually happens on out-of-memory errors (wsman:QuotaLimit),
authorization failures (wsman:AccessDenied), or internal errors (wsman:InternalError).

Applicability Pull, Release (whether a pull-mode subscription, or a normal enumeration)

Remedy The client abandons the enumeration and lets the service time it out, because Release will
fail as well.

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 149

Table 26 – wsme:InvalidExpirationTime 5991

Fault Subcode wsme:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The expiration time is not valid.

Detail None

Comments The expiration time is not valid at all or within the limits of the service.

This fault is used for outright errors (expirations in the past, for example) or expirations too
far into the future.

If the service does not support expiration times at all, a wsman:UnsupportedFeature fault
can be returned with the correct detail code.

Applicability Subscribe

Remedy The client issues a new subscription with a supported expiration time.

Table 27 – wsmen:InvalidExpirationTime 5992

Fault Subcode wsmen:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The expiration time is not valid.

Detail None

Comments Because WS-Management recommends against implementing the Expiration feature, this
fault might not occur with most implementations.

See clause 8 for more information.

Applicability Enumerate

Remedy Not applicable

Web Services for Management (WS-Management) Specification DSP0226

150 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 28 – wsme:InvalidMessage 5993

Fault Subcode wsme:InvalidMessage

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The request message has unknown or invalid content and cannot be processed.

Detail None

Comments This fault is generally not used in WS-Management, although it can be used for cases not
covered by other faults.

If the content violates the schema, a wsman:SchemaValidationError fault can be sent. If
specific errors occur in the subscription body, one of the more descriptive faults can be
used.

This fault is not to be used to indicate unsupported features, only unexpected or unknown
content in violation of this specification.

Applicability Pub/sub request messages

Remedy The client issues valid messages that comply with this specification.

Table 29 – wsa:InvalidMessageInformationHeader 5994

Fault Subcode wsa:InvalidMessageInformationHeader

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A message information header is not valid, and the message cannot be processed.

Detail <s:Detail>

 ...the invalid header...

</s:Detail>

Comments This fault can occur with any type of SOAP header error. The header might be invalid in
terms of schema or value, or it might constitute a semantic error.

This fault is not to be used to indicate an invalid resource address (a "not found" condition
for the resource), but to indicate actual structural violations of the SOAP header rules in this
specification.

Examples are repeated MessageIDs, missing RelatesTo on a response, badly formed
addresses, or any other missing header content.

Applicability All messages

Remedy The client reformats message using the correct format, values, and number of message
information headers.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 151

Table 30 – wsman:InvalidOptions 5995

Fault Subcode wsman:InvalidOptions

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason One or more options are not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

Comments This fault generically covers all cases where the option names or values are not valid, or
they are used in incorrect combinations.

Applicability All request messages

Remedy The client discovers supported option names and valid values by consulting metadata or
other mechanisms. Such metadata is beyond the scope of this specification.

Table 31 – wsman:InvalidParameter 5996

Fault Subcode wsman:InvalidParameter

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason An operation parameter is not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName

Comments This fault is returned when a parameter to a custom action is not valid.

This fault is a default for new implementations that need to have a generic fault for this case.
The method can also return any specific fault of its own.

Applicability All messages with custom actions

Remedy The client consults the WSDL for the operation and determines how to supply the correct
parameter.

Table 32 – wsmt:InvalidRepresentation 5997

Fault Subcode wsmt:InvalidRepresentation

Action URI http://schemas.xmlsoap.org/ws/2004/09/transfer/fault

Code s:Sender

Reason The XML content is not valid.

Web Services for Management (WS-Management) Specification DSP0226

152 Work in Progress - Not a DMTF Standard Version 1.2.0b

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFragment

Comments This fault may be returned when the input XML is not valid semantically or uses the wrong
schema for the resource.

However, a wsman:SchemaValidationError fault can be returned if the error is related to
XML schema violations as such, as opposed to invalid semantic values.

Note the anomalous case in which a schema violation does not occur, but the namespace is
simply the wrong one; in this case,
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace is returned.

Applicability Put, Create

Remedy The client corrects the request XML.

Table 33 – wsman:InvalidSelectors 5998

Fault Subcode wsman:InvalidSelectors

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The selectors for the resource are not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsufficientSelectors

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnexpectedSelectors

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DuplicateSelectors

Comments This fault covers all cases where the specified selectors were incorrect or unknown for the
specified resource.

Applicability All request messages

Remedy The client retrieves documentation or metadata and corrects the selectors.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 153

Table 34 – wsa:MessageInformationHeaderRequired 5999

Fault Subcode wsa:MessageInformationHeaderRequired

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A required header is missing.

Detail <s:Detail>

 The XML QName of the missing header

</s:Detail>

Comments A required message information header (To, MessageID, or Action) is not present.

Applicability All messages

Remedy The client adds the missing message information header.

Table 35 – wsman:NoAck 6000

Fault Subcode wsman:NoAck

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The receiver did not acknowledge the event delivery.

Detail None

Comments This fault is returned when the client (subscriber) receives an event with a
wsman:AckRequested header and does not (or cannot) acknowledge the receipt. The
service stops sending events and terminates the subscription.

Applicability Any event delivery action (including heartbeats, dropped events, and so on) in any delivery
mode

Remedy For subscribers, the subscription is resubmitted without the acknowledgement option.

For services delivering events, the service cancels the subscription immediately.

Table 36 – wsman:QuotaLimit 6001

Fault Subcode wsman:QuotaLimit

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The service is busy servicing other requests.

Detail None

Comments This fault is returned when the SOAP message is otherwise correct, but the service has
reached a resource or quota limit.

Applicability All messages

Remedy The client can retry later.

Web Services for Management (WS-Management) Specification DSP0226

154 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 37 – wsman:SchemaValidationError 6002

Fault Subcode wsman:SchemaValidationError

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The supplied SOAP violates the corresponding XML schema definition.

Detail None

Comments This fault is used for any XML parsing failure or schema violations.

Full validation of the SOAP against schemas is not expected in real-time, but processors
might in fact notice schema violations, such as type mismatches. In all of these cases, this
fault applies.

In debugging modes where validation is occurring, this fault can be returned for all errors
noted by the validating parser.

Applicability All messages

Remedy The client corrects the message.

Table 38 – wsmen:TimedOut 6003

Fault Subcode wsmen:TimedOut

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The enumerator has timed out and is no longer valid.

Detail None

Comments This fault is not to be used in WS-Management due to overlap with wsman:TimedOut, which
covers all the other messages.

Applicability Pull

Remedy The client can retry the Pull request.

Table 39 – wsman:TimedOut 6004

Fault Subcode wsman:TimedOut

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The operation has timed out.

Detail None

Comments The operation could not be completed within the wsman:OperationTimeout value, or an
internal override timeout was reached by the service while trying to process the request.

This fault is also returned in all enumerations when no content is available for the current
Pull request. Clients can simply retry the Pull request again until a different fault is returned.

Applicability All requests

Remedy The client can retry the operation.

If the operation is a write (delete, create, or custom operation), the client can consult the
system operation log before blindly attempting a retry or attempt a Get or other read
operation to try to discover the result of the previous operation.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 155

Table 40 – wsme:UnableToRenew 6005

Fault Subcode wsme:UnableToRenew

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The subscription could not be renewed.

Detail None

Comments This fault is returned in all cases where the subscription cannot be renewed but is otherwise
valid.

Applicability wsme:Renew

Remedy The client issues a new subscription.

Table 41 – wsme:UnsupportedExpirationType 6006

Fault Subcode wsme:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The specified expiration type is not supported.

Detail None

Comments A specific time for expiration (as opposed to duration) is not supported.
This fault is not to be used if the value itself is incorrect; it is only to be used if the type is not
supported.

Applicability Subscribe

Remedy The client corrects the expiration to use a duration time.

Table 42 – wsmen:UnsupportedExpirationType 6007

Fault Subcode wsmen:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The specified expiration type is not supported.

Detail None

Comments The specified expiration type is not supported. For example, a specific time-based expiration
type might not be supported (as opposed to a duration-based expiration type).

This fault is not to be used if the value itself is incorrect; it is only to be used if the type is not
supported.

Applicability Enumerate

Remedy The client corrects the expiration time or omits it and retries.

Web Services for Management (WS-Management) Specification DSP0226

156 Work in Progress - Not a DMTF Standard Version 1.2.0b

Table 43 – wsman:UnsupportedFeature 6008

Fault Subcode wsman:UnsupportedFeature

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The specified feature is not supported.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Ack

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AsynchronousRequest

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Bookmarks

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DeliveryRetries

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EnumerationMode

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ExpirationTime

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FormatMismatch

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FragmentLevelAccess

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Heartbeats

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsecureAddress

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Locale

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxElements

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopePolicy

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxTime

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OperationTimeout

Comments This fault indicates that an unsupported feature was attempted.

Applicability Any message

Remedy The client corrects or removes the unsupported feature request and retries.

Table 44 – wsme:UnsupportedExpirationType 6009

Fault Subcode wsme:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason Only expiration durations are supported.

Detail None

Comments This fault is sent when a Subscribe request specifies an expiration time and the event
source is only capable of accepting expiration durations; for instance, if the event source
does not have access to absolute time.

Applicability Subscribe, wsme:Renew

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 157

Remedy

Table 45 – wsmen:UnableToRenew 6010

Fault Subcode wsmen:UnableToRenew

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason Text explaining the failure; e.g., "The event source has too many subscribers".

Detail None

Comments This fault is sent when the event source is not capable of fulfilling a Renew request for local
reasons unrelated to the specific request.

Applicability wsmen:Renew

Remedy

Table 46 – wsa:InvalidMessage 6011

Fault Subcode wsa:InvalidMessage

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason The message is not valid and cannot be processed.

Detail The invalid message

Comments If a request message does not comply with the corresponding outline in the previous row,
the request shall fail and the event source or subscription manager may generate this fault
indicating that the request is invalid.

Applicability Subscribe, Renew, wsme:GetStatus, Unsubscribe

Remedy

Table 47 – wsme:CannotProcessFilter 6012

Fault Subcode wsme:CannotProcessFilter

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason Cannot filter as requested

Detail None

Comments A filter was specified can not be processed.

Applicability Subscribe

Remedy

 6013

http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Web Services for Management (WS-Management) Specification DSP0226

158 Work in Progress - Not a DMTF Standard Version 1.2.0b

ANNEX A 6014

(informative) 6015

 6016

Notational Conventions 6017

This annex specifies the notations and namespaces used in this specification. 6018

This specification uses the following syntax to define normative outlines for messages: 6019

 The syntax appears as an XML instance, but values in italics indicate data types instead of 6020
values. 6021

 Characters are appended to elements and attributes to indicate cardinality: 6022

"?" (0 or 1) 6023

"*" (0 or more) 6024

"+" (1 or more) 6025

 The character "|" indicates a choice between alternatives. 6026

 The characters "[" and "]" indicate that enclosed items are to be treated as a group with 6027
respect to cardinality or choice. 6028

 An ellipsis ("...") indicates a point of extensibility that allows other child or attribute content. 6029
Additional children and attributes may be added at the indicated extension points but must 6030
not contradict the semantics of the parent or owner, respectively. If a receiver does not 6031
recognize an extension, the receiver should not process the message and may fault. 6032

 XML namespace prefixes (see Table A-1) indicate the namespace of the element being 6033
defined. 6034

Throughout the document, whitespace within XML element values is used for readability. In practice, 6035
a service can accept and strip leading and trailing whitespace within element values as if whitespace 6036
had not been used. 6037

A.1 XML Namespaces 6038

Table A-1 lists XML namespaces used in this specification. The choice of any namespace prefix is 6039
arbitrary and not semantically significant. Unless otherwise noted, the XML Schema for each 6040
specification can be retrieved by resolving the XML namespace URI for each specification listed in 6041
Table A-1. 6042

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 159

Table A-1 – Prefixes and XML Namespaces Used in This Specification 6043

Prefix XML Namespace Specification

wsman http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd This specification

wsmid http://schemas.dmtf.org/wbem/wsman/identity/1/
wsmanidentity.xsd

This specification – discovery of
supported protocol versions

s http://www.w3.org/2003/05/soap-envelope SOAP 1.2

xs http://www.w3.org/2001/XMLSchema XML Schema 1, XML Schema 2

wsdl http://schemas.xmlsoap.org/wsdl WSDL/1.1

wsa Either wsa04 or wsa10 Either wsa04 or wsa10

wsa04 http://schemas.xmlsoap.org/ws/2004/08/addressing Clause 5 of this specification

wsa10 http://www.w3.org/2005/08/addressing WS-Addressing W3C
Recommendation

wsam http://www.w3.org/2007/05/addressing/metadata WS-Addressing Metadata W3C
Recommendation

wsme http://schemas.xmlsoap.org/ws/2004/08/eventing Clause 10 of this specification

wsmen http://schemas.xmlsoap.org/ws/2004/09/enumeration Clause 8 of this specification

wsmt http://schemas.xmlsoap.org/ws/2004/09/transfer Clause 7 of this specification

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy

 6044

Web Services for Management (WS-Management) Specification DSP0226

160 Work in Progress - Not a DMTF Standard Version 1.2.0b

ANNEX B 6045

(normative) 6046

 6047

Conformance 6048

This annex specifies the conformance rules used in this specification. 6049

An implementation is not conformant with this specification if it fails to satisfy one or more of the 6050
“shall” or “required” level requirements defined in the conformance rules for each section, as indicated 6051
by the following format: 6052

R : Rule text nnnn6053

General conformance rules are defined as follows: 6054

 To be conformant, the service shall comply with all the rules defined in this RB-1:6055

specification. Items marked with shall are required, and items marked with should are highly 6056
advised to maximize interoperation. Items marked with may indicate the preferred implementation 6057
for expected features, but interoperation is not affected if they are ignored. 6058

 Conformant services of this specification shall use this XML namespace Universal RB-2:6059

Resource Identifier: 6060
(1) http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd 6061

 A SOAP node shall not use the XML namespace identifier for this specification unless it RB-3:6062

complies with the conformance rules in this specification. 6063

This specification does not mandate that all messages and operations need to be supported. It only 6064
requires that any supported message or operation obey the conformance rules for that message or 6065
operation. It is important that services not use the XML namespace identifier for WS-Management in 6066
SOAP operations in a manner that is inconsistent with the rules defined in this specification. 6067

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 161

ANNEX C 6068

(normative) 6069

 6070

HTTP(S) Transport and Security Profile 6071

C.1 General 6072

Although WS-Management is a SOAP protocol and not tied to a specific network transport, 6073
interoperation requires some common standards to be established. This clause centers on 6074
establishing common usage over HTTP 1.1 and HTTPS. In addition to HTTP and HTTPS, this 6075
specification allows any SOAP-enabled transport to be used as a carrier for WS-Management 6076
messages. 6077

For identification and referencing, each transport is identified by a URI, and each authentication 6078
mechanism defined in this specification is also identified by a URI. 6079

As new transports are standardized, they can also acquire a URI for referencing purposes, and any 6080
new authentication mechanisms that they expose can also be assigned URIs for publication and 6081
identification purposes in XML documents. As new transports are standardized for WS-Management, 6082
the associated transport-specific requirements can be defined and published to ensure 6083
interoperability. 6084

 The SOAP HTTP binding described in section 7 of SOAP Version 1.2 Part 2: Adjuncts is 6085
used for WS-Management encoding over HTTP and HTTPS. 6086

C.2 HTTP(S) Binding 6087

This clause clarifies how SOAP messages are bound to HTTP(S). 6088

 A service that supports the SOAP HTTP(S) binding shall at least support it using RC.2-1:6089

HTTP 1.1. 6090

 A service shall at least implement the Responding SOAP Node of the SOAP RC.2-2:6091

Request-Response Message Exchange Pattern: 6092

http://www.w3.org/2003/05/soap/mep/request-response/ 6093

 A service may choose not to implement the Responding SOAP Node of the SOAP RC.2-3:6094

Response Message Exchange Pattern: 6095

http://www.w3.org/2003/05/soap/mep/soap-response/ 6096

 A service may choose not to support the SOAP Web Method Feature. RC.2-4:6097

 A service shall at least implement the Responding SOAP Node of an HTTP one-way RC.2-5:6098

Message Exchange Pattern where the SOAP Envelope is carried in the HTTP Request and the 6099
HTTP Response has a Status Code of 202 Accepted and an empty Entity Body (no SOAP 6100
Envelope). 6101

The message exchange pattern described in RB.2-5 is used to carry SOAP messages that 6102
require no response. 6103

 A service shall at least support Request Message SOAP Envelopes and one-way RC.2-6:6104

SOAP Envelopes delivered using HTTP Post. 6105

Web Services for Management (WS-Management) Specification DSP0226

162 Work in Progress - Not a DMTF Standard Version 1.2.0b

 In cases where the service cannot respond with a SOAP message, the HTTP error RC.2-7:6106

code 500 (Internal Server Error) should be returned and the client side should close the 6107
connection. 6108

 For services that support HTTPS, the transport layer handles negotiation of the RC.2-8:6109

proper encryption protocol. Services may implement an Identify response that is unauthenticated 6110

to facilitate negotiation. When delivering faults, an HTTP status code of 500 RC.2-9:6111

should be used in the response for s:Receiver faults, and a code of 400 should be used for 6112
s:Sender faults. 6113

 The URL used with the HTTP-Post operation to deliver the SOAP message is not RC.2-10:6114

required to have the same content as the wsa:To URI used in the SOAP address. Often, the 6115
HTTP URL has the same content as the wsa:To URI in the message, but may additionally contain 6116
other message routing fields suffixed to the network address using a service-defined separator 6117
token sequence. It is recommended that services require only the wsa:To network address URL 6118
to promote uniform client-side processing and behavior, and to include service-level routing in 6119
other parts of the address. 6120

 In the absence of other requirements, it is recommended that the path portion of the RC.2-11:6121

URL used with the HTTP-POST operation be /wsman for resources that require authentication 6122
and /wsman-anon for resources that do not require authentication. If these paths are used, 6123
unauthenticated requests should not be supported for /wsman and authentication must not be 6124
required for /wsman-anon. 6125

 If the SOAPAction header is present in an HTTP/HTTPS-based request that carries a RC.2-12:6126

SOAP message, it must match the wsa:Action URI present in the SOAP message. The 6127
SOAPAction header is optional, and a service must not fault a request if this header is missing. 6128

Because WS-Management is based on SOAP 1.2, the optional SOAPAction header is merely 6129
used as an optimization. If present, it shall match the wsa:Action URI used in the SOAP 6130
message. The service is permitted to fault the request by simply examining the SOAPAction 6131
header, if the action is not valid, without examining the SOAP content. However, the service may 6132
not fault the request if the SOAPAction header is omitted. 6133

 If a service supports attachments, the service shall support the HTTP Transmission RC.2-13:6134

Optimization Feature. 6135

 If a service cannot process a message with an attachment or unsupported encoding RC.2-14:6136

type, and the transport is HTTP or HTTPS, it shall return HTTP error 415 as its response 6137
(unsupported media). 6138

 If a service cannot process a message with an attachment or unsupported encoding RC.2-15:6139

type using transports other than HTTP/HTTPS, it should return a wsman:EncodingLimit fault with 6140
the following detail code: 6141

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EncodingType 6142

C.3 HTTP(S) Security Profiles 6143

This specification defines a set of security profiles for use with HTTP and HTTPS. Conformant 6144
services need not support HTTP or HTTPS, but if supported these predefined profiles provide the 6145
client with at least one way to access the service. Other specifications can define additional profiles 6146
for use with HTTP or HTTPS. 6147

 A conformant service that supports HTTP shall support one of the predefined HTTP-RC.3-1:6148

based profiles. 6149

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 163

 A conformant service that supports HTTPS shall support one of the predefined RC.3-2:6150

HTTPS-based profiles. 6151

 A conformant service should not expose WS-Management over a completely RC.3-3:6152

unauthenticated HTTP channel except for situations such as Identify (see clause 11), debugging, 6153
or as determined by the service. 6154

The service is not required to export only a single HTTP or HTTPS address. The service can export 6155
multiple addresses, each of which supports a specific security profile or multiple profiles. 6156

If clients support all predefined profiles, they are assured of some form of secure access to a 6157
WS-Management implementation that supports HTTP, HTTPS, or both. 6158

C.3.1 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/basic 6159

This profile is essentially the "standard" profile, but it is limited to Basic authentication. 6160

The typical sequence is shown in Table C-1. 6161

Table C-1 – Basic Authentication Sequence 6162

 Client Service

1 Client connects with no authorization
header.

 Service sees no header.

