
 1

2

3

4

5

6

7

8

9

Document Number: DSP0226

Date: 2008-02-12

Version: 1.0.0

Web Services for Management (WS-
Management) Specification

Document Type: Specification

Document Status: Final Standard

Document Language: E

Copyright notice 10

Copyright © 2006–2008 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date should always be
noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

DSP0226 Web Services for Management (WS-Management) Specification

CONTENTS 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Foreword ...vi
1 Scope .. 1
2 Normative References... 1

2.1 Approved References ... 1
2.2 Other References.. 2

3 Terms and Definitions.. 2
4 Symbols and Abbreviated Terms... 4
5 Addressing .. 6

5.1 Endpoint References .. 6
5.2 mustUnderstand Usage .. 15
5.3 wsa:To .. 15
5.4 Other WS-Addressing Headers .. 16

6 WS-Management Control Headers ... 22
6.1 wsman:OperationTimeout... 22
6.2 wsman:MaxEnvelopeSize... 23
6.3 wsman:Locale ... 24
6.4 wsman:OptionSet.. 25
6.5 wsman:RequestEPR... 28

7 Resource Access .. 29
7.1 WS-Transfer.. 29
7.2 Addressing Uniformity... 31
7.3 WS-Transfer:Get... 31
7.4 WS-Transfer:Put ... 32
7.5 WS-Transfer:Delete .. 34
7.6 WS-Transfer:Create.. 34
7.7 Fragment-Level WS-Transfer ... 36
7.8 Fragment-Level WS-Transfer:Get .. 38
7.9 Fragment-Level WS-Transfer:Put... 39
7.10 Fragment-Level WS-Transfer:Delete.. 42
7.11 Fragment-Level WS-Transfer:Create ... 43

8 WS-Enumeration ... 45
8.1 General ... 45
8.2 WS-Enumeration:Enumerate.. 45
8.3 Filter Interpretation.. 50
8.4 WS-Enumeration:Pull.. 52
8.5 WS-Enumeration:Release .. 54
8.6 Ad-Hoc Queries and Fragment-Level Enumerations.. 54
8.7 Enumeration of EPRs ... 55

9 Custom Actions (Methods) .. 57
10 Eventing .. 57

10.1 General ... 57
10.2 Subscribe .. 58
10.3 GetStatus .. 74
10.4 Unsubscribe .. 74
10.5 Renew... 74
10.6 SubscriptionEnd.. 75
10.7 Acknowledgement of Delivery .. 75
10.8 Refusal of Delivery.. 77
10.9 Dropped Events .. 77

11 Metadata and Discovery.. 79

Version 1.0.0 iii

Web Services for Management (WS-Management) Specification DSP0226

12 Security.. 81 81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

12.1 Security Profiles .. 82
12.2 Security Considerations for Event Subscriptions.. 82
12.3 Including Credentials with a Subscription... 83
12.4 Correlation of Events with Subscription.. 86
12.5 Transport-Level Authentication Failure... 87
12.6 Security Implications of Third-Party Subscriptions ... 87

13 Transports and Message Encoding .. 87
13.1 SOAP .. 87
13.2 Lack of Response ... 88
13.3 Replay of Messages ... 88
13.4 Encoding Limits... 88
13.5 Binary Attachments... 89
13.6 Case-Sensitivity .. 89

14 Faults... 90
14.1 Introduction ... 90
14.2 Fault Encoding .. 90
14.3 NotUnderstood Faults ... 92
14.4 Degenerate Faults .. 92
14.5 Fault Extensibility .. 93
14.6 Master Faults .. 93

ANNEX A (informative) Notational Conventions ... 112
ANNEX B (normative) Conformance ... 114
ANNEX C (normative) HTTP(S) Transport and Security Profile .. 115
 (informative) ... 123
ANNEX D XPath Support.. 123
ANNEX E (normative) Selector Filter Dialect.. 129
ANNEX F (informative) WS-Management XSD.. 131
ANNEX G (informative) Acknowledgements... 132