2 Service sends 401 return code, listing Basic as
the authorization mode.

3 Client provides Basic authorization header. Service authenticates the client.

This behavior is normal for HTTP. If the client connects with a Basic authorization header initially and 6163
if it is valid, the request immediately succeeds. 6164

Basic authentication is not recommended for unsecured transports. If used with HTTP alone, for 6165
example, the transmission of the password constitutes a security risk. However, if the HTTP transport 6166
is secured with IPSec, for example, the risk is substantially reduced. 6167

Similarly, Basic authentication is suitable when performing testing, prototyping, or diagnosis. 6168

Web Services for Management (WS-Management) Specification DSP0226

164 Work in Progress - Not a DMTF Standard Version 1.2.0b

C.3.2 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/digest 6169

This profile is essentially the same as the "standard" profile, but it is limited to the use of Digest 6170
authentication. 6171

The typical sequence is shown in Table C-2. 6172

Table C-2 – Digest Authentication Sequence 6173

 Client Service

1 Client connects with no authorization
header.

 Service sees no header.

2 Service sends 401 return code, listing Digest as
the authorization mode.

3 Client provides Digest authorization header.

4 Service begins authorization sequence of
secure token exchange.

5 Client continues authorization sequence. Service authenticates client.

This behavior is normal for HTTP. If the client connects with a Digest authorization header initially and 6174
if it is valid, the token exchange sequence begins. 6175

C.3.3 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/basic 6176

This profile establishes the use of Basic authentication over HTTPS. This profile is used when only a 6177
server-side certificate encrypts the connection, but the service still needs to authenticate the client. 6178

The typical sequence is shown in Table C-3. 6179

Table C-3 – Basic Authentication over HTTPS Sequence 6180

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

2 Service sends 401 return code, listing Basic as
the authorization mode.

3 Client provides Basic authorization header. Service authenticates the client.

If the client connects with a Basic authorization header initially and if it is valid, the request 6181
immediately succeeds. 6182

C.3.4 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/digest 6183

This profile establishes the use of Digest authentication over HTTPS. This profile is used when only a 6184
server-side certificate encrypts the connection, but the service still needs to authenticate the client. 6185

The typical sequence is shown in Table C-4. 6186

Table C-4 – Digest Authentication over HTTPS Sequence 6187

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 165

2 Service sends 401 return code, listing Digest as
the auth mode.

3 Client provides Digest authorization header.

4 Service begins authorization sequence of
secure token exchange.

5 Client continues authorization sequence. Service authenticates client.

This behavior is normal for HTTPS. If the client connects with a Digest authorization header initially 6188
and if it is valid, the token exchange sequence begins. 6189

C.3.5 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 6190

mutual 6191

In this security mode, the client supplies an X.509 certificate that is used to authenticate the client. No 6192
HTTP or HTTPS authorization header is required in the HTTP-Post request. 6193

However, as a hint to the service, the following HTTP/HTTPS authorization header may be present. 6194

Authorization: http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual 6195

Because the service can be configured to always look for the certificate, this authorization header is 6196
not required. 6197

This simple sequence is shown in Table C-5. 6198

Table C-5 – HTTPS with Client Certificate Sequence 6199

 Client Service

1 Client connects with no authorization
header but supplies an X.509 certificate.

 Service ignores the authorization header and
retrieves the client-side certificate.

2 Service accepts or denies access with 403.7 or
403.16 return codes.

C.3.6 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 6200

mutual/basic 6201

In this profile, the http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual profile is 6202
used first to authenticate both sides using X.509 certificates. Individual operations are subsequently 6203
authenticated using HTTP Basic authorization headers. 6204

This profile authenticates both the client and service initially and provides one level of security, 6205
typically at the machine or device level. The second level of authentication typically performs 6206
authorization for specific operations, although it can act as a simple, secondary authentication 6207
mechanism with no authorization semantics. 6208

The typical sequence is shown in Table C-6. 6209

Table C-6 – Basic Authentication over HTTPS with Client Certificate Sequence 6210

 Client Service

1 Client connects with certificate and special
authorization header.

 Service queries for client certificate and
authenticates. If certificate is missing or invalid,
the sequence stops here with 403.7 or 403.16
return codes.

Web Services for Management (WS-Management) Specification DSP0226

166 Work in Progress - Not a DMTF Standard Version 1.2.0b

2 After authenticating the certificate, the service
sends 401 return code, listing available Basic
authorization mode as a requirement.

3 Client selects Basic as the authorization
mode to use and includes it in the
Authorization header, as defined for HTTP
1.1.

 Service authenticates the client again before
performing the operation.

In the initial request, the HTTPS authorization header must be as follows: 6211

Authorization: http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic 6212

This indicates to the service that this special mode is in use, and that it can query for the client 6213
certificate to ensure that subsequent requests are properly challenged for Basic authorization if the 6214
HTTP Authorization header is missing from a request. 6215

The Authorization header is treated as normal HTTP basic: 6216

Authorization: Basic ...user/password encoding 6217

This use of Basic authentication is secure (unlike its normal use in HTTP) because the transmission 6218
of the user name and password is performed over an encrypted connection. 6219

C.3.7 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 6220

mutual/digest 6221

This profile is the same as 6222
http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic, except that the HTTP 6223
Digest authentication model is used after the initial X.509 certificate-based mutual authentication is 6224
completed. 6225

In the initial request, the HTTPS authorization header must be as follows: 6226

Authorization: 6227
http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/digest 6228

C.3.8 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 6229

spnego-kerberos 6230

In this profile, the client connects to the server using HTTPS with only server-side certificates to 6231
encrypt the connection. 6232

Authentication is carried out based on RFC 4559, which describes the use of GSSAPI SPNEGO over 6233
HTTP (Table C-7). This mechanism allows HTTP to carry out the negotiation protocol of RFC 4178 to 6234
authenticate the user based on Kerberos Version 5. 6235

Table C-7 – SPNEGO Authentication over HTTPS Sequence 6236

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

2 Service sends 401 return code, listing
Negotiate as an available HTTP authentication
mechanism.

3 Client uses the referenced Internet draft to
start a SPNEGO sequence to negotiate for
Kerberos V5.

 ...

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 167

4 ... Service engages in SPNEGO sequence to
authenticate client using Kerberos V5.

5 Client is authenticated. Service authenticates client.

C.3.9 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 6237

mutual/spnego-kerberos 6238

This mode is the same as http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/spnego-6239
kerberos except that the server and client mutually authenticate one another at the transport layer 6240
prior to beginning the Kerberos authentication sequence (Table C-8). See RFC 4178 for details. 6241

Table C-8 – SPNEGO Authentication over HTTPS with Client Certificate Sequence 6242

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service queries for client certificate and
authenticates. If certificate is missing or invalid,
the sequence stops here with 403.7 or 403.16
return codes.

2 After the mutual certificate authentication
sequence, service sends 401 return code,
listing Negotiate as an available HTTP
authentication mechanism.

3 Client uses the referenced Internet draft to
start a SPNEGO sequence to negotiate for
Kerberos V5.

 ...

4 ... Service engages in SPNEGO sequence to
authenticate client using Kerberos V5.

5 Client is authenticated. Service authenticates client.

Typically, this is used to mutually authenticate devices or machines, and then subsequently perform 6243
user- or role-based authentication. 6244

C.3.10 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/spnego6245

-kerberos 6246

This profile is the same as http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/spnego-6247
kerberos except that it is performed over an HTTP connection. See RFC 4178 for details. 6248

Although this profile supports secure authentication, because it is not encrypted, it represents security 6249
risks such as information disclosure because the SOAP traffic is in plain text. It is not to be used in 6250
environments that require a high level of security. 6251

C.4 IPSec and HTTP 6252

HTTP with Basic authentication is weak on an unsecured network. If IPSec is in use, however, this 6253
weakness is no longer an issue. IPSec provides high-quality cryptographic security, data origin 6254
authentication, and anti-replay services. 6255

Because IPSec is intended for machine-level authentication and network traffic protection, it is 6256
insufficient for real-world management in many cases, which can require additional authentication of 6257
specific users to authorize access to resource classes and instances. IPSec needs to be used in 6258
conjunction with one of the profiles in this clause for user-level authentication. However, it obviates 6259
the need for HTTPS-based traffic and allows safe use of HTTP-based profiles. 6260

Web Services for Management (WS-Management) Specification DSP0226

168 Work in Progress - Not a DMTF Standard Version 1.2.0b

From the network perspective, the use of HTTP Basic authentication when the traffic is carried over a 6261
network secured by IPSec is intrinsically safe and equivalent to using HTTPS with server-side 6262
certificates. Other specifications can define IPSec security profiles that combine IPSec 6263
with appropriate authentication mechanisms. 6264

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 169

ANNEX D 6265

(informative) 6266

 6267

XPath Support 6268

D.1 General 6269

Implementations typically need to support XPath for several purposes, such as fragment-level access 6270
(7.7), datasets (8), and filtering (10.2.2). Because the full XPath 1.0 specification is large, subsets are 6271
typically required in resource-constrained implementations. 6272

The purpose of this clause is to identify the minimum set of syntactic elements that implementations 6273
can provide to promote maximum interoperability. In most cases, implementations provide large 6274
subsets of full XPath, but they need additional definitions to ensure that the subsets meet minimum 6275
requirements. The Level 1 and Level 2 BNF definitions in this annex establish such minimums for use 6276
in the WS-Management space. 6277

This specification defines two subset profiles for XPath: Level 1 with basic node selector support and 6278
no filtering (for supporting Fragment-level access as described in 7.7), and Level 2 with basic filtering 6279
support (for enumerating and receving notifications). Level 2 is a formal superset of Level 1. 6280

The following BNFs both are formal LL(1) grammars. A parser can be constructed automatically from 6281
the BNF using an appropriate tool, or a recursive-descent parser can be implemented manually by 6282
inspection of the grammar. 6283

Within the grammars, non-terminal tokens are surrounded by angled brackets, and terminal tokens 6284
are in uppercase and not surrounded by angled brackets. 6285

XML namespace support is explicitly absent from these definitions. Processors that meet the syntax 6286
requirements can provide a mode in which the elements are processed without regard to XML 6287
namespaces, but can also provide more powerful, namespace-aware processing. 6288

The default execution context of the XPath is specified explicitly in 8.4 and 10.2.2. 6289

For the following dialects, XML namespaces and QNames are not expected to be supported by 6290
default and can be silently ignored by the implementation. 6291

These dialects are for informational purposes only and are not intended as Filter Dialects in actual 6292
SOAP messages. Because they are XPath compliant (albeit subsets), the Filter Dialect in the SOAP 6293
messages is still that of full XPath: 6294

http://www.w3.org/TR/1999/REC-xpath-19991116 6295

Web Services for Management (WS-Management) Specification DSP0226

170 Work in Progress - Not a DMTF Standard Version 1.2.0b

D.2 Level 1 6296

Level 1 contains just the necessary XPath to identify nodes within an XML document or fragment and 6297
is targeted for use with Fragment-level access (7.7) of this specification. 6298

EXAMPLE: 6299

(1) <path> ::= <root_selector> TOKEN_END_OF_INPUT; 6300
(2) <root_selector> ::= TOKEN_SLASH <element_sequence>; 6301
(3) <root_selector> ::= <attribute>; 6302
(4) <root_selector> ::= <relpath> <element_sequence>; 6303
(5) <root_selector> ::= TOKEN_DOT 6304

(6) <relpath> ::= <>; 6305
(7) <relpath> ::= TOKEN_DOT TOKEN_SLASH; 6306
(8) <relpath> ::= TOKEN_DOT_DOT TOKEN_SLASH; 6307

(9) <element_sequence> ::= <element> <optional_filter_expression> <more>; 6308

(10) <more> ::= TOKEN_SLASH <follower>; 6309
(11) <more> ::= <>; 6310

(12) <follower> ::= <attribute>; 6311
(13) <follower> ::= <text_function>; 6312
(14) <follower> ::= <element_sequence>; 6313

(15) <optional_filter_expression> ::= 6314
(16) TOKEN_OPEN_BRACKET <filter_expression> TOKEN_CLOSE_BRACKET; 6315

(17) <optional_filter_expression> ::= <>; 6316

(18) <attribute> ::= TOKEN_AT_SYMBOL <name>; 6317

(19) <element> ::= <name>; 6318

(20) <text_function> ::= 6319
(21) TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN; 6320

(22) <name> ::= TOKEN_XML_NAME; 6321

(23) <filter_expression> ::= <array_location>; 6322

(24) <array_location> ::= TOKEN_UNSIGNED_POSITIVE_INTEGER; 6323

This dialect allows selecting any XML node based on its name or array position, or any attribute by its 6324
name. Optionally, the text() NodeTest can trail the entire expression to select only the raw value of 6325
the name, excluding the XML element name wrapper. 6326

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 171

Terminals in the grammar are defined as shown in Table D-1. 6327

Table D-1 – XPath Level 1 Terminals 6328

TOKEN_SLASH The character ‘/’

TOKEN_DOT The character ‘.’

TOKEN_DOT_DOT The characters ‘..’

TOKEN_END_OF_INPUT End of input

TOKEN_OPEN_BRACKET The character ‘[’

TOKEN_CLOSE_BRACKET The character ‘]’

TOKEN_AT_SYMBOL The character ‘@’

TOKEN_XML_NAME Equivalent to XML Schema type xs:token

TOKEN_UNSIGNED_POSITIVE_INTEGER Values in the subrange 1..4294967295

TOKEN_TEXT The characters ‘text’

TOKEN_OPEN_PAREN The character ‘(’

TOKEN_CLOSE_PAREN The character ‘)’

Using the following XML fragment, some examples are shown assuming that the element “a” is the 6329
context node (that is, represents the resource or event document). 6330

EXAMPLE 1: 6331

(1) <Envelope> 6332
(2) <Body> 6333
(3) <a> 6334
(4) <b x="y"> 100 6335
(5) <c> 6336
(6) <d> 200 </d> 6337
(7) </c> 6338
(8) <c> 6339
(9) <d> 300 </d> 6340
(10) <d> 400 </d> 6341
(11) </c> 6342
(12) 6343
(13) </Body> 6344
(14) </Envelope> 6345

EXAMPLE 2: 6346

(1) / // Selects <a> and all its content 6347
(2) /a // Selects <a> and all its content 6348
(3) . // Selects <a> and all its content 6349
(4) ../a // Selects <a> and all its content 6350
(5) b // Selects <b x="y"> 100 6351
(6) c // Selects both <c> nodes, one after the other 6352
(7) c[1] // Selects <c><d>200</d></c> 6353
(8) c[2]/d[2] // Selects <d> 400 </d> 6354
(9) c[2]/d[2]/text() // Selects 400 6355
(10) b/text() // Selects 100 6356
(11) b/@x // Selects x="y" 6357

The only filtering expression capability is an array selection. XPath can return a node set. In 7.7 of 6358
this specification, the intent is to select a specific node, not a set of nodes, so if the situation occurs 6359
as illustrated on line (20) above, most implementations simply return a fault stating that it is unclear 6360

which c was meant and require the client to actually select one of the two available c elements 6361
using the array syntax. Also, text() cannot be suffixed to attribute selection. 6362

Web Services for Management (WS-Management) Specification DSP0226

172 Work in Progress - Not a DMTF Standard Version 1.2.0b

A service that supports Fragment-level access as described in 7.7 of this specification is encouraged 6363
to support a subset of XPath at least as powerful as that described in Level 1. 6364

Clearly, the service can expose full XPath 1.0 or any other subset that meets or exceeds the 6365
requirements defined here. 6366

A service that supports the Level 1 XPath dialect must ensure that it observes matching of a single 6367
node. If more than one element of the same name is at the same level in the XML, the array notation 6368
must be used to distinguish them. 6369

D.3 Level 2 6370

Level 2 contains everything defined in Level 1, plus general-purpose filtering functionality with the 6371
standard set of relational operators and parenthesized sub-expressions (with AND, OR, NOT, and so 6372
on). This dialect is suitable for filtering using enumerations and subscription filters. This dialect is a 6373

strict superset of Level 1, with the filter_expression production being considerably extended to 6374
contain a useful subset of the XPath filtering syntax. 6375

EXAMPLE 1: 6376

(1) <path> ::= <root_selector> TOKEN_END_OF_INPUT; 6377
(2) <root_selector> ::= TOKEN_SLASH <element_sequence>; 6378
(3) <root_selector> ::= <relpath> <element_sequence>; 6379
(4) <root_selector> ::= <attribute>; 6380
(5) <root_selector> ::= TOKEN_DOT; 6381

(6) <relpath> ::= <> ; 6382
(7) <relpath> ::= TOKEN_DOT TOKEN_SLASH; 6383
(8) <relpath> ::= TOKEN_DOT_DOT TOKEN_SLASH; 6384

(9) <element_sequence> ::= <element> <optional_filter_expression> <more>; 6385

(10) <more> ::= TOKEN_SLASH <follower>; 6386
(11) <more> ::= <>; 6387

(12) <follower> ::= <attribute>; 6388
(13) <follower> ::= <text_function>; 6389
(14) <follower> ::= <element_sequence>; 6390

(15) <optional_filter_expression> ::= TOKEN_OPEN_BRACKET <filter_expression> 6391
 TOKEN_CLOSE_BRACKET; 6392

(16) <optional_filter_expression> ::= <>; 6393

(17) <attribute> ::= TOKEN_AT_SYMBOL <name>; 6394

(18) <element> ::= <name>; 6395

(19) <text_function> ::= TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN; 6396

(20) <name> ::= TOKEN_XML_NAME; 6397

(21) <filter_expression> ::= <array_location>; 6398

(22) <array_location> ::= TOKEN_UNSIGNED_POSITIVE_INTEGER; 6399

(23) // Next level, simple OR expression 6400
(24) <or_expression> ::= <and_expression> <or_expression_rest>; 6401
(25) <or_expression_rest> ::= TOKEN_OR <and_expression> <or_expression_rest>; 6402
(26) <or_expression_rest> ::= <>; 6403

(27) // Next highest level, AND expression 6404
(28) <and_expression> ::= <rel_expression> <and_expression_rest>; 6405
(29) <and_expression_rest> ::= TOKEN_AND <rel_expression> 6406

<and_expression_rest>; 6407
(30) <and_expression_rest> ::= <>; 6408

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 173

(31) // Next level of precedence >, <, >=, <=, =, != 6409
(32) <rel_expression> ::= <sub_expression> <rel_expression_rest>; 6410
(33) <rel_expression_rest> ::= <name> <rel_op> <const>; 6411
(34) <rel_expression_rest> ::= <>; 6412

(35) // Identifier, literal, or identifier + param_list (function call) 6413
(36) <sub_expression> ::= TOKEN_OPEN_PAREN <filter_expression> 6414

TOKEN_CLOSE_PAREN; 6415
(37) <sub_expression> ::= TOKEN_NOT TOKEN_OPEN_PAREN <filter_expression> 6416

 TOKEN_CLOSE_PAREN; 6417

(38) // Relational operators 6418
(39) <rel_op> ::= TOKEN_GT; // > 6419
(40) <rel_op> ::= TOKEN_LT; // < 6420
(41) <rel_op> ::= TOKEN_GE; // >= 6421
(42) <rel_op> ::= TOKEN_LE; // <= 6422
(43) <rel_op> ::= TOKEN_EQ; // = 6423
(44) <rel_op> ::= TOKEN_NE; // != 6424

(45) <const> ::= QUOTE TOKEN_STRING QUOTE; 6425

Terminals in the grammar are defined as shown in Table D-2. 6426

Table D-2 – XPath Level 2 Terminals 6427

TOKEN_SLASH The character ‘/’

TOKEN_DOT The character ‘.’

TOKEN_DOT_DOT The characters ‘..’

TOKEN_END_OF_INPUT End of input

TOKEN_OPEN_BRACKET The character ‘[’

TOKEN_CLOSE_BRACKET The character ‘]’

TOKEN_AT_SYMBOL The character ‘@’

TOKEN_XML_NAME Equivalent to XML Schema type xs:token

TOKEN_UNSIGNED_POSITIVE_INTEGER Values in the subrange 1..4294967295

TOKEN_TEXT The characters ‘text’

TOKEN_OPEN_PAREN The character ‘(’

TOKEN_CLOSE_PAREN The character ‘)’

TOKEN_AND The characters ‘and’

TOKEN_OR The characters ‘or’

TOKEN_NOT The characters ‘not’

TOKEN_STRING Equivalent to XML Schema type xs:string

QUOTE The character ‘”’

EXAMPLE 2: This dialect allows the same type of selection syntax as Level 1, but adds filtering, as in the 6428
following generic examples, given the Level 1 example document above: 6429

(1) b[@x="y"] // Select if it has attribute x="y" 6430
(2) b[.="100"] // Select if it is 100 6431
(3) c[d="200"] // Select <c> if <d> is 200 6432
(4) c/d[.="200"] // Select <d> if it is 200 6433

(5) b[.="100" and @x="z"] // Select if it is 100 and has @x="z" 6434
(6) c[d="200" or d="300"] // Select all <c> with d=200 or d=300 6435

(7) c[2][not(.="400" or @x="100")] 6436
(8) // Select second <c> provided that: 6437

Web Services for Management (WS-Management) Specification DSP0226

174 Work in Progress - Not a DMTF Standard Version 1.2.0b

(9) // its value is not 400 and it does not have an attribute x set to 100 6438

(10) c/d[.="100" or (@x="400" and .="500")] 6439
(11) // Select <d> provided that: 6440
(12) // its value is 100 or it has an attribute x set to 400 and its value is 6441

500 6442

In essence, this dialect allows selecting any node based on a filter expression with the complete set 6443
of relational operators, logical operators, and parenthesized sub-expressions. 6444

A service that supports XPath-based filtering dialects as described in this specification is encouraged 6445
to support a subset of XPath at least as powerful as that described in Level 2. 6446

Clearly, the service can expose full XPath 1.0 or any other subset that meets or exceeds the 6447
requirements defined here. 6448

In the actual operation, such as Enumerate or Subscribe, the XPath dialect is identified under the 6449
normal URI for full XPath: 6450

http://www.w3.org/TR/1999/REC-xpath-19991116 6451

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 175

ANNEX E 6452

(normative) 6453

 6454

Selector Filter Dialect 6455

The Selector filter dialect is a simple filtering dialect that allows a filtered enumeration or subscription 6456
with no representation change. 6457

Selectors are part of the default addressing model as defined in 5.1. This dialect is intended for 6458
implementations that support the default addressing model because it gives the ability to support 6459
filtering using a similar syntax while avoiding additional processing overhead of supporting more 6460
complex dialects. 6461

This specification defines the following dialect filter URI for the Selector dialect: 6462

http://schemas.dmtf.org/wbem/wsman/1/wsman/SelectorFilter 6463

If a service uses the WS-Management default addressing model, it can support this filter dialect for 6464
enumeration and subscription operations. 6465

The Selector filter dialect can be used to specify name value pairs in the selector syntax to filter the 6466
results from an Enumerate request or to identify the events of interest in a Subscribe request. The 6467
selectors act as a selection mechanism against the resource class space implied by the 6468
ResourceURI; however, there is no implication that the selector values are keys or even part of the 6469
returned resource. 6470

The syntax for the filter in an Enumerate request is as follows: 6471

(1) <s:Header> 6472
(2) <wsa:To> Service transport address </wsa:To> 6473
(3) <wsman:ResourceURI> Resource URI </wsman:ResourceURI> 6474
(4) ... 6475
(5) </s:Header> 6476
(6) <s:Body> 6477
(7) <wsmen:Enumerate> 6478
(8) <wsman:Filter 6479
(9) Dialect="http://schemas.dmtf.org/wbem/wsman/1/wsman/SelectorFilter"> 6480
(10) <wsman:SelectorSet> 6481
(11) <wsman:Selector Name=”selector-name”> 6482
(12) selector-value 6483
(13) </wsman:Selector> + 6484
(14) </wsman:SelectorSet> 6485
(15) </wsman:Filter> 6486
(16) ... 6487
(17) </wsmen:Enumerate> 6488
(18) </s:Body> 6489

Because the filter syntax does not include resource type information, the Resource URI specified in 6490
the addressing block is used for identifying the resource type. Each of the individual selectors within a 6491
SelectorSet are logically joined by AND for determining the result of the filter. 6492

 If the Selector Filter dialect is supported, a service shall accept as selector names the RE-1:6493

local (NCName) part of the QNames of any of the top-level elements that represent the resource 6494
instance or event and may accept additional selector names. If the service supports filtering only 6495
on a subset of these QNames and the filter refers to an unsupported QName, the service shall 6496
respond with a wsme:CannotProcessFilter fault (or wsman:CannotProcessFilter for Subscribe), 6497

Web Services for Management (WS-Management) Specification DSP0226

176 Work in Progress - Not a DMTF Standard Version 1.2.0b

and should provide in the fault detail the list of selector names that are supported for filtering by 6498
the service. 6499

 For each selector name specified in the filter, the result of the operation shall contain RE-2:6500

only instances for which that named element has the given value. Elements that are not 6501
referenced from the filter can have any value. 6502

It is possible that some resource or event representations include elements of the same name, but 6503
from different XML Namespaces. In this case, the service can choose to match on any of the 6504
elements where the type matches the provided selector. Clients can be written to anticipate this, such 6505
that there might be additional post-processing necessary to identify the set of desired instances. 6506

 If a resource or event representation includes two or more elements with QNames for RE-3:6507

which the local part is identical but whose namespace names are different, and all of the following 6508
conditions are present, the service shall not fault the request, and shall process the filter such that 6509
it matches exactly one of the elements for which filtering is supported, using an algorithm of the 6510
service’s choosing: 6511

 A selector filter contains a wsman:Selector element whose Name attribute matches the 6512
local part of each of these elements. 6513

 At least one of the matching elements has a type and value space consistent with the 6514
provided selector type and value. 6515

 The service supports filtering on at least one of the corresponding elements per . RE-16516

 If a resource or event representation includes elements of an array type, and a filter RE-4:6517

contains a wsman:Selector element whose Name attribute matches the local part of the QName 6518

of these elements and the service supports filtering on the corresponding element per , the RE-16519

service shall process the filter such that the results include all representations for which at least 6520
one element of the array has a value equal to the value provided by the selector. 6521

Processing of the SelectorSet element when used as a filter follows the same processing rules as 6522
when used in EPRs (as described in 5.4.2), with respect to duplicate selector names, type 6523
mismatches, unexpected selectors, size restrictions, and so on. 6524

 If the filter expression contains a SelectorSet that is invalid with respect to the rules in RE-5:6525

5.4.2, the service should fault with wsme:CannotProcessFilter (or wsman:CannotProcessFilter for 6526
Subscribe) containing the appropriate detail code. 6527

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 177

ANNEX F 6528

(informative) 6529

 6530

Identify XML Schema 6531

A normative copy of the XML schema of the Identify response message can be retrieved at the 6532
following address: 6533

http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd 6534

The following non-normative copy of the XML schema is provided for convenience: 6535

(1) <?xml version="1.0" encoding="UTF-8"?> 6536
(2) <!-- 6537
(3) Notice 6538
(4) DSP8012 6539
(5) Document: WS-Management Identify XML Schema 6540
(6) Version: 1.0.1 6541
(7) Status: Final 6542
(8) Date: 02/27/2009 6543
(9) Author: DMTF WS-Management Work Group Email:wsman-chair@dmtf.org 6544
(10) Description: XML Schema for WS-Management Identify Operation. 6545
(11) 6546
(12) Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All 6547
rights reserved. DMTF is a not-for-profit association of industry members 6548
dedicated to promoting enterprise and systems management and interoperability. 6549
Members and non-members may reproduce DMTF specifications and documents, 6550
provided that correct attribution is given. As DMTF specifications may be 6551
revised from time to time, the particular version and release date should 6552
always be noted. Implementation of certain elements of this standard or 6553
proposed standard may be subject to third party patent rights, including 6554
provisional patent rights (herein "patent rights"). DMTF makes no 6555
representations to users of the standard as to the existence of such rights, 6556
and is not responsible to recognize, disclose, or identify any or all such 6557
third party patent right, owners or claimants, nor for any incomplete or 6558
inaccurate identification or disclosure of such rights, owners or claimants. 6559
DMTF shall have no liability to any party, in any manner or circumstance, under 6560
any legal theory whatsoever, for failure to recognize, disclose, or identify 6561
any such third party patent rights, or for such party’s reliance on the 6562
standard or incorporation thereof in its product, protocols or testing 6563
procedures. DMTF shall have no liability to any party implementing such 6564
standard, whether such implementation is foreseeable or not, nor to any patent 6565
owner or claimant, and shall have no liability or responsibility for costs or 6566
losses incurred if a standard is withdrawn or modified after publication, and 6567
shall be indemnified and held harmless by any party implementing the standard 6568
from any and all claims of infringement by a patent owner for such 6569
implementations. For information about patents held by third-parties which have 6570
notified the DMTF that, in their opinion, such patent may relate to or impact 6571
implementations of DMTF standards, visit 6572
http://www.dmtf.org/about/policies/disclosures.php. 6573
(13) 6574
(14) --> 6575
(15) <xs:schema 6576
(16) targetNamespace="http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanident6577
ity.xsd" 6578
(17) 6579
xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd" 6580
(18) xmlns:xs="http://www.w3.org/2001/XMLSchema" 6581

Web Services for Management (WS-Management) Specification DSP0226

178 Work in Progress - Not a DMTF Standard Version 1.2.0b

(19) elementFormDefault="qualified" version="1.0.1"> 6582
(20) <xs:complexType name="IdentifyType"> 6583
(21) <xs:sequence> 6584
(22) <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" 6585
(23) processContents="lax" /> 6586
(24) </xs:sequence> 6587
(25) <xs:anyAttribute namespace="##other" processContents="lax" /> 6588
(26) </xs:complexType> 6589
(27) <xs:element name="Identify" type="wsmid:IdentifyType" /> 6590
(28) 6591
(29) <xs:simpleType name="restrictedProtocolVersionType"> 6592
(30) 6593
(31) <xs:restriction base="xs:anyURI"> 6594
(32) <xs:enumeration 6595
(33) 6596
 value="http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity/NoAnonymo6597
usDisclosure" /> 6598
(34) </xs:restriction> 6599
(35) </xs:simpleType> 6600
(36) 6601
(37) <xs:simpleType name="ProtocolVersionType"> 6602
(38) <xs:union memberTypes="wsmid:restrictedProtocolVersionType xs:anyURI" 6603
/> 6604
(39) 6605
(40) </xs:simpleType> 6606
(41) <xs:element name="ProtocolVersion" type="wsmid:ProtocolVersionType" /> 6607
(42) <xs:element name="ProductVendor" type="xs:string" /> 6608
(43) <xs:element name="ProductVersion" type="xs:string" /> 6609
(44) <xs:element name="InitiativeName" type="xs:string" /> 6610
(45) <xs:element name="InitiativeVersion" type="wsmid:VERSION_VALUE"/> 6611
(46) <xs:element name="SecurityProfileName" type="xs:anyURI" /> 6612
(47) <xs:complexType name="SecurityProfilesType"> 6613
(48) <xs:sequence> 6614
(49) 6615
(50) <xs:element ref="wsmid:SecurityProfileName" minOccurs="0" 6616
(51) maxOccurs="unbounded" /> 6617
(52) </xs:sequence> 6618
(53) </xs:complexType> 6619
(54) <xs:element name="SecurityProfiles" type="wsmid:SecurityProfilesType" /> 6620
(55) <xs:element name="AddressingVersionURI" type="xs:anyURI" /> 6621
(56) <xs:element name="IntiativeSupport"> 6622
(57) <xs:complexType> 6623
(58) <xs:sequence> 6624
(59) <xs:element ref="wsmid:InitiativeName" minOccurs="0" maxOccurs="1" 6625
/> 6626
(60) 6627
(61) <xs:element ref="wsmid:InitiativeVersion" minOccurs="0" 6628
maxOccurs="1"/> 6629
(62) </xs:sequence> 6630
(63) </xs:complexType> 6631
(64) </xs:element> 6632
(65) 6633
(66) <xs:complexType name="IdentifyResponseType"> 6634
(67) <xs:sequence> 6635
(68) <xs:element ref="wsmid:ProtocolVersion" maxOccurs="unbounded" /> 6636
(69) <xs:element ref="wsmid:ProductVendor" minOccurs="0" /> 6637
(70) <xs:element ref="wsmid:ProductVersion" minOccurs="0" /> 6638
(71) 6639

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 179

(72) <xs:element ref="wsmid:IntiativeSupport" minOccurs="0" 6640
maxOccurs="unbounded"/> 6641
(73) <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" /> 6642
(74) <xs:element ref="wsmid:SecurityProfiles" minOccurs="0" 6643
(75) maxOccurs="1" /> 6644
(76) <xs:element ref="wsmid:AddressingVersionURI" minOccurs="0" 6645
(77) maxOccurs="unbounded" /> 6646
(78) </xs:sequence> 6647
(79) <xs:anyAttribute namespace="##other" processContents="lax" /> 6648
(80) </xs:complexType> 6649
(81) 6650
(82) <xs:element name="IdentifyResponse" type="wsmid:IdentifyResponseType" /> 6651
(83) 6652
(84) <xs:simpleType name="VERSION_VALUE"> 6653
(85) 6654
(86) <xs:annotation> 6655
(87) <xs:documentation>Version values must be in form of M.N.U (Major, 6656
Minor, Update)</xs:documentation> 6657
(88) </xs:annotation> 6658
(89) <xs:restriction base="xs:string"> 6659
(90) <xs:pattern value="\d*.\d*.\d*" /> 6660
(91) </xs:restriction> 6661
(92) </xs:simpleType> 6662
(93) 6663
(94) </xs:schema> 6664

 6665

Web Services for Management (WS-Management) Specification DSP0226

180 Work in Progress - Not a DMTF Standard Version 1.2.0b

ANNEX G 6666

(informative) 6667

 6668

Resource Access Operations XML Schema and WSDL 6669

A normative copy of the XML schemas (XML Schema 1, XML Schema 2) for the resource access 6670
operations can be retrieved at the following address: 6671

http://schemas.dmtf.org/wbem/wsman/1/DSP8031_1.0.xsd 6672

The following non-normative copy of the XML schema is provided for convenience: 6673

(1) <?xml version="1.0" encoding="UTF-8"?> 6674
(2) <!-- 6675
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 6676
(4) 6677
(5) Document number: DSP8031 6678
(6) Date: 2010-02-19 6679
(7) Version: 1.0.0 6680
(8) Document status: DMTF Standard 6681
(9) 6682
(10) Title: WS-Management Resource Access Operations XML Schema 6683
(11) 6684
(12) Document type: Specification (W3C XML Schema) 6685
(13) Document language: E 6686
(14) 6687
(15) Abstract: XML Schema for WS-Management Resource Access Operations. 6688
(16) 6689
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 6690
(18) 6691
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 6692
(20) All rights reserved. DMTF is a not-for-profit association of industry 6693
(21) members dedicated to promoting enterprise and systems management and 6694
(22) interoperability. Members and non-members may reproduce DMTF 6695
(23) specifications and documents, provided that correct attribution is 6696
(24) given. As DMTF specifications may be revised from time to time, 6697
(25) the particular version and release date should always be noted. 6698
(26) Implementation of certain elements of this standard or proposed 6699
(27) standard may be subject to third party patent rights, including 6700
(28) provisional patent rights (herein "patent rights"). DMTF makes 6701
(29) no representations to users of the standard as to the existence 6702
(30) of such rights, and is not responsible to recognize, disclose, 6703
(31) or identify any or all such third party patent right, owners or 6704
(32) claimants, nor for any incomplete or inaccurate identification or 6705
(33) disclosure of such rights, owners or claimants. DMTF shall have no 6706
(34) liability to any party, in any manner or circumstance, under any legal 6707
(35) theory whatsoever, for failure to recognize, disclose, or identify any 6708
(36) such third party patent rights, or for such party's reliance on the 6709
(37) standard or incorporation thereof in its product, protocols or testing 6710
(38) procedures. DMTF shall have no liability to any party implementing 6711
(39) such standard, whether such implementation is foreseeable or not, nor 6712
(40) to any patent owner or claimant, and shall have no liability or 6713
(41) responsibility for costs or losses incurred if a standard is withdrawn 6714
(42) or modified after publication, and shall be indemnified and held 6715
(43) harmless by any party implementing the standard from any and all claims 6716
(44) of infringement by a patent owner for such implementations. For 6717
(45) information about patents held by third-parties which have notified the 6718
(46) DMTF that, in their opinion, such patent may relate to or impact 6719

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 181

(47) implementations of DMTF standards, visit 6720
(48) http://www.dmtf.org/about/policies/disclosures.php. 6721
(49) 6722
(50) Change log: 6723
(51) 1.0.0 - 2009-11-01 - Work in Progress release 6724
(52) 1.0.0 - 2010-02-19 - DMTF Standard release 6725
(53) 6726
(54) --> 6727
(55) <xs:schema 6728
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/transfer" 6729
(57) xmlns:tns="http://schemas.xmlsoap.org/ws/2004/09/transfer" 6730
(58) xmlns:xs="http://www.w3.org/2001/XMLSchema" 6731
(59) xmlns:wsa04="http://schemas.xmlsoap.org/ws/2004/08/addressing" 6732
(60) xmlns:wsa10="http://www.w3.org/2005/08/addressing" 6733
(61) elementFormDefault="qualified" 6734
(62) blockDefault="#all" > 6735
(63) 6736
(64) <xs:import 6737
(65) namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" 6738
(66) schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8034_1.0.xsd" 6739
/> 6740
(67) <xs:import 6741
(68) namespace="http://www.w3.org/2005/08/addressing" 6742
(69) schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd" /> 6743
(70) 6744
(71) <!-- 6745
(72) The type of the AnyEPRType is effectively 6746
(73) the union of wsa04:EndpointReferenceType and 6747
(74) wsa10:EndpointReferenceType. Unfortunately, xs:union only 6748
(75) works for simple types. As a result, we have to define 6749
(76) the element in an unvalidated way to accommodate either 6750
(77) addressing type. 6751
(78) --> 6752
(79) 6753
(80) <xs:complexType name="AnyEPRType"> 6754
(81) <xs:sequence> 6755
(82) <xs:any minOccurs='1' maxOccurs='unbounded' processContents='skip' 6756
(83) namespace='##other' /> 6757
(84) </xs:sequence> 6758
(85) </xs:complexType> 6759
(86) 6760
(87) <xs:element name="ResourceCreated" type="tns:AnyEPRType"/> 6761
(88) 6762
(89) <!-- The following GED is defined for convenience. This GED 6763
(90) may be used in cases where a resource-specific GED is 6764
(91) not available. --> 6765
(92) <xs:element name="TransferElement"> 6766
(93) <xs:complexType> 6767
(94) <xs:sequence> 6768
(95) <xs:any minOccurs='1' maxOccurs='unbounded' 6769
(96) processContents='skip' namespace='##other'/> 6770
(97) </xs:sequence> 6771
(98) </xs:complexType> 6772
(99) </xs:element> 6773
(100) 6774
(101) </xs:schema> 6775

Web Services for Management (WS-Management) Specification DSP0226

182 Work in Progress - Not a DMTF Standard Version 1.2.0b

A normative copy of the WSDL description for the resource access operations can be retrieved from 6776
the following address: 6777

http://schemas.dmtf.org/wbem/wsman/1/DSP8035_1.0.wsdl 6778

The following non-normative copy of the WSDL description is provided for convenience: 6779

(1) <?xml version="1.0" encoding="UTF-8"?> 6780
(2) <!-- 6781
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 6782
(4) 6783
(5) Document number: DSP8035 6784
(6) Date: 2010-02-19 6785
(7) Version: 1.0.0 6786
(8) Document status: DMTF Standard 6787
(9) 6788
(10) Title: WS-Management Resource Access Operations WSDL 6789
(11) 6790
(12) Document type: Specification (W3C WSDL Document) 6791
(13) Document language: E 6792
(14) 6793
(15) Abstract: WSDL for WS-Management Resource Access Operations. 6794
(16) 6795
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 6796
(18) 6797
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 6798
(20) All rights reserved. DMTF is a not-for-profit association of industry 6799
(21) members dedicated to promoting enterprise and systems management and 6800
(22) interoperability. Members and non-members may reproduce DMTF 6801
(23) specifications and documents, provided that correct attribution is 6802
(24) given. As DMTF specifications may be revised from time to time, 6803
(25) the particular version and release date should always be noted. 6804
(26) Implementation of certain elements of this standard or proposed 6805
(27) standard may be subject to third party patent rights, including 6806
(28) provisional patent rights (herein "patent rights"). DMTF makes 6807
(29) no representations to users of the standard as to the existence 6808
(30) of such rights, and is not responsible to recognize, disclose, 6809
(31) or identify any or all such third party patent right, owners or 6810
(32) claimants, nor for any incomplete or inaccurate identification or 6811
(33) disclosure of such rights, owners or claimants. DMTF shall have no 6812
(34) liability to any party, in any manner or circumstance, under any legal 6813
(35) theory whatsoever, for failure to recognize, disclose, or identify any 6814
(36) such third party patent rights, or for such party's reliance on the 6815
(37) standard or incorporation thereof in its product, protocols or testing 6816
(38) procedures. DMTF shall have no liability to any party implementing 6817
(39) such standard, whether such implementation is foreseeable or not, nor 6818
(40) to any patent owner or claimant, and shall have no liability or 6819
(41) responsibility for costs or losses incurred if a standard is withdrawn 6820
(42) or modified after publication, and shall be indemnified and held 6821
(43) harmless by any party implementing the standard from any and all claims 6822
(44) of infringement by a patent owner for such implementations. For 6823
(45) information about patents held by third-parties which have notified the 6824
(46) DMTF that, in their opinion, such patent may relate to or impact 6825
(47) implementations of DMTF standards, visit 6826
(48) http://www.dmtf.org/about/policies/disclosures.php. 6827
(49) 6828
(50) Change log: 6829
(51) 1.0.0 - 2009-11-01 – Work in Progress release 6830
(52) 1.0.0 – 2010-02-19 – DMTF Standard release 6831
(53) 6832
(54) --> 6833
(55) <wsdl:definitions 6834
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/transfer" 6835

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 183

(57) xmlns:tns="http://schemas.xmlsoap.org/ws/2004/09/transfer" 6836
(58) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 6837
(59) xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 6838
(60) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 6839
(61) xmlns:xs="http://www.w3.org/2001/XMLSchema"> 6840
(62) 6841
(63) <wsdl:types> 6842
(64) <xs:schema> 6843
(65) <xs:import 6844
(66) namespace="http://schemas.xmlsoap.org/ws/2004/09/transfer" 6845
(67) 6846
schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8031_1.0.xsd" 6847
(68) /> 6848
(69) </xs:schema> 6849
(70) </wsdl:types> 6850
(71) 6851
(72) <!-- 6852
(73) In some of the messages defined below a "resource-specific-GED" 6853
(74) is expected to be inserted before the WSDL is processed by any tooling. 6854
(75) Thus the WSDL as presented is not usable until after this substitution 6855
(76) is done. 6856
(77) --> 6857
(78) 6858
(79) <wsdl:message name="EmptyMessage"/> 6859
(80) <wsdl:message name="CreateRequestMessage"> 6860
(81) <wsdl:part name="Body" element="resource-specific-GED"/> 6861
(82) </wsdl:message> 6862
(83) <wsdl:message name="CreateResponseMessage"> 6863
(84) <wsdl:part name="Body" element="tns:ResourceCreated"/> 6864
(85) </wsdl:message> 6865
(86) <wsdl:message name="GetResponseMessage"> 6866
(87) <wsdl:part name="Body" element="resource-specific-GED"/> 6867
(88) </wsdl:message> 6868
(89) <wsdl:message name="PutRequestMessage"> 6869
(90) <wsdl:part name="Body" element="resource-specific-GED"/> 6870
(91) </wsdl:message> 6871
(92) <wsdl:message name="PutResponseMessage"> 6872
(93) <!-- Note this 'part' may be omitted --> 6873
(94) <wsdl:part name="Body" element="resource-specific-GED"/> 6874
(95) </wsdl:message> 6875
(96) 6876
(97) <wsdl:portType name="Resource"> 6877
(98) <wsdl:documentation> 6878
(99) This port type defines a resource that may be read, 6879
(100) written, and deleted. 6880
(101) </wsdl:documentation> 6881
(102) <wsdl:operation name="Get"> 6882
(103) <wsdl:input 6883
(104) message="tns:EmptyMessage" 6884
(105) wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Get" 6885
(106) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Get" 6886
/> 6887
(107) <wsdl:output 6888
(108) message="tns:GetResponseMessage" 6889
(109) 6890
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse" 6891
(110) 6892
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse" /> 6893
(111) </wsdl:operation> 6894
(112) <wsdl:operation name="Put"> 6895
(113) <wsdl:input 6896
(114) message="tns:PutRequestMessage" 6897
(115) wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Put" 6898

Web Services for Management (WS-Management) Specification DSP0226

184 Work in Progress - Not a DMTF Standard Version 1.2.0b

(116) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Put" 6899
/> 6900
(117) <wsdl:output 6901
(118) message="tns:PutResponseMessage" 6902
(119) 6903
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse" 6904
(120) 6905
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse"/> 6906
(121) </wsdl:operation> 6907
(122) <wsdl:operation name="Delete"> 6908
(123) <wsdl:input 6909
(124) message="tns:EmptyMessage" 6910
(125) 6911
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete" 6912
(126) 6913
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete" /> 6914
(127) <wsdl:output 6915
(128) message="tns:EmptyMessage" 6916
(129) 6917
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse" 6918
(130) 6919
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse" 6920
(131) /> 6921
(132) </wsdl:operation> 6922
(133) </wsdl:portType> 6923
(134) 6924
(135) <wsdl:portType name="ResourceFactory"> 6925
(136) <wsdl:documentation> 6926
(137) This port type defines a Web service that can create new 6927
(138) resources. 6928
(139) </wsdl:documentation> 6929
(140) <wsdl:operation name="Create"> 6930
(141) <wsdl:input 6931
(142) message="tns:CreateRequestMessage" 6932
(143) 6933
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Create" 6934
(144) 6935
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/Create" /> 6936
(145) <wsdl:output 6937
(146) message="tns:CreateResponseMessage" 6938
(147) 6939
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse" 6940
(148) 6941
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse" 6942
(149) /> 6943
(150) </wsdl:operation> 6944
(151) </wsdl:portType> 6945
(152) </wsdl:definitions> 6946

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 185

ANNEX H 6947

(informative) 6948

 6949

Enumeration Operations XML Schema and WSDL 6950

A normative copy of the XML schemas for the enumeration operations can be retrieved at the 6951
following address: 6952

http://schemas.dmtf.org/wbem/wsman/1/DSP8033_1.0.xsd 6953

The following non-normative copy of the XML schema is provided for convenience: 6954

(1) <?xml version="1.0" encoding="UTF-8"?> 6955
(2) <!-- 6956
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 6957
(4) 6958
(5) Document number: DSP8033 6959
(6) Date: 2010-02-19 6960
(7) Version: 1.0.0 6961
(8) Document status: DMTF Standard 6962
(9) 6963
(10) Title: WS-Management Enumeration Operations XML Schema 6964
(11) 6965
(12) Document type: Specification (W3C XML Schema) 6966
(13) Document language: E 6967
(14) 6968
(15) Abstract: XML Schema for WS-Management Enumeration Operations. 6969
(16) 6970
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 6971
(18) 6972
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 6973
(20) All rights reserved. DMTF is a not-for-profit association of industry 6974
(21) members dedicated to promoting enterprise and systems management and 6975
(22) interoperability. Members and non-members may reproduce DMTF 6976
(23) specifications and documents, provided that correct attribution is 6977
(24) given. As DMTF specifications may be revised from time to time, 6978
(25) the particular version and release date should always be noted. 6979
(26) Implementation of certain elements of this standard or proposed 6980
(27) standard may be subject to third party patent rights, including 6981
(28) provisional patent rights (herein "patent rights"). DMTF makes 6982
(29) no representations to users of the standard as to the existence of 6983
(30) such rights, and is not responsible to recognize, disclose, 6984
(31) or identify any or all such third party patent right, owners or 6985
(32) claimants, nor for any incomplete or inaccurate identification or 6986
(33) disclosure of such rights, owners or claimants. DMTF shall have no 6987
(34) liability to any party, in any manner or circumstance, under any legal 6988
(35) theory whatsoever, for failure to recognize, disclose, or identify any 6989
(36) such third party patent rights, or for such party's reliance on the 6990
(37) standard or incorporation thereof in its product, protocols or testing 6991
(38) procedures. DMTF shall have no liability to any party implementing 6992
(39) such standard, whether such implementation is foreseeable or not, nor 6993
(40) to any patent owner or claimant, and shall have no liability or 6994
(41) responsibility for costs or losses incurred if a standard is withdrawn 6995
(42) or modified after publication, and shall be indemnified and held 6996
(43) harmless by any party implementing the standard from any and all claims 6997
(44) of infringement by a patent owner for such implementations. For 6998
(45) information about patents held by third-parties which have notified the 6999
(46) DMTF that, in their opinion, such patent may relate to or impact 7000
(47) implementations of DMTF standards, visit 7001
(48) http://www.dmtf.org/about/policies/disclosures.php. 7002

Web Services for Management (WS-Management) Specification DSP0226

186 Work in Progress - Not a DMTF Standard Version 1.2.0b

(49) 7003
(50) Change log: 7004
(51) 1.0.0 - 2009-11-01 - Work in Progress release 7005
(52) 1.0.0 – 2010-02-19 – DMTF Standard release 7006
(53) 7007
(54) --> 7008
(55) <xs:schema 7009
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 7010
(57) xmlns:tns="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 7011
(58) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7012
(59) xmlns:xs="http://www.w3.org/2001/XMLSchema" 7013
(60) elementFormDefault="qualified" 7014
(61) blockDefault="#all"> 7015
(62) 7016
(63) <xs:import 7017
(64) namespace="http://www.w3.org/XML/1998/namespace" 7018
(65) schemaLocation="http://www.w3.org/2001/xml.xsd" /> 7019
(66) <xs:import 7020
(67) namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7021
(68) schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8034_1.0.xsd" 7022
/> 7023
(69) <xs:import 7024
(70) namespace="http://www.w3.org/2005/08/addressing" 7025
(71) schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd" /> 7026
(72) 7027
(73) <!-- Types and global elements --> 7028
(74) <xs:complexType name="FilterType" mixed="true"> 7029
(75) <xs:sequence> 7030
(76) <xs:any namespace="##other" processContents="lax" 7031
(77) minOccurs="0" maxOccurs="unbounded" /> 7032
(78) </xs:sequence> 7033
(79) <xs:attribute name="Dialect" type="xs:anyURI" /> 7034
(80) <xs:anyAttribute namespace="##other" processContents="lax" /> 7035
(81) </xs:complexType> 7036
(82) 7037
(83) <xs:simpleType name="PositiveDurationType"> 7038
(84) <xs:restriction base="xs:duration"> 7039
(85) <xs:minExclusive value="P0Y0M0DT0H0M0S" /> 7040
(86) </xs:restriction> 7041
(87) </xs:simpleType> 7042
(88) 7043
(89) <xs:simpleType name="NonNegativeDurationType"> 7044
(90) <xs:restriction base="xs:duration"> 7045
(91) <xs:minInclusive value="P0Y0M0DT0H0M0S" /> 7046
(92) </xs:restriction> 7047
(93) </xs:simpleType> 7048
(94) 7049
(95) <xs:simpleType name="ExpirationType"> 7050
(96) <xs:union memberTypes="xs:dateTime tns:NonNegativeDurationType" /> 7051
(97) </xs:simpleType> 7052
(98) 7053
(99) <xs:complexType name="EnumerationContextType"> 7054
(100) <xs:complexContent mixed="true"> 7055
(101) <xs:restriction base="xs:anyType"> 7056
(102) <xs:sequence> 7057
(103) <xs:any namespace="##other" processContents="lax" 7058
(104) minOccurs="0" maxOccurs="unbounded" /> 7059
(105) </xs:sequence> 7060
(106) <xs:anyAttribute namespace="##other" processContents="lax" /> 7061
(107) </xs:restriction> 7062
(108) </xs:complexContent> 7063
(109) </xs:complexType> 7064
(110) 7065

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 187

(111) <xs:complexType name="ItemListType"> 7066
(112) <xs:sequence maxOccurs="unbounded"> 7067
(113) <xs:any namespace="##other" processContents="lax" 7068
(114) minOccurs="0" maxOccurs="unbounded" /> 7069
(115) </xs:sequence> 7070
(116) </xs:complexType> 7071
(117) 7072
(118) <xs:complexType name="LanguageSpecificStringType"> 7073
(119) <xs:simpleContent> 7074
(120) <xs:extension base="xs:string"> 7075
(121) <xs:attribute ref="xml:lang" /> 7076
(122) <xs:anyAttribute namespace="##other" processContents="lax" /> 7077
(123) </xs:extension> 7078
(124) </xs:simpleContent> 7079
(125) </xs:complexType> 7080
(126) 7081
(127) <!-- 7082
(128) The type of the AnyEPRType is effectively 7083
(129) the union of wsa04:EndpointReferenceType and 7084
(130) wsa10:EndpointReferenceType. Unfortunately, xs:union only 7085
(131) works for simple types. As a result, we have to define 7086
(132) the element in an unvalidated way to accommodate either 7087
(133) addressing type. 7088
(134) --> 7089
(135) 7090
(136) <xs:complexType name="AnyEPRType"> 7091
(137) <xs:sequence> 7092
(138) <xs:any minOccurs='1' maxOccurs='unbounded' processContents='skip' 7093
(139) namespace='##other' /> 7094
(140) </xs:sequence> 7095
(141) </xs:complexType> 7096
(142) 7097
(143) <!-- Enumerate request --> 7098
(144) <xs:element name="Enumerate"> 7099
(145) <xs:complexType> 7100
(146) <xs:sequence> 7101
(147) <xs:element name="EndTo" type="tns:AnyEPRType" 7102
(148) minOccurs="0" /> 7103
(149) <xs:element name="Expires" type="tns:ExpirationType" 7104
(150) minOccurs="0" /> 7105
(151) <xs:element name="Filter" type="tns:FilterType" 7106
(152) minOccurs="0" /> 7107
(153) <xs:any namespace="##other" processContents="lax" 7108
(154) minOccurs="0" maxOccurs="unbounded" /> 7109
(155) </xs:sequence> 7110
(156) <xs:anyAttribute namespace="##other" processContents="lax" /> 7111
(157) </xs:complexType> 7112
(158) </xs:element> 7113
(159) 7114
(160) <!-- Used for a fault response --> 7115
(161) <xs:element name="SupportedDialect" type="xs:anyURI" /> 7116
(162) 7117
(163) <!-- Enumerate response --> 7118
(164) <xs:element name="EnumerateResponse"> 7119
(165) <xs:complexType> 7120
(166) <xs:sequence> 7121
(167) <xs:element name="Expires" type="tns:ExpirationType" 7122
(168) minOccurs="0" /> 7123
(169) <xs:element name="EnumerationContext" 7124
(170) type="tns:EnumerationContextType" /> 7125
(171) <xs:any namespace="##other" processContents="lax" 7126
(172) minOccurs="0" maxOccurs="unbounded" /> 7127
(173) </xs:sequence> 7128

Web Services for Management (WS-Management) Specification DSP0226

188 Work in Progress - Not a DMTF Standard Version 1.2.0b

(174) <xs:anyAttribute namespace="##other" processContents="lax" /> 7129
(175) </xs:complexType> 7130
(176) </xs:element> 7131
(177) 7132
(178) <!-- Pull request --> 7133
(179) <xs:element name="Pull"> 7134
(180) <xs:complexType> 7135
(181) <xs:sequence> 7136
(182) <xs:element name="EnumerationContext" 7137
(183) type="tns:EnumerationContextType" /> 7138
(184) <xs:element name="MaxTime" type="tns:PositiveDurationType" 7139
(185) minOccurs="0" /> 7140
(186) <xs:element name="MaxElements" type="xs:positiveInteger" 7141
(187) minOccurs="0" /> 7142
(188) <xs:element name="MaxCharacters" type="xs:positiveInteger" 7143
(189) minOccurs="0" /> 7144
(190) <xs:any namespace="##other" processContents="lax" 7145
(191) minOccurs="0" maxOccurs="unbounded" /> 7146
(192) </xs:sequence> 7147
(193) <xs:anyAttribute namespace="##other" processContents="lax" /> 7148
(194) </xs:complexType> 7149
(195) </xs:element> 7150
(196) 7151
(197) <!-- Pull response --> 7152
(198) <xs:element name="PullResponse"> 7153
(199) <xs:complexType> 7154
(200) <xs:sequence> 7155
(201) <xs:element name="EnumerationContext" 7156
(202) type="tns:EnumerationContextType" 7157
(203) minOccurs="0" /> 7158
(204) <xs:element name="Items" type="tns:ItemListType" 7159
(205) minOccurs="0" /> 7160
(206) <xs:element name="EndOfSequence" minOccurs="0" /> 7161
(207) </xs:sequence> 7162
(208) <xs:anyAttribute namespace="##other" processContents="lax" /> 7163
(209) </xs:complexType> 7164
(210) </xs:element> 7165
(211) 7166
(212) <!-- Renew request --> 7167
(213) <xs:element name="Renew"> 7168
(214) <xs:complexType> 7169
(215) <xs:sequence> 7170
(216) <xs:element name="EnumerationContext" 7171
(217) type="tns:EnumerationContextType" /> 7172
(218) <xs:element name="Expires" type="tns:ExpirationType" 7173
(219) minOccurs="0" /> 7174
(220) <xs:any namespace="##other" processContents="lax" 7175
(221) minOccurs="0" maxOccurs="unbounded" /> 7176
(222) </xs:sequence> 7177
(223) <xs:anyAttribute namespace="##other" processContents="lax" /> 7178
(224) </xs:complexType> 7179
(225) </xs:element> 7180
(226) 7181
(227) <!-- Renew response --> 7182
(228) <xs:element name="RenewResponse"> 7183
(229) <xs:complexType> 7184
(230) <xs:sequence> 7185
(231) <xs:element name="Expires" type="tns:ExpirationType" 7186
(232) minOccurs="0" /> 7187
(233) <xs:element name="EnumerationContext" 7188
(234) type="tns:EnumerationContextType" 7189
(235) minOccurs="0" /> 7190
(236) <xs:any namespace="##other" processContents="lax" 7191

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 189

(237) minOccurs="0" maxOccurs="unbounded" /> 7192
(238) </xs:sequence> 7193
(239) <xs:anyAttribute namespace="##other" processContents="lax" /> 7194
(240) </xs:complexType> 7195
(241) </xs:element> 7196
(242) 7197
(243) <!-- GetStatus request --> 7198
(244) <xs:element name="GetStatus"> 7199
(245) <xs:complexType> 7200
(246) <xs:sequence> 7201
(247) <xs:element name="EnumerationContext" 7202
(248) type="tns:EnumerationContextType" /> 7203
(249) <xs:any namespace="##other" processContents="lax" 7204
(250) minOccurs="0" maxOccurs="unbounded" /> 7205
(251) </xs:sequence> 7206
(252) <xs:anyAttribute namespace="##other" processContents="lax" /> 7207
(253) </xs:complexType> 7208
(254) </xs:element> 7209
(255) 7210
(256) <!-- GetStatus response --> 7211
(257) <xs:element name="GetStatusResponse"> 7212
(258) <xs:complexType> 7213
(259) <xs:sequence> 7214
(260) <xs:element name="Expires" type="tns:ExpirationType" 7215
(261) minOccurs="0" /> 7216
(262) <xs:any namespace="##other" processContents="lax" 7217
(263) minOccurs="0" maxOccurs="unbounded" /> 7218
(264) </xs:sequence> 7219
(265) <xs:anyAttribute namespace="##other" processContents="lax" /> 7220
(266) </xs:complexType> 7221
(267) </xs:element> 7222
(268) 7223
(269) <!-- Release request --> 7224
(270) <xs:element name="Release"> 7225
(271) <xs:complexType> 7226
(272) <xs:sequence> 7227
(273) <xs:element name="EnumerationContext" 7228
(274) type="tns:EnumerationContextType" /> 7229
(275) </xs:sequence> 7230
(276) <xs:anyAttribute namespace="##other" processContents="lax" /> 7231
(277) </xs:complexType> 7232
(278) </xs:element> 7233
(279) 7234
(280) <!-- Release response has an empty body --> 7235
(281) 7236
(282) <!-- EnumerationEnd message --> 7237
(283) <xs:element name="EnumerationEnd"> 7238
(284) <xs:complexType> 7239
(285) <xs:sequence> 7240
(286) <xs:element name="EnumerationContext" 7241
(287) type="tns:EnumerationContextType" /> 7242
(288) <xs:element name="Code" type="tns:OpenEnumerationEndCodeType" /> 7243
(289) <xs:element name="Reason" type="tns:LanguageSpecificStringType" 7244
(290) minOccurs="0" maxOccurs="unbounded" /> 7245
(291) <xs:any namespace="##other" processContents="lax" 7246
(292) minOccurs="0" maxOccurs="unbounded" /> 7247
(293) </xs:sequence> 7248
(294) <xs:anyAttribute namespace="##other" processContents="lax" /> 7249
(295) </xs:complexType> 7250
(296) </xs:element> 7251
(297) 7252
(298) <xs:simpleType name="EnumerationEndCodeType"> 7253
(299) <xs:restriction base="xs:anyURI"> 7254

Web Services for Management (WS-Management) Specification DSP0226

190 Work in Progress - Not a DMTF Standard Version 1.2.0b

(300) <xs:enumeration 7255
value="http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceShuttingDown" /> 7256
(301) <xs:enumeration 7257
value="http://schemas.xmlsoap.org/ws/2004/09/enumeration/SourceCancelling" /> 7258
(302) </xs:restriction> 7259
(303) </xs:simpleType> 7260
(304) 7261
(305) <xs:simpleType name="OpenEnumerationEndCodeType"> 7262
(306) <xs:union memberTypes="tns:EnumerationEndCodeType xs:anyURI" /> 7263
(307) </xs:simpleType> 7264
(308) </xs:schema> 7265

A normative copy of the WSDL description for enumeration operations can be retrieved from the 7266
following address: 7267

http://schemas.dmtf.org/wbem/wsman/1/DSP8037_1.0.wsdl 7268

The following non-normative copy of the WSDL description is provided for convenience: 7269

(1) <?xml version="1.0" encoding="UTF-8"?> 7270
(2) <!-- 7271
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 7272
(4) 7273
(5) Document number: DSP8037 7274
(6) Date: 2010-02-19 7275
(7) Version: 1.0.0 7276
(8) Document status: DMTF Standard 7277
(9) 7278
(10) Title: WS-Management Enumeration Operations WSDL 7279
(11) 7280
(12) Document type: Specification (W3C WSDL Document) 7281
(13) Document language: E 7282
(14) 7283
(15) Abstract: WSDL for WS-Management Enumeration Operations. 7284
(16) 7285
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 7286
(18) 7287
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 7288
(20) All rights reserved. DMTF is a not-for-profit association of industry 7289
(21) members dedicated to promoting enterprise and systems management and 7290
(22) interoperability. Members and non-members may reproduce DMTF 7291
(23) specifications and documents, provided that correct attribution is 7292
(24) given. As DMTF specifications may be revised from time to time, 7293
(25) the particular version and release date should always be noted. 7294
(26) Implementation of certain elements of this standard or proposed 7295
(27) standard may be subject to third party patent rights, including 7296
(28) provisional patent rights (herein "patent rights"). DMTF makes 7297
(29) no representations to users of the standard as to the existence of 7298
(30) such rights, and is not responsible to recognize, disclose, 7299
(31) or identify any or all such third party patent right, owners or 7300
(32) claimants, nor for any incomplete or inaccurate identification or 7301
(33) disclosure of such rights, owners or claimants. DMTF shall have no 7302
(34) liability to any party, in any manner or circumstance, under any legal 7303
(35) theory whatsoever, for failure to recognize, disclose, or identify any 7304
(36) such third party patent rights, or for such party's reliance on the 7305
(37) standard or incorporation thereof in its product, protocols or testing 7306
(38) procedures. DMTF shall have no liability to any party implementing 7307
(39) such standard, whether such implementation is foreseeable or not, nor 7308
(40) to any patent owner or claimant, and shall have no liability or 7309
(41) responsibility for costs or losses incurred if a standard is withdrawn 7310
(42) or modified after publication, and shall be indemnified and held 7311
(43) harmless by any party implementing the standard from any and all claims 7312
(44) of infringement by a patent owner for such implementations. For 7313

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 191

(45) information about patents held by third-parties which have notified the 7314
(46) DMTF that, in their opinion, such patent may relate to or impact 7315
(47) implementations of DMTF standards, visit 7316
(48) http://www.dmtf.org/about/policies/disclosures.php. 7317
(49) 7318
(50) Change log: 7319
(51) 1.0.0 - 2009-11-01 - Work in Progress release 7320
(52) 1.0.0 – 2010-02-19 – DMTF Standard release 7321
(53) 7322
(54) --> 7323
(55) <wsdl:definitions 7324
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 7325
(57) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7326
(58) xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 7327
(59) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 7328
(60) xmlns:wsmen="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 7329
(61) xmlns:xs="http://www.w3.org/2001/XMLSchema" > 7330
(62) 7331
(63) <wsdl:types> 7332
(64) <xs:schema> 7333
(65) <xs:import 7334
(66) namespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 7335
(67) schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8033_1.0.xsd" 7336
(68) /> 7337
(69) </xs:schema> 7338
(70) </wsdl:types> 7339
(71) 7340
(72) <wsdl:message name="EnumerateMessage"> 7341
(73) <wsdl:part name="Body" element="wsmen:Enumerate" /> 7342
(74) </wsdl:message> 7343
(75) <wsdl:message name="EnumerateResponseMessage"> 7344
(76) <wsdl:part name="Body" element="wsmen:EnumerateResponse" /> 7345
(77) </wsdl:message> 7346
(78) <wsdl:message name="PullMessage"> 7347
(79) <wsdl:part name="Body" element="wsmen:Pull" /> 7348
(80) </wsdl:message> 7349
(81) <wsdl:message name="PullResponseMessage"> 7350
(82) <wsdl:part name="Body" element="wsmen:PullResponse" /> 7351
(83) </wsdl:message> 7352
(84) <wsdl:message name="RenewMessage" > 7353
(85) <wsdl:part name="Body" element="wsmen:Renew" /> 7354
(86) </wsdl:message> 7355
(87) <wsdl:message name="RenewResponseMessage" > 7356
(88) <wsdl:part name="Body" element="wsmen:RenewResponse" /> 7357
(89) </wsdl:message> 7358
(90) <wsdl:message name="GetStatusMessage" > 7359
(91) <wsdl:part name="Body" element="wsmen:GetStatus" /> 7360
(92) </wsdl:message> 7361
(93) <wsdl:message name="GetStatusResponseMessage" > 7362
(94) <wsdl:part name="Body" element="wsmen:GetStatusResponse" /> 7363
(95) </wsdl:message> 7364
(96) <wsdl:message name="ReleaseMessage"> 7365
(97) <wsdl:part name="Body" element="wsmen:Release" /> 7366
(98) </wsdl:message> 7367
(99) <wsdl:message name="ReleaseResponseMessage" /> 7368
(100) <wsdl:message name="EnumerationEndMessage" > 7369
(101) <wsdl:part name="Body" element="wsmen:EnumerationEnd" /> 7370
(102) </wsdl:message> 7371
(103) 7372
(104) <wsdl:portType name="DataSource"> 7373
(105) <wsdl:operation name="EnumerateOp"> 7374
(106) <wsdl:input 7375
(107) message="wsmen:EnumerateMessage" 7376

Web Services for Management (WS-Management) Specification DSP0226

192 Work in Progress - Not a DMTF Standard Version 1.2.0b

(108) 7377
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate" 7378
(109) 7379
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate" 7380
(110) /> 7381
(111) <wsdl:output 7382
(112) message="wsmen:EnumerateResponseMessage" 7383
(113) 7384
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse7385
" 7386
(114) 7387
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateRespons7388
e" 7389
(115) /> 7390
(116) </wsdl:operation> 7391
(117) <wsdl:operation name="PullOp"> 7392
(118) <wsdl:input 7393
(119) message="wsmen:PullMessage" 7394
(120) 7395
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull" 7396
(121) 7397
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull" 7398
(122) /> 7399
(123) <wsdl:output 7400
(124) message="wsmen:PullResponseMessage" 7401
(125) 7402
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse" 7403
(126) 7404
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse" 7405
(127) /> 7406
(128) </wsdl:operation> 7407
(129) <wsdl:operation name="RenewOp" > 7408
(130) <wsdl:input 7409
(131) message="wsmen:RenewMessage" 7410
(132) 7411
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew" 7412
(133) 7413
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew" 7414
(134) /> 7415
(135) <wsdl:output 7416
(136) message="wsmen:RenewResponseMessage" 7417
(137) 7418
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewResponse" 7419
(138) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewRespo7420
nse" 7421
(139) /> 7422
(140) </wsdl:operation> 7423
(141) <wsdl:operation name="GetStatusOp" > 7424
(142) <wsdl:input 7425
(143) message="wsmen:GetStatusMessage" 7426
(144) 7427
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus" 7428
(145) 7429
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus" 7430
(146) /> 7431
(147) <wsdl:output 7432
(148) message="wsmen:GetStatusResponseMessage" 7433
(149) 7434
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusResponse7435
" 7436
(150) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusR7437
esponse" 7438
(151) /> 7439

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 193

(152) </wsdl:operation> 7440
(153) <wsdl:operation name="ReleaseOp"> 7441
(154) <wsdl:input 7442
(155) message="wsmen:ReleaseMessage" 7443
(156) 7444
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release" 7445
(157) 7446
wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release" 7447
(158) /> 7448
(159) <wsdl:output 7449
(160) message="wsmen:ReleaseResponseMessage" 7450
(161) wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResp7451
onse" 7452
(162) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseRes7453
ponse" 7454
(163) /> 7455
(164) </wsdl:operation> 7456
(165) </wsdl:portType> 7457
(166) 7458
(167) <!-- The following portType shall be supported by the endpoint to which 7459
(168) The EnumerationEnd message is sent --> 7460
(169) <wsdl:portType name="EnumEndEndpoint"> 7461
(170) <wsdl:operation name="EnumerationEndOp" > 7462
(171) <wsdl:input 7463
(172) message="wsmen:EnumerationEndMessage" 7464
(173) 7465
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd" 7466
(174) wsam:Action="http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumeratio7467
nEnd" 7468
(175) /> 7469
(176) </wsdl:operation> 7470
(177) </wsdl:portType> 7471
(178) </wsdl:definitions> 7472

 7473

Web Services for Management (WS-Management) Specification DSP0226

194 Work in Progress - Not a DMTF Standard Version 1.2.0b

ANNEX I 7474

(informative) 7475

 7476

Notification OperationsXML Schema and WSDL 7477

A normative copy of the XML schemas for the notification operations can be retrieved at the following 7478
address: 7479

http://schemas.dmtf.org/wbem/wsman/1/DSP8032_1.0.xsd 7480

The following non-normative copy of the XML schema is provided for convenience: 7481

(1) <?xml version="1.0" encoding="UTF-8"?> 7482
(2) <!-- 7483
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 7484
(4) 7485
(5) Document number: DSP8032 7486
(6) Date: 2010-02-19 7487
(7) Version: 1.0.0 7488
(8) Document status: DMTF Standard 7489
(9) 7490
(10) Title: WS-Management Notification Operations XML Schema 7491
(11) 7492
(12) Document type: Specification (W3C XML Schema) 7493
(13) Document language: E 7494
(14) 7495
(15) Abstract: XML Schema for WS-Management Notification Operations. 7496
(16) 7497
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 7498
(18) 7499
(19) Copyright (C) 2008–2009 Distributed Management Task Force, Inc. (DMTF). 7500
(20) All rights reserved. DMTF is a not-for-profit association of industry 7501
(21) members dedicated to promoting enterprise and systems management and 7502
(22) interoperability. Members and non-members may reproduce DMTF 7503
(23) specifications and documents, provided that correct attribution is 7504
(24) given. As DMTF specifications may be revised from time to time, 7505
(25) the particular version and release date should always be noted. 7506
(26) Implementation of certain elements of this standard or proposed 7507
(27) standard may be subject to third party patent rights, including 7508
(28) provisional patent rights (herein "patent rights"). DMTF makes 7509
(29) no representations to users of the standard as to the existence of 7510
(30) such rights, and is not responsible to recognize, disclose, 7511
(31) or identify any or all such third party patent right, owners or 7512
(32) claimants, nor for any incomplete or inaccurate identification or 7513
(33) disclosure of such rights, owners or claimants. DMTF shall have no 7514
(34) liability to any party, in any manner or circumstance, under any legal 7515
(35) theory whatsoever, for failure to recognize, disclose, or identify any 7516
(36) such third party patent rights, or for such party's reliance on the 7517
(37) standard or incorporation thereof in its product, protocols or testing 7518
(38) procedures. DMTF shall have no liability to any party implementing 7519
(39) such standard, whether such implementation is foreseeable or not, nor 7520
(40) to any patent owner or claimant, and shall have no liability or 7521
(41) responsibility for costs or losses incurred if a standard is withdrawn 7522
(42) or modified after publication, and shall be indemnified and held 7523
(43) harmless by any party implementing the standard from any and all claims 7524
(44) of infringement by a patent owner for such implementations. For 7525
(45) information about patents held by third-parties which have notified the 7526
(46) DMTF that, in their opinion, such patent may relate to or impact 7527
(47) implementations of DMTF standards, visit 7528
(48) http://www.dmtf.org/about/policies/disclosures.php. 7529

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 195

(49) 7530
(50) Change log: 7531
(51) 1.0.0 - 2009-11-01 – Work in Progress release 7532
(52) 1.0.0 – 2010-02-19 – DMTF Standard release 7533
(53) 7534
(54) --> 7535
(55) <xs:schema 7536
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/08/eventing" 7537
(57) xmlns:tns="http://schemas.xmlsoap.org/ws/2004/08/eventing" 7538
(58) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7539
(59) xmlns:xs="http://www.w3.org/2001/XMLSchema" 7540
(60) elementFormDefault="qualified" 7541
(61) blockDefault="#all"> 7542
(62) 7543
(63) <xs:import 7544
(64) namespace="http://www.w3.org/XML/1998/namespace" 7545
(65) schemaLocation="http://www.w3.org/2001/xml.xsd" /> 7546
(66) <xs:import 7547
(67) namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7548
(68) schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8034_1.0.xsd" 7549
/> 7550
(69) <xs:import 7551
(70) namespace="http://www.w3.org/2005/08/addressing" 7552
(71) schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd" /> 7553
(72) 7554
(73) <!-- Types and global elements --> 7555
(74) <xs:complexType name="DeliveryType" mixed="true"> 7556
(75) <xs:sequence> 7557
(76) <xs:any namespace="##any" processContents="lax" 7558
(77) minOccurs="0" maxOccurs="unbounded" /> 7559
(78) </xs:sequence> 7560
(79) <xs:attribute name="Mode" type="xs:anyURI" use="optional" /> 7561
(80) <xs:anyAttribute namespace="##other" processContents="lax" /> 7562
(81) </xs:complexType> 7563
(82) 7564
(83) <xs:simpleType name="NonNegativeDurationType"> 7565
(84) <xs:restriction base="xs:duration"> 7566
(85) <xs:minInclusive value="P0Y0M0DT0H0M0S" /> 7567
(86) </xs:restriction> 7568
(87) </xs:simpleType> 7569
(88) 7570
(89) <xs:simpleType name="ExpirationType"> 7571
(90) <xs:union memberTypes="xs:dateTime 7572
(91) tns:NonNegativeDurationType" /> 7573
(92) </xs:simpleType> 7574
(93) 7575
(94) <xs:complexType name="FilterType" mixed="true"> 7576
(95) <xs:sequence> 7577
(96) <xs:any namespace="##other" processContents="lax" 7578
(97) minOccurs="0" maxOccurs="unbounded" /> 7579
(98) </xs:sequence> 7580
(99) <xs:attribute name="Dialect" type="xs:anyURI" use="optional" /> 7581
(100) <xs:anyAttribute namespace="##other" processContents="lax" /> 7582
(101) </xs:complexType> 7583
(102) 7584
(103) <xs:complexType name="LanguageSpecificStringType"> 7585
(104) <xs:simpleContent> 7586
(105) <xs:extension base="xs:string"> 7587
(106) <xs:attribute ref="xml:lang" /> 7588
(107) <xs:anyAttribute namespace="##other" processContents="lax" /> 7589
(108) </xs:extension> 7590
(109) </xs:simpleContent> 7591
(110) </xs:complexType> 7592

Web Services for Management (WS-Management) Specification DSP0226

196 Work in Progress - Not a DMTF Standard Version 1.2.0b

(111) 7593
(112) <!-- 7594
(113) The type of the AnyEPRType is effectively 7595
(114) the union of wsa04:EndpointReferenceType and 7596
(115) wsa10:EndpointReferenceType. Unfortunately, xs:union only 7597
(116) works for simple types. As a result, we have to define 7598
(117) the element in an unvalidated way to accommodate either 7599
(118) addressing type. 7600
(119) --> 7601
(120) 7602
(121) <xs:complexType name="AnyEPRType"> 7603
(122) <xs:sequence> 7604
(123) <xs:any minOccurs='1' maxOccurs='unbounded' processContents='skip' 7605
(124) namespace='##other' /> 7606
(125) </xs:sequence> 7607
(126) </xs:complexType> 7608
(127) 7609
(128) <xs:element name="NotifyTo" type="tns:AnyEPRType" /> 7610
(129) 7611
(130) <!-- Subscribe request --> 7612
(131) <xs:element name="Subscribe"> 7613
(132) <xs:complexType> 7614
(133) <xs:sequence> 7615
(134) <xs:element name="EndTo" type="tns:AnyEPRType" 7616
(135) minOccurs="0" /> 7617
(136) <xs:element name="Delivery" type="tns:DeliveryType" /> 7618
(137) <xs:element name="Expires" type="tns:ExpirationType" 7619
(138) minOccurs="0" /> 7620
(139) <xs:element name="Filter" type="tns:FilterType" 7621
(140) minOccurs="0" /> 7622
(141) <xs:any namespace="##other" processContents="lax" 7623
(142) minOccurs="0" maxOccurs="unbounded" /> 7624
(143) </xs:sequence> 7625
(144) <xs:anyAttribute namespace="##other" processContents="lax" /> 7626
(145) </xs:complexType> 7627
(146) </xs:element> 7628
(147) 7629
(148) <xs:element name="Identifier" type="xs:anyURI" /> 7630
(149) 7631
(150) <!-- Subscribe response --> 7632
(151) <xs:element name="SubscribeResponse"> 7633
(152) <xs:complexType> 7634
(153) <xs:sequence> 7635
(154) <xs:element name="SubscriptionManager" 7636
(155) type="tns:AnyEPRType" /> 7637
(156) <xs:element name="Expires" type="tns:ExpirationType" /> 7638
(157) <xs:any namespace="##other" processContents="lax" 7639
(158) minOccurs="0" maxOccurs="unbounded" /> 7640
(159) </xs:sequence> 7641
(160) <xs:anyAttribute namespace="##other" processContents="lax" /> 7642
(161) </xs:complexType> 7643
(162) </xs:element> 7644
(163) 7645
(164) <!-- Used in a fault if there's an unsupported dialect --> 7646
(165) <xs:element name="SupportedDialect" type="xs:anyURI" /> 7647
(166) 7648
(167) <!-- Used in a fault if there's an unsupported delivery mode --> 7649
(168) <xs:element name="SupportedDeliveryMode" type="xs:anyURI" /> 7650
(169) 7651
(170) <!-- Renew request --> 7652
(171) <xs:element name="Renew"> 7653
(172) <xs:complexType> 7654
(173) <xs:sequence> 7655

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 197

(174) <xs:element name="Expires" type="tns:ExpirationType" 7656
(175) minOccurs="0" /> 7657
(176) <xs:any namespace="##other" processContents="lax" 7658
(177) minOccurs="0" maxOccurs="unbounded" /> 7659
(178) </xs:sequence> 7660
(179) <xs:anyAttribute namespace="##other" processContents="lax" /> 7661
(180) </xs:complexType> 7662
(181) </xs:element> 7663
(182) 7664
(183) <!-- Renew response --> 7665
(184) <xs:element name="RenewResponse"> 7666
(185) <xs:complexType> 7667
(186) <xs:sequence> 7668
(187) <xs:element name="Expires" type="tns:ExpirationType" 7669
(188) minOccurs="0" /> 7670
(189) <xs:any namespace="##other" processContents="lax" 7671
(190) minOccurs="0" maxOccurs="unbounded" /> 7672
(191) </xs:sequence> 7673
(192) <xs:anyAttribute namespace="##other" processContents="lax" /> 7674
(193) </xs:complexType> 7675
(194) </xs:element> 7676
(195) 7677
(196) <!-- GetStatus request --> 7678
(197) <xs:element name="GetStatus"> 7679
(198) <xs:complexType> 7680
(199) <xs:sequence> 7681
(200) <xs:any namespace="##other" processContents="lax" 7682
(201) minOccurs="0" maxOccurs="unbounded" /> 7683
(202) </xs:sequence> 7684
(203) <xs:anyAttribute namespace="##other" processContents="lax" /> 7685
(204) </xs:complexType> 7686
(205) </xs:element> 7687
(206) 7688
(207) <!-- GetStatus response --> 7689
(208) <xs:element name="GetStatusResponse"> 7690
(209) <xs:complexType> 7691
(210) <xs:sequence> 7692
(211) <xs:element name="Expires" type="tns:ExpirationType" 7693
(212) minOccurs="0" /> 7694
(213) <xs:any namespace="##other" processContents="lax" 7695
(214) minOccurs="0" maxOccurs="unbounded" /> 7696
(215) </xs:sequence> 7697
(216) <xs:anyAttribute namespace="##other" processContents="lax" /> 7698
(217) </xs:complexType> 7699
(218) </xs:element> 7700
(219) 7701
(220) <!-- Unsubscribe request --> 7702
(221) <xs:element name="Unsubscribe"> 7703
(222) <xs:complexType> 7704
(223) <xs:sequence> 7705
(224) <xs:any namespace="##other" processContents="lax" 7706
(225) minOccurs="0" maxOccurs="unbounded" /> 7707
(226) </xs:sequence> 7708
(227) <xs:anyAttribute namespace="##other" processContents="lax" /> 7709
(228) </xs:complexType> 7710
(229) </xs:element> 7711
(230) 7712
(231) <!-- SubscriptionEnd message --> 7713
(232) <xs:element name="SubscriptionEnd"> 7714
(233) <xs:complexType> 7715
(234) <xs:sequence> 7716
(235) <xs:element name="SubscriptionManager" 7717
(236) type="tns:AnyEPRType" /> 7718

Web Services for Management (WS-Management) Specification DSP0226

198 Work in Progress - Not a DMTF Standard Version 1.2.0b

(237) <xs:element name="Status" 7719
(238) type="tns:OpenSubscriptionEndCodeType" /> 7720
(239) <xs:element name="Reason" 7721
(240) type="tns:LanguageSpecificStringType" 7722
(241) minOccurs="0" maxOccurs="unbounded" /> 7723
(242) <xs:any namespace="##other" processContents="lax" 7724
(243) minOccurs="0" maxOccurs="unbounded" /> 7725
(244) </xs:sequence> 7726
(245) <xs:anyAttribute namespace="##other" processContents="lax" /> 7727
(246) </xs:complexType> 7728
(247) </xs:element> 7729
(248) 7730
(249) <xs:simpleType name="SubscriptionEndCodeType"> 7731
(250) <xs:restriction base="xs:anyURI"> 7732
(251) <xs:enumeration 7733
value="http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryFailure" /> 7734
(252) <xs:enumeration 7735
value="http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceShuttingDown" /> 7736
(253) <xs:enumeration 7737
value="http://schemas.xmlsoap.org/ws/2004/08/eventing/SourceCancelling" /> 7738
(254) </xs:restriction> 7739
(255) </xs:simpleType> 7740
(256) 7741
(257) <xs:simpleType name="OpenSubscriptionEndCodeType"> 7742
(258) <xs:union memberTypes="tns:SubscriptionEndCodeType xs:anyURI" /> 7743
(259) </xs:simpleType> 7744
(260) 7745
(261) <xs:attribute name="EventSource" type="xs:boolean" /> 7746
(262) </xs:schema> 7747

A normative copy of the WSDL description can be retrieved from the following address: 7748

http://schemas.dmtf.org/wbem/wsman/1/DSP8036_1.0.wsdl 7749

The following non-normative copy of the WSDL description is provided for convenience: 7750

(1) <?xml version="1.0" encoding="UTF-8"?> 7751
(2) <!-- 7752
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 7753
(4) 7754
(5) Document number: DSP8036 7755
(6) Date: 2010-02-19 7756
(7) Version: 1.0.0 7757
(8) Document status: DMTF Standard 7758
(9) 7759
(10) Title: WS-Management Notification Operations WSDL 7760
(11) 7761
(12) Document type: Specification (W3C WSDL Document) 7762
(13) Document language: E 7763
(14) 7764
(15) Abstract: WSDL for WS-Management Notification Operations. 7765
(16) 7766
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 7767
(18) 7768
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 7769
(20) All rights reserved. DMTF is a not-for-profit association of industry 7770
(21) members dedicated to promoting enterprise and systems management and 7771
(22) interoperability. Members and non-members may reproduce DMTF 7772

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 199

(23) specifications and documents, provided that correct attribution is 7773
(24) given. As DMTF specifications may be revised from time to time, 7774
(25) the particular version and release date should always be noted. 7775
(26) Implementation of certain elements of this standard or proposed 7776
(27) standard may be subject to third party patent rights, including 7777
(28) provisional patent rights (herein "patent rights"). DMTF makes 7778
(29) no representations to users of the standard as to the existence of 7779
(30) such rights, and is not responsible to recognize, disclose, 7780
(31) or identify any or all such third party patent right, owners or 7781
(32) claimants, nor for any incomplete or inaccurate identification or 7782
(33) disclosure of such rights, owners or claimants. DMTF shall have no 7783
(34) liability to any party, in any manner or circumstance, under any legal 7784
(35) theory whatsoever, for failure to recognize, disclose, or identify any 7785
(36) such third party patent rights, or for such party's reliance on the 7786
(37) standard or incorporation thereof in its product, protocols or testing 7787
(38) procedures. DMTF shall have no liability to any party implementing 7788
(39) such standard, whether such implementation is foreseeable or not, nor 7789
(40) to any patent owner or claimant, and shall have no liability or 7790
(41) responsibility for costs or losses incurred if a standard is withdrawn 7791
(42) or modified after publication, and shall be indemnified and held 7792
(43) harmless by any party implementing the standard from any and all claims 7793
(44) of infringement by a patent owner for such implementations. For 7794
(45) information about patents held by third-parties which have notified the 7795
(46) DMTF that, in their opinion, such patent may relate to or impact 7796
(47) implementations of DMTF standards, visit 7797
(48) http://www.dmtf.org/about/policies/disclosures.php. 7798
(49) 7799
(50) Change log: 7800
(51) 1.0.0 - 2009-11-01 – Work in Progress release 7801
(52) 1.0.0.- 2010-02-19 – DMTF Standard release 7802
(53) 7803
(54) --> 7804
(55) <wsdl:definitions 7805
(56) targetNamespace="http://schemas.xmlsoap.org/ws/2004/08/eventing" 7806
(57) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 7807
(58) xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 7808
(59) xmlns:wsme="http://schemas.xmlsoap.org/ws/2004/08/eventing" 7809
(60) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 7810
(61) xmlns:xs="http://www.w3.org/2001/XMLSchema" > 7811
(62) 7812
(63) <wsdl:types> 7813
(64) <xs:schema> 7814
(65) <xs:import 7815
(66) namespace="http://schemas.xmlsoap.org/ws/2004/08/eventing" 7816
(67) 7817
schemaLocation="http://schemas.dmtf.org/wbem/wsman/1/DSP8032_1.0.xsd" /> 7818
(68) </xs:schema> 7819
(69) </wsdl:types> 7820
(70) 7821
(71) <wsdl:message name="SubscribeMsg" > 7822
(72) <wsdl:part name="body" element="wsme:Subscribe" /> 7823
(73) </wsdl:message> 7824
(74) <wsdl:message name="SubscribeResponseMsg" > 7825
(75) <wsdl:part name="body" element="wsme:SubscribeResponse" /> 7826
(76) </wsdl:message> 7827
(77) 7828
(78) <wsdl:message name="RenewMsg" > 7829
(79) <wsdl:part name="body" element="wsme:Renew" /> 7830
(80) </wsdl:message> 7831
(81) <wsdl:message name="RenewResponseMsg" > 7832
(82) <wsdl:part name="body" element="wsme:RenewResponse" /> 7833
(83) </wsdl:message> 7834
(84) 7835

Web Services for Management (WS-Management) Specification DSP0226

200 Work in Progress - Not a DMTF Standard Version 1.2.0b

(85) <wsdl:message name="GetStatusMsg" > 7836
(86) <wsdl:part name="body" element="wsme:GetStatus" /> 7837
(87) </wsdl:message> 7838
(88) <wsdl:message name="GetStatusResponseMsg" > 7839
(89) <wsdl:part name="body" element="wsme:GetStatusResponse" /> 7840
(90) </wsdl:message> 7841
(91) 7842
(92) <wsdl:message name="UnsubscribeMsg" > 7843
(93) <wsdl:part name="body" element="wsme:Unsubscribe" /> 7844
(94) </wsdl:message> 7845
(95) <wsdl:message name="UnsubscribeResponseMsg" /> 7846
(96) 7847
(97) <wsdl:message name="SubscriptionEnd" > 7848
(98) <wsdl:part name="body" element="wsme:SubscriptionEnd" /> 7849
(99) </wsdl:message> 7850
(100) 7851
(101) <wsdl:portType name="EventSource" > 7852
(102) <wsdl:operation name="SubscribeOp" > 7853
(103) <wsdl:input 7854
(104) message="wsme:SubscribeMsg" 7855
(105) 7856
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe" 7857
(106) 7858
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe"/> 7859
(107) <wsdl:output 7860
(108) message="wsme:SubscribeResponseMsg" 7861
(109) 7862
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse" 7863
(110) 7864
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse"/7865
> 7866
(111) </wsdl:operation> 7867
(112) </wsdl:portType> 7868
(113) 7869
(114) <!-- The following portType shall be supported by the endpoint to which 7870
(115) the SubscriptionEnd message is sent. --> 7871
(116) <wsdl:portType name="EndToEndpoint"> 7872
(117) <wsdl:operation name="SubscriptionEnd" > 7873
(118) <wsdl:input 7874
(119) message="wsme:SubscriptionEnd" 7875
(120) 7876
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd" 7877
(121) 7878
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd"/> 7879
(122) </wsdl:operation> 7880
(123) </wsdl:portType> 7881
(124) 7882
(125) <!-- The following portType shall be supported by the endpoint to which 7883
(126) Notifications are sent. This portType also serves as a 7884
(127) mechanism by which Subscribers can know the Notifications that 7885
(128) will sent by an Event Source. --> 7886
(129) <wsdl:portType name="EventSink"> 7887
(130) <!-- place the Notification messages (operations) here. For example: 7888
(131) <wsdl:operation name="WeatherReport"> 7889
(132) <wsdl:input message="wr:ThunderStormMessage" 7890
(133) wsa:Action="urn:weatherReport:ThunderStorm" 7891
(134) wsam:Action="urn:weatherReport:ThunderStorm" /> 7892
(135) </wsdl:operation> 7893
(136) --> 7894
(137) </wsdl:portType> 7895
(138) 7896
(139) <wsdl:portType name="SubscriptionManager" > 7897
(140) <wsdl:operation name="RenewOp" > 7898

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 201

(141) <wsdl:input 7899
(142) message="wsme:RenewMsg" 7900
(143) wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew" 7901
(144) 7902
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew"/> 7903
(145) <wsdl:output 7904
(146) message="wsme:RenewResponseMsg" 7905
(147) 7906
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse" 7907
(148) 7908
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse"/> 7909
(149) </wsdl:operation> 7910
(150) <wsdl:operation name="GetStatusOp" > 7911
(151) <wsdl:input 7912
(152) message="wsme:GetStatusMsg" 7913
(153) 7914
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus" 7915
(154) 7916
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus"/> 7917
(155) <wsdl:output 7918
(156) message="wsme:GetStatusResponseMsg" 7919
(157) 7920
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse" 7921
(158) 7922
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse"/7923
> 7924
(159) </wsdl:operation> 7925
(160) <wsdl:operation name="UnsubscribeOp" > 7926
(161) <wsdl:input 7927
(162) message="wsme:UnsubscribeMsg" 7928
(163) 7929
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe" 7930
(164) 7931
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe"/> 7932
(165) <wsdl:output 7933
(166) message="wsme:UnsubscribeResponseMsg" 7934
(167) 7935
wsa:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse" 7936
(168) 7937
wsam:Action="http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse7938
"/> 7939
(169) </wsdl:operation> 7940
(170) </wsdl:portType> 7941
(171) </wsdl:definitions> 7942

 7943

Web Services for Management (WS-Management) Specification DSP0226

202 Work in Progress - Not a DMTF Standard Version 1.2.0b

ANNEX J 7944

(informative) 7945

 7946

Addressing XML Schema 7947

A normative copy of the XML schemas for the addressing features can be retrieved at the following 7948
address: 7949

http://schemas.dmtf.org/wbem/wsman/1/DSP8034_1.0.xsd 7950

The following non-normative copy of the XML schema is provided for convenience: 7951

(1) <?xml version="1.0" encoding="UTF-8"?> 7952
(2) <!-- 7953
(3) DMTF - Distributed Management Task Force, Inc. - http://www.dmtf.org 7954
(4) 7955
(5) Document number: DSP8034 7956
(6) Date: 2010-02-19 7957
(7) Version: 1.0.0 7958
(8) Document status: DMTF Standard 7959
(9) 7960
(10) Title: WS-Management Addressing XML Schema 7961
(11) 7962
(12) Document type: Specification (W3C XML Schema) 7963
(13) Document language: E 7964
(14) 7965
(15) Abstract: XML Schema for WS-Management Addressing. 7966
(16) 7967
(17) Contact group: DMTF WS-Management Work Group, wsman-chair@dmtf.org 7968
(18) 7969
(19) Copyright (C) 2008–2010 Distributed Management Task Force, Inc. (DMTF). 7970
(20) All rights reserved. DMTF is a not-for-profit association of industry 7971
(21) members dedicated to promoting enterprise and systems management and 7972
(22) interoperability. Members and non-members may reproduce DMTF 7973
(23) specifications and documents, provided that correct attribution is 7974
(24) given. As DMTF specifications may be revised from time to time, 7975
(25) the particular version and release date should always be noted. 7976
(26) Implementation of certain elements of this standard or proposed 7977
(27) standard may be subject to third party patent rights, including 7978
(28) provisional patent rights (herein "patent rights"). DMTF makes 7979
(29) no representations to users of the standard as to the existence of 7980
(30) such rights, and is not responsible to recognize, disclose, 7981
(31) or identify any or all such third party patent right, owners or 7982
(32) claimants, nor for any incomplete or inaccurate identification or 7983
(33) disclosure of such rights, owners or claimants. DMTF shall have no 7984
(34) liability to any party, in any manner or circumstance, under any legal 7985
(35) theory whatsoever, for failure to recognize, disclose, or identify any 7986
(36) such third party patent rights, or for such party's reliance on the 7987
(37) standard or incorporation thereof in its product, protocols or testing 7988
(38) procedures. DMTF shall have no liability to any party implementing 7989
(39) such standard, whether such implementation is foreseeable or not, nor 7990
(40) to any patent owner or claimant, and shall have no liability or 7991
(41) responsibility for costs or losses incurred if a standard is withdrawn 7992
(42) or modified after publication, and shall be indemnified and held 7993
(43) harmless by any party implementing the standard from any and all claims 7994
(44) of infringement by a patent owner for such implementations. For 7995
(45) information about patents held by third-parties which have notified the 7996
(46) DMTF that, in their opinion, such patent may relate to or impact 7997
(47) implementations of DMTF standards, visit 7998
(48) http://www.dmtf.org/about/policies/disclosures.php. 7999

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 203

(49) 8000
(50) Change log: 8001
(51) 1.0.0 - 2009-11-01 - Work in Progress release 8002
(52) 1.0.0 – 2010-02-19 – DMTF Standard release 8003
(53) --> 8004
(54) <xs:schema 8005
(55) targetNamespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" 8006
(56) xmlns:xs="http://www.w3.org/2001/XMLSchema" 8007
(57) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 8008
(58) elementFormDefault="qualified" blockDefault="#all"> 8009
(59) 8010
(60) <!-- //////////////////// Addressing //////////////////// --> 8011
(61) <!-- Endpoint reference --> 8012
(62) <xs:element name="EndpointReference" type="wsa:EndpointReferenceType"/> 8013
(63) <xs:complexType name="EndpointReferenceType"> 8014
(64) <xs:sequence> 8015
(65) <xs:element name="Address" type="wsa:AttributedURI"/> 8016
(66) <xs:element name="ReferenceProperties" 8017
(67) type="wsa:ReferencePropertiesType" minOccurs="0"/> 8018
(68) <xs:element name="ReferenceParameters" 8019
(69) type="wsa:ReferenceParametersType" minOccurs="0"/> 8020
(70) <xs:element name="PortType" type="wsa:AttributedQName" 8021
minOccurs="0"/> 8022
(71) <xs:element name="ServiceName" type="wsa:ServiceNameType" 8023
minOccurs="0"/> 8024
(72) <xs:any namespace="##other" processContents="lax" minOccurs="0" 8025
(73) maxOccurs="unbounded"> 8026
(74) <xs:annotation> 8027
(75) <xs:documentation> 8028
(76) If "Policy" elements from namespace 8029
(77) "http://schemas.xmlsoap.org/ws/2002/12/policy#policy" are used, 8030
(78) they must appear first (before any extensibility elements). 8031
(79) </xs:documentation> 8032
(80) </xs:annotation> 8033
(81) </xs:any> 8034
(82) </xs:sequence> 8035
(83) <xs:anyAttribute namespace="##other" processContents="lax"/> 8036
(84) </xs:complexType> 8037
(85) <xs:complexType name="ReferencePropertiesType"> 8038
(86) <xs:sequence> 8039
(87) <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 8040
(88) </xs:sequence> 8041
(89) </xs:complexType> 8042
(90) <xs:complexType name="ReferenceParametersType"> 8043
(91) <xs:sequence> 8044
(92) <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 8045
(93) </xs:sequence> 8046
(94) </xs:complexType> 8047
(95) <xs:complexType name="ServiceNameType"> 8048
(96) <xs:simpleContent> 8049
(97) <xs:extension base="xs:QName"> 8050
(98) <xs:attribute name="PortName" type="xs:NCName"/> 8051
(99) <xs:anyAttribute namespace="##other" processContents="lax"/> 8052
(100) </xs:extension> 8053
(101) </xs:simpleContent> 8054
(102) </xs:complexType> 8055
(103) <!-- Message information header blocks --> 8056
(104) <xs:element name="MessageID" type="wsa:AttributedURI"/> 8057
(105) <xs:element name="RelatesTo" type="wsa:Relationship"/> 8058
(106) <xs:element name="To" type="wsa:AttributedURI"/> 8059
(107) <xs:element name="Action" type="wsa:AttributedURI"/> 8060
(108) <xs:element name="From" type="wsa:EndpointReferenceType"/> 8061
(109) <xs:element name="ReplyTo" type="wsa:EndpointReferenceType"/> 8062

Web Services for Management (WS-Management) Specification DSP0226

204 Work in Progress - Not a DMTF Standard Version 1.2.0b

(110) <xs:element name="FaultTo" type="wsa:EndpointReferenceType"/> 8063
(111) <xs:complexType name="Relationship"> 8064
(112) <xs:simpleContent> 8065
(113) <xs:extension base="xs:anyURI"> 8066
(114) <xs:attribute name="RelationshipType" type="xs:QName" 8067
use="optional"/> 8068
(115) <xs:anyAttribute namespace="##other" processContents="lax"/> 8069
(116) </xs:extension> 8070
(117) </xs:simpleContent> 8071
(118) </xs:complexType> 8072
(119) <xs:simpleType name="RelationshipTypeValues"> 8073
(120) <xs:restriction base="xs:QName"> 8074
(121) <xs:enumeration value="wsa:Reply"/> 8075
(122) </xs:restriction> 8076
(123) </xs:simpleType> 8077
(124) <xs:element name="ReplyAfter" type="wsa:ReplyAfterType"/> 8078
(125) <xs:complexType name="ReplyAfterType"> 8079
(126) <xs:simpleContent> 8080
(127) <xs:extension base="xs:nonNegativeInteger"> 8081
(128) <xs:anyAttribute namespace="##other"/> 8082
(129) </xs:extension> 8083
(130) </xs:simpleContent> 8084
(131) </xs:complexType> 8085
(132) <xs:element name="RetryAfter" type="wsa:RetryAfterType"/> 8086
(133) <xs:complexType name="RetryAfterType"> 8087
(134) <xs:simpleContent> 8088
(135) <xs:extension base="xs:nonNegativeInteger"> 8089
(136) <xs:anyAttribute namespace="##other"/> 8090
(137) </xs:extension> 8091
(138) </xs:simpleContent> 8092
(139) </xs:complexType> 8093
(140) <xs:simpleType name="FaultSubcodeValues"> 8094
(141) <xs:restriction base="xs:QName"> 8095
(142) <xs:enumeration value="wsa:InvalidMessageInformationHeader"/> 8096
(143) <xs:enumeration value="wsa:MessageInformationHeaderRequired"/> 8097
(144) <xs:enumeration value="wsa:DestinationUnreachable"/> 8098
(145) <xs:enumeration value="wsa:ActionNotSupported"/> 8099
(146) <xs:enumeration value="wsa:EndpointUnavailable"/> 8100
(147) </xs:restriction> 8101
(148) </xs:simpleType> 8102
(149) <xs:attribute name="Action" type="xs:anyURI"/> 8103
(150) <!-- Common declarations and definitions --> 8104
(151) <xs:complexType name="AttributedQName"> 8105
(152) <xs:simpleContent> 8106
(153) <xs:extension base="xs:QName"> 8107
(154) <xs:anyAttribute namespace="##other" processContents="lax"/> 8108
(155) </xs:extension> 8109
(156) </xs:simpleContent> 8110
(157) </xs:complexType> 8111
(158) <xs:complexType name="AttributedURI"> 8112
(159) <xs:simpleContent> 8113
(160) <xs:extension base="xs:anyURI"> 8114
(161) <xs:anyAttribute namespace="##other" processContents="lax"/> 8115
(162) </xs:extension> 8116
(163) </xs:simpleContent> 8117
(164) </xs:complexType> 8118
(165) </xs:schema> 8119

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 205

ANNEX K 8120

(informative) 8121

 8122

WS-Management XML Schema 8123

A normative copy of the XML schemas for WS-Management can be retrieved at the following 8124
address: 8125

http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd 8126

The following non-normative copy of the XML schema is provided for convenience: 8127

(1) <?xml version="1.0" encoding="UTF-8"?> 8128
(2) <!-- 8129
(3) Notice 8130
(4) DSP8015 8131
(5) Document: WS-Management protocol XML Schema 8132
(6) Version: 1.0.0 8133
(7) Status: Final 8134
(8) Date: 01/20/2008 8135
(9) Author: Bryan Murray, et al. 8136
(10) Description: XML Schema for WS-Management protocol 8137
(11) 8138
(12) Copyright © 2008 Distributed Management Task Force, Inc. (DMTF). All rights 8139

reserved. DMTF is a not-for-profit association of industry members dedicated to 8140
promoting enterprise and systems management and interoperability. Members and 8141
non-members may reproduce DMTF specifications and documents, provided that 8142
correct attribution is given. As DMTF specifications may be revised from time 8143
to time, the particular version and release date should always be noted. 8144
Implementation of certain elements of this standard or proposed standard may be 8145
subject to third party patent rights, including provisional patent rights 8146
(herein "patent rights"). DMTF makes no representations to users of the 8147
standard as to the existence of such rights, and is not responsible to 8148
recognize, disclose, or identify any or all such third party patent right, 8149
owners or claimants, nor for any incomplete or inaccurate identification or 8150
disclosure of such rights, owners or claimants. DMTF shall have no liability to 8151
any party, in any manner or circumstance, under any legal theory whatsoever, 8152
for failure to recognize, disclose, or identify any such third party patent 8153
rights, or for such party’s reliance on the standard or incorporation thereof 8154
in its product, protocols or testing procedures. DMTF shall have no liability 8155
to any party implementing such standard, whether such implementation is 8156
foreseeable or not, nor to any patent owner or claimant, and shall have no 8157
liability or responsibility for costs or losses incurred if a standard is 8158
withdrawn or modified after publication, and shall be indemnified and held 8159
harmless by any party implementing the standard from any and all claims of 8160
infringement by a patent owner for such implementations. For information about 8161
patents held by third-parties which have notified the DMTF that, in their 8162
opinion, such patent may relate to or impact implementations of DMTF standards, 8163
visit http://www.dmtf.org/about/policies/disclosures.php. 8164

(13) 8165
(14) Change Requests: 8166
(15) None 8167
(16) --> 8168
(17) <xs:schema targetNamespace="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 8169
(18) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 8170
(19) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 8171
(20) xmlns:xs="http://www.w3.org/2001/XMLSchema" 8172
(21) elementFormDefault="qualified" version="1.0.0e"> 8173
(22) 8174

Web Services for Management (WS-Management) Specification DSP0226

206 Work in Progress - Not a DMTF Standard Version 1.2.0b

(23) <xs:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" 8175
(24) 8176

schemaLocation="http://schemas.xmlsoap.org/ws/2004/08/addressing"/> 8177
(25) <xs:import namespace="http://www.w3.org/XML/1998/namespace" 8178
(26) schemaLocation="http://www.w3.org/2001/xml.xsd"/> 8179
(27) 8180
(28) <xs:complexType name="attributableURI"> 8181
(29) <xs:simpleContent> 8182
(30) <xs:extension base="xs:anyURI"> 8183
(31) <xs:anyAttribute namespace="##other" processContents="lax"/> 8184
(32) </xs:extension> 8185
(33) </xs:simpleContent> 8186
(34) </xs:complexType> 8187
(35) 8188
(36) <xs:element name="ResourceURI" type="wsman:attributableURI"/> 8189
(37) 8190
(38) <xs:complexType name="SelectorType"> 8191
(39) <xs:annotation> 8192
(40) <xs:documentation> 8193
(41) Instances of this type can be only simple types or EPRs, not 8194

arbitrary mixed data. 8195
(42) </xs:documentation> 8196
(43) </xs:annotation> 8197
(44) <xs:complexContent mixed="true"> 8198
(45) <xs:restriction base="xs:anyType"> 8199
(46) <xs:sequence> 8200
(47) <xs:element ref="wsa:EndpointReference" minOccurs="0"/> 8201
(48) </xs:sequence> 8202
(49) <xs:attribute name="Name" type="xs:NCName" use="required"/> 8203
(50) <xs:anyAttribute namespace="##other" processContents="lax"/> 8204
(51) </xs:restriction> 8205
(52) </xs:complexContent> 8206
(53) </xs:complexType> 8207
(54) <xs:element name="Selector" type="wsman:SelectorType"/> 8208
(55) 8209
(56) <xs:complexType name="SelectorSetType"> 8210
(57) <xs:sequence> 8211
(58) <xs:element ref="wsman:Selector" minOccurs="1" maxOccurs="unbounded"/> 8212
(59) </xs:sequence> 8213
(60) <xs:anyAttribute namespace="##other" processContents="lax"/> 8214
(61) </xs:complexType> 8215
(62) 8216
(63) <xs:element name="SelectorSet" type="wsman:SelectorSetType"> 8217
(64) <xs:unique name="oneSelectorPerName"> 8218
(65) <xs:selector xpath="./Selector"/> 8219
(66) <xs:field xpath="@Name"/> 8220
(67) </xs:unique> 8221
(68) </xs:element> 8222
(69) 8223
(70) <xs:complexType name="attributableDuration"> 8224
(71) <xs:simpleContent> 8225
(72) <xs:extension base="xs:duration"> 8226
(73) <xs:anyAttribute namespace="##other" processContents="lax"/> 8227
(74) </xs:extension> 8228
(75) </xs:simpleContent> 8229
(76) </xs:complexType> 8230
(77) 8231
(78) <xs:element name="OperationTimeout" type="wsman:attributableDuration"/> 8232
(79) 8233
(80) <xs:complexType name="attributablePositiveInteger"> 8234

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 207

(81) <xs:simpleContent> 8235
(82) <xs:extension base="xs:positiveInteger"> 8236
(83) <xs:anyAttribute namespace="##other" processContents="lax"/> 8237
(84) </xs:extension> 8238
(85) </xs:simpleContent> 8239
(86) </xs:complexType> 8240
(87) 8241
(88) <xs:simpleType name="PolicyType"> 8242
(89) <xs:restriction base="xs:token"> 8243
(90) <xs:enumeration value="CancelSubscription"/> 8244
(91) <xs:enumeration value="Skip"/> 8245
(92) <xs:enumeration value="Notify"/> 8246
(93) </xs:restriction> 8247
(94) </xs:simpleType> 8248
(95) 8249
(96) <xs:complexType name="MaxEnvelopeSizeType"> 8250
(97) <xs:simpleContent> 8251
(98) <xs:extension base="wsman:attributablePositiveInteger"> 8252
(99) <xs:attribute name="Policy" type="wsman:PolicyType" 8253

default="Notify"/> 8254
(100) </xs:extension> 8255
(101) </xs:simpleContent> 8256
(102) </xs:complexType> 8257
(103) <xs:element name="MaxEnvelopeSize" type="wsman:MaxEnvelopeSizeType"/> 8258
(104) 8259
(105) <xs:element name="Locale"> 8260
(106) <xs:complexType> 8261
(107) <xs:attribute ref="xml:lang" use="required"/> 8262
(108) <xs:anyAttribute namespace="##other" processContents="lax"/> 8263
(109) </xs:complexType> 8264
(110) </xs:element> 8265
(111) 8266
(112) <xs:complexType name="OptionType"> 8267
(113) <xs:simpleContent> 8268
(114) <xs:extension base="xs:string"> 8269
(115) <xs:attribute name="Name" type="xs:NCName" use="required"/> 8270
(116) <xs:attribute name="MustComply" type="xs:boolean" default="false"/> 8271
(117) <xs:attribute name="Type" type="xs:QName"/> 8272
(118) <xs:anyAttribute namespace="##other" processContents="lax"/> 8273
(119) </xs:extension> 8274
(120) </xs:simpleContent> 8275
(121) </xs:complexType> 8276
(122) <xs:element name="Option" type="wsman:OptionType"/> 8277
(123) 8278
(124) <xs:element name="OptionSet"> 8279
(125) <xs:complexType> 8280
(126) <xs:sequence> 8281
(127) <xs:element ref="wsman:Option" minOccurs="0" maxOccurs="unbounded"/> 8282
(128) </xs:sequence> 8283
(129) <xs:anyAttribute namespace="##other" processContents="lax"/> 8284
(130) </xs:complexType> 8285
(131) </xs:element> 8286
(132) 8287
(133) <xs:complexType name="attributableEmpty"> 8288
(134) <xs:anyAttribute namespace="##other" processContents="lax"/> 8289
(135) </xs:complexType> 8290
(136) 8291
(137) <xs:element name="RequestEPR" type="wsman:attributableEmpty"/> 8292
(138) <xs:element name="EPRInvalid" type="wsman:attributableEmpty"/> 8293
(139) <xs:element name="EPRUnknown" type="wsman:attributableEmpty"/> 8294

Web Services for Management (WS-Management) Specification DSP0226

208 Work in Progress - Not a DMTF Standard Version 1.2.0b

(140) 8295
(141) <xs:complexType name="RequestedEPRType"> 8296
(142) <xs:choice> 8297
(143) <xs:element ref="wsa:EndpointReference"/> 8298
(144) <xs:element ref="wsman:EPRInvalid"/> 8299
(145) <xs:element ref="wsman:EPRUnknown"/> 8300
(146) </xs:choice> 8301
(147) <xs:anyAttribute namespace="##other" processContents="lax"/> 8302
(148) </xs:complexType> 8303
(149) <xs:element name="RequestedEPR" type="wsman:RequestedEPRType"/> 8304
(150) 8305
(151) <xs:complexType name="mixedDataType"> 8306
(152) <xs:complexContent mixed="true"> 8307
(153) <xs:restriction base="xs:anyType"> 8308
(154) <xs:sequence> 8309
(155) <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" 8310

processContents="skip"/> 8311
(156) </xs:sequence> 8312
(157) <xs:anyAttribute namespace="##other" processContents="lax"/> 8313
(158) </xs:restriction> 8314
(159) </xs:complexContent> 8315
(160) </xs:complexType> 8316
(161) 8317
(162) <xs:complexType name="fragmentMixedDataType"> 8318
(163) <xs:complexContent mixed="true"> 8319
(164) <xs:extension base="wsman:mixedDataType"> 8320
(165) <xs:attribute name="Dialect" type="xs:anyURI" 8321

default="http://www.w3.org/TR/1999/REC-xpath-19991116"/> 8322
(166) <xs:anyAttribute namespace="##other" processContents="lax"/> 8323
(167) </xs:extension> 8324
(168) </xs:complexContent> 8325
(169) </xs:complexType> 8326
(170) 8327
(171) <xs:element name="FragmentTransfer" type="wsman:fragmentMixedDataType"/> 8328
(172) <xs:element name="XmlFragment" type="wsman:mixedDataType"/> 8329
(173) 8330
(174) <xs:complexType name="attributableNonNegativeInteger"> 8331
(175) <xs:simpleContent> 8332
(176) <xs:extension base="xs:nonNegativeInteger"> 8333
(177) <xs:anyAttribute namespace="##other" processContents="lax"/> 8334
(178) </xs:extension> 8335
(179) </xs:simpleContent> 8336
(180) </xs:complexType> 8337
(181) 8338
(182) <xs:element name="TotalItemsCountEstimate" 8339

type="wsman:attributableNonNegativeInteger" nillable="true"/> 8340
(183) <xs:element name="RequestTotalItemsCountEstimate" 8341

type="wsman:attributableEmpty"/> 8342
(184) 8343
(185) <xs:element name="OptimizeEnumeration" type="wsman:attributableEmpty"/> 8344
(186) <xs:element name="MaxElements" type="wsman:attributablePositiveInteger"/> 8345
(187) 8346
(188) <xs:simpleType name="EnumerationModeType"> 8347
(189) <xs:restriction base="xs:token"> 8348
(190) <xs:enumeration value="EnumerateEPR"/> 8349
(191) <xs:enumeration value="EnumerateObjectAndEPR"/> 8350
(192) </xs:restriction> 8351
(193) </xs:simpleType> 8352
(194) <xs:element name="EnumerationMode" type="wsman:EnumerationModeType"/> 8353
(195) 8354

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 209

(196) <xs:complexType name="mixedDataFilterType" mixed="true"> 8355
(197) <xs:complexContent mixed="true"> 8356
(198) <xs:restriction base="xs:anyType"> 8357
(199) <xs:sequence> 8358
(200) <xs:any namespace="##any" processContents="skip" minOccurs="0" 8359

maxOccurs="unbounded"/> 8360
(201) </xs:sequence> 8361
(202) <xs:anyAttribute namespace="##any" processContents="lax"/> 8362
(203) </xs:restriction> 8363
(204) </xs:complexContent> 8364
(205) </xs:complexType> 8365
(206) 8366
(207) <xs:complexType name="filterMixedDataType" mixed="true"> 8367
(208) <xs:complexContent mixed="true"> 8368
(209) <xs:extension base="wsman:mixedDataFilterType"> 8369
(210) <xs:attribute name="Dialect" type="xs:anyURI" 8370

default="http://www.w3.org/TR/1999/REC-xpath-19991116"/> 8371
(211) <xs:anyAttribute namespace="##any" processContents="lax"/> 8372
(212) </xs:extension> 8373
(213) </xs:complexContent> 8374
(214) </xs:complexType> 8375
(215) 8376
(216) <xs:element name="Filter" type="wsman:filterMixedDataType"/> 8377
(217) 8378
(218) <xs:complexType name="ObjectAndEPRType"> 8379
(219) <xs:sequence> 8380
(220) <xs:any namespace="##any" processContents="lax"/> 8381
(221) <xs:element ref="wsa:EndpointReference"/> 8382
(222) </xs:sequence> 8383
(223) </xs:complexType> 8384
(224) <xs:element name="Item" type="wsman:ObjectAndEPRType"/> 8385
(225) 8386
(226) <xs:complexType name="anyListType"> 8387
(227) <xs:sequence> 8388
(228) <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" 8389

processContents="lax"/> 8390
(229) </xs:sequence> 8391
(230) <xs:anyAttribute namespace="##other" processContents="lax"/> 8392
(231) </xs:complexType> 8393
(232) 8394
(233) <xs:element name="Items" type="wsman:anyListType"/> 8395
(234) <xs:element name="EndOfSequence" type="wsman:attributableEmpty"/> 8396
(235) 8397
(236) <xs:complexType name="attributableLanguage"> 8398
(237) <xs:simpleContent> 8399
(238) <xs:extension base="xs:language"> 8400
(239) <xs:anyAttribute namespace="##other" processContents="lax"/> 8401
(240) </xs:extension> 8402
(241) </xs:simpleContent> 8403
(242) </xs:complexType> 8404
(243) 8405
(244) <xs:element name="ContentEncoding" type="wsman:attributableLanguage"/> 8406
(245) 8407
(246) <xs:complexType name="ConnectionRetryType"> 8408
(247) <xs:simpleContent> 8409
(248) <xs:extension base="wsman:attributableDuration"> 8410
(249) <xs:attribute name="Total" type="xs:unsignedLong"/> 8411
(250) </xs:extension> 8412
(251) </xs:simpleContent> 8413
(252) </xs:complexType> 8414

Web Services for Management (WS-Management) Specification DSP0226

210 Work in Progress - Not a DMTF Standard Version 1.2.0b

(253) <xs:element name="ConnectionRetry" type="wsman:ConnectionRetryType"/> 8415
(254) 8416
(255) <xs:element name="Heartbeats" type="wsman:attributableDuration"/> 8417
(256) <xs:element name="SendBookmarks" type="wsman:attributableEmpty"/> 8418
(257) 8419
(258) <xs:complexType name="attributableAny"> 8420
(259) <xs:sequence> 8421
(260) <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" 8422

processContents="lax"/> 8423
(261) </xs:sequence> 8424
(262) <xs:anyAttribute namespace="##other" processContents="lax"/> 8425
(263) </xs:complexType> 8426
(264) 8427
(265) <xs:element name="Bookmark" type="wsman:mixedDataType"/> 8428
(266) <xs:element name="MaxTime" type="wsman:attributableDuration"/> 8429
(267) 8430
(268) <xs:complexType name="EventType"> 8431
(269) <xs:complexContent> 8432
(270) <xs:extension base="wsman:attributableAny"> 8433
(271) <xs:attribute name="Action" type="xs:anyURI" use="required"/> 8434
(272) </xs:extension> 8435
(273) </xs:complexContent> 8436
(274) </xs:complexType> 8437
(275) <xs:element name="Event" type="wsman:EventType"/> 8438
(276) 8439
(277) <xs:complexType name="EventsType"> 8440
(278) <xs:sequence> 8441
(279) <xs:element ref="wsman:Event" minOccurs="1" maxOccurs="unbounded"/> 8442
(280) </xs:sequence> 8443
(281) <xs:anyAttribute namespace="##other" processContents="lax"/> 8444
(282) </xs:complexType> 8445
(283) <xs:element name="Events" type="wsman:EventsType"/> 8446
(284) 8447
(285) <xs:element name="AckRequested" type="wsman:attributableEmpty"/> 8448
(286) 8449
(287) <xs:complexType name="attributableInt"> 8450
(288) <xs:simpleContent> 8451
(289) <xs:extension base="xs:int"> 8452
(290) <xs:anyAttribute namespace="##other" processContents="lax"/> 8453
(291) </xs:extension> 8454
(292) </xs:simpleContent> 8455
(293) </xs:complexType> 8456
(294) 8457
(295) <xs:complexType name="DroppedEventsType"> 8458
(296) <xs:simpleContent> 8459
(297) <xs:extension base="wsman:attributableInt"> 8460
(298) <xs:attribute name="Action" type="xs:anyURI" use="required"/> 8461
(299) </xs:extension> 8462
(300) </xs:simpleContent> 8463
(301) </xs:complexType> 8464
(302) <xs:element name="DroppedEvents" type="wsman:DroppedEventsType"/> 8465
(303) 8466
(304) <xs:simpleType name="restrictedProfileType"> 8467
(305) <xs:restriction base="xs:anyURI"> 8468
(306) <xs:enumeration 8469

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/basic"/> 8470
(307) <xs:enumeration 8471

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/digest"/> 8472
(308) <xs:enumeration 8473

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/basic"/> 8474

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 211

(309) <xs:enumeration 8475
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/digest"/> 8476

(310) <xs:enumeration 8477
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual"/> 8478

(311) <xs:enumeration 8479
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic8480
"/> 8481

(312) <xs:enumeration 8482
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/diges8483
t"/> 8484

(313) <xs:enumeration 8485
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/spnego-8486
kerberos"/> 8487

(314) <xs:enumeration 8488
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/spneg8489
o-kerberos"/> 8490

(315) <xs:enumeration 8491
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/spnego-8492
kerberos"/> 8493

(316) </xs:restriction> 8494
(317) </xs:simpleType> 8495
(318) 8496
(319) <xs:simpleType name="ProfileType"> 8497
(320) <xs:union memberTypes="wsman:restrictedProfileType xs:anyURI"/> 8498
(321) </xs:simpleType> 8499
(322) 8500
(323) <xs:complexType name="AuthType"> 8501
(324) <xs:complexContent> 8502
(325) <xs:extension base="wsman:attributableEmpty"> 8503
(326) <xs:attribute name="Profile" type="wsman:ProfileType" 8504

use="required"/> 8505
(327) </xs:extension> 8506
(328) </xs:complexContent> 8507
(329) </xs:complexType> 8508
(330) <xs:element name="Auth" type="wsman:AuthType"/> 8509
(331) 8510
(332) <xs:simpleType name="ThumbprintType"> 8511
(333) <xs:restriction base="xs:string"> 8512
(334) <xs:pattern value="[0-9a-fA-F]{40}"/> 8513
(335) </xs:restriction> 8514
(336) </xs:simpleType> 8515
(337) <xs:element name="CertificateThumbprint" type="wsman:ThumbprintType"/> 8516
(338) 8517
(339) 8518
(340) <xs:simpleType name="restrictedFaultDetailType"> 8519
(341) <xs:restriction base="xs:anyURI"> 8520
(342) <xs:enumeration 8521

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ActionMismatch"/> 8522
(343) <xs:enumeration 8523

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Ack"/> 8524
(344) <xs:enumeration 8525

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode"/> 8526
(345) <xs:enumeration 8527

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AsynchronousReque8528
st"/> 8529

(346) <xs:enumeration 8530
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Bookmarks"/> 8531

(347) <xs:enumeration 8532
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/CharacterSet"/> 8533

(348) <xs:enumeration 8534
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DeliveryRetries"/8535

Web Services for Management (WS-Management) Specification DSP0226

212 Work in Progress - Not a DMTF Standard Version 1.2.0b

> 8536
(349) <xs:enumeration 8537

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DuplicateSelector8538
s"/> 8539

(350) <xs:enumeration 8540
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EncodingType"/> 8541

(351) <xs:enumeration 8542
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EnumerationMode"/8543
> 8544

(352) <xs:enumeration 8545
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ExpirationTime"/> 8546

(353) <xs:enumeration 8547
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired"/> 8548

(354) <xs:enumeration 8549
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired8550
"/> 8551

(355) <xs:enumeration 8552
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FormatMismatch"/> 8553

(356) <xs:enumeration 8554
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FragmentLevelAcce8555
ss"/> 8556

(357) <xs:enumeration 8557
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Heartbeats"/> 8558

(358) <xs:enumeration 8559
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsecureAddress"/8560
> 8561

(359) <xs:enumeration 8562
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsufficientSelec8563
tors"/> 8564

(360) <xs:enumeration 8565
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Invalid"/> 8566

(361) <xs:enumeration 8567
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName"/> 8568

(362) <xs:enumeration 8569
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFragment"/8570
> 8571

(363) <xs:enumeration 8572
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace"8573
/> 8574

(364) <xs:enumeration 8575
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceUR8576
I"/> 8577

(365) <xs:enumeration 8578
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue"/> 8579

(366) <xs:enumeration 8580
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues"/> 8581

(367) <xs:enumeration 8582
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Locale"/> 8583

(368) <xs:enumeration 8584
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxElements"/> 8585

(369) <xs:enumeration 8586
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopePolicy8587
"/> 8588

(370) <xs:enumeration 8589
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize"/8590
> 8591

(371) <xs:enumeration 8592
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxTime"/> 8593

(372) <xs:enumeration 8594
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MinimumEnvelopeLi8595
mit"/> 8596

(373) <xs:enumeration 8597

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 213

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues"/> 8598
(374) <xs:enumeration 8599

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported"/> 8600
(375) <xs:enumeration 8601

value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OperationTimeout"8602
/> 8603

(376) <xs:enumeration 8604
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OptionLimit"/> 8605

(377) <xs:enumeration 8606
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ResourceOffline"/8607
> 8608

(378) <xs:enumeration 8609
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/SelectorLimit"/> 8610

(379) <xs:enumeration 8611
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ServiceEnvelopeLi8612
mit"/> 8613

(380) <xs:enumeration 8614
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch"/> 8615

(381) <xs:enumeration 8616
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnexpectedSelecto8617
rs"/> 8618

(382) <xs:enumeration 8619
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSucce8620
ss"/> 8621

(383) <xs:enumeration 8622
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnsupportedCharac8623
ter"/> 8624

(384) <xs:enumeration 8625
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnusableAddress"/8626
> 8627

(385) <xs:enumeration 8628
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/URILimitExceeded"8629
/> 8630

(386) <xs:enumeration 8631
value="http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Whitespace"/> 8632

(387) </xs:restriction> 8633
(388) </xs:simpleType> 8634
(389) 8635
(390) <xs:simpleType name="FaultDetailType"> 8636
(391) <xs:union memberTypes="wsman:restrictedFaultDetailType xs:anyURI"/> 8637
(392) </xs:simpleType> 8638
(393) 8639
(394) <xs:element name="FaultDetail" type="wsman:FaultDetailType"/> 8640
(395) <xs:element name="FragmentDialect" type="wsman:attributableURI"/> 8641
(396) <xs:element name="SupportedSelectorName" type="xs:NCName"/> 8642
(397) 8643
(398) <!-- Master Fault Table subcode QNames --> 8644
(399) <xs:element name="AccessDenied"><xs:complexType/></xs:element> 8645
(400) <xs:element name="AlreadyExists"><xs:complexType/></xs:element> 8646
(401) <xs:element name="CannotProcessFilter"><xs:complexType/></xs:element> 8647
(402) <xs:element name="Concurrency"><xs:complexType/></xs:element> 8648
(403) <xs:element name="DeliveryRefused"><xs:complexType/></xs:element> 8649
(404) <xs:element name="EncodingLimit"><xs:complexType/></xs:element> 8650
(405) <xs:element name="EventDeliverToUnusable"><xs:complexType/></xs:element> 8651
(406) <xs:element 8652

name="FragmentDialectNotSupported"><xs:complexType/></xs:element> 8653
(407) <xs:element name="InternalError"><xs:complexType/></xs:element> 8654
(408) <xs:element name="InvalidBookmark"><xs:complexType/></xs:element> 8655
(409) <xs:element name="InvalidOptions"><xs:complexType/></xs:element> 8656
(410) <xs:element name="InvalidParameter"><xs:complexType/></xs:element> 8657
(411) <xs:element name="InvalidSelectors"><xs:complexType/></xs:element> 8658

Web Services for Management (WS-Management) Specification DSP0226

214 Work in Progress - Not a DMTF Standard Version 1.2.0b

(412) <xs:element name="NoAck"><xs:complexType/></xs:element> 8659
(413) <xs:element name="QuotaLimit"><xs:complexType/></xs:element> 8660
(414) <xs:element name="SchemaValidationError"><xs:complexType/></xs:element> 8661
(415) <xs:element name="TimedOut"><xs:complexType/></xs:element> 8662
(416) <xs:element name="UnsupportedFeature"><xs:complexType/></xs:element> 8663
(417) 8664
(418) </xs:schema> 8665

 8666

Web Services for Management (WS-Management) Specification DSP0226

Version 1.2.0b Work in Progress - Not a DMTF Standard 215

ANNEX L 8667

(informative) 8668

 8669

Change Log 8670

 8671

Version Date Description

1.0.0 2008-02-12 Released as Final Standard

1.1.0 2010-03-03 Released as DMTF Standard, with the following changes:

 Incorporates TEEN specifications inline

 Addresses consistency issues with DSP0227 on Put and Fragment Put

1.1.1 2012-07-30 Incorporate additional clarifying text to Forward section for ISO/IEC publication as
Publicly Available Specification (PAS)

1.1.1 2012-08-28 DMTF Standard

1.2.0a 2014-06-16 wgv 0.8.0 Release as DMTF Work In Progress

1.2.0b 2014-06-16 wgv 0.9.0 Release as DMTF Standard

 8672