Tables

Table 1 – wsa:Action URI Descriptions... 21
Table 2 – wsman:AccessDenied... 93
Table 3 – wsa:ActionNotSupported .. 94
Table 4 – wsman:AlreadyExists.. 94
Table 5 – wsen:CannotProcessFilter .. 95
Table 6 – wsman:CannotProcessFilter ... 95
Table 7 – wsman:Concurrency ... 96
Table 8 – wse:DeliveryModeRequestedUnavailable .. 96
Table 9 – wsman:DeliveryRefused ... 97
Table 10 – wsa:DestinationUnreachable .. 97
Table 11 – wsman:EncodingLimit ... 98
Table 12 – wsa:EndpointUnavailable.. 99
Table 13 – wsman:EventDeliverToUnusable.. 99
Table 14 – wse:EventSourceUnableToProcess ... 100
Table 15 – wsen:FilterDialectRequestedUnavailable ... 100
Table 16 – wse:FilteringNotSupported.. 100

iv Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 17 – wsen:FilteringNotSupported.. 101 128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

Table 18 – wse:FilteringRequestedUnavailable.. 101
Table 19 – wsman:FragmentDialectNotSupported... 102
Table 20 – wsman:InternalError.. 102
Table 21 – wsman:InvalidBookmark ... 103
Table 22 – wsen:InvalidEnumerationContext ... 103
Table 23 – wse:InvalidExpirationTime .. 104
Table 24 – wsen:InvalidExpirationTime .. 104
Table 25 – wse:InvalidMessage.. 105
Table 26 – wsa:InvalidMessageInformationHeader.. 105
Table 27 – wsman:InvalidOptions... 106
Table 28 – wsman:InvalidParameter .. 106
Table 29 – wxf:InvalidRepresentation... 107
Table 30 – wsman:InvalidSelectors .. 107
Table 31 – wsa:MessageInformationHeaderRequired ... 108
Table 32 – wsman:NoAck ... 108
Table 33 – wsman:QuotaLimit .. 108
Table 34 – wsman:SchemaValidationError... 109
Table 35 – wsen:TimedOut ... 109
Table 36 – wsman:TimedOut.. 109
Table 37 – wse:UnableToRenew.. 110
Table 38 – wse:UnsupportedExpirationType.. 110
Table 39 – wsen:UnsupportedExpirationType.. 110
Table 40 – wsman:UnsupportedFeature... 111
Table A-1 – Prefixes and XML Namespaces Used in This Specification ... 113
Table C-1 – Basic Authentication Sequence .. 117
Table C-2 – Digest Authentication Sequence... 118
Table C-3 – Basic Authentication over HTTPS Sequence ... 118
Table C-4 – Digest Authentication over HTTPS Sequence .. 119
Table C-5 – HTTPS with Client Certificate Sequence .. 119
Table C-6 – Basic Authentication over HTTPS with Client Certificate Sequence 120
Table C-7 – SPNEGO Authentication over HTTPS Sequence... 121
Table C-8 – SPNEGO Authentication over HTTPS with Cilent Certificate Sequence.............................. 121
Table D-1 – XPath Level 1 Terminals ... 125
Table D-2 – XPath Level 2 Terminals ... 127

Version 1.0.0 v

Web Services for Management (WS-Management) Specification DSP0226

Foreword 164

165
166

167
168

The Web Services for Management (WS-Management) Specification (DSP0226) was prepared by the
WS-Management sub-group of the WBEM Infrastructure & Protocols Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

vi Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Web Services for Management (WS-Management)
Specification

169

170

171

172
173
174
175

176
177
178
179

180
181

182

183

184

185
186
187
188

189

190
191

192

193

194

195

196
197
198

199

1 Scope
The Web Services for Management (WS-Management) Specification describes a general Web services
protocol based on SOAP for managing systems such as PCs, servers, devices, Web services and other
applications, and other manageable entities. Services can expose only a WS-Management interface or
compose the WS-Management service interface with some of the many other Web service specifications.

A crucial application for these services is in the area of systems management. To promote interoperability
between management applications and managed resources, this specification identifies a core set of Web
service specifications and usage requirements that expose a common set of operations central to all
systems management. This includes the ability to do the following:

• Get, put (update), create, and delete individual resource instances, such as settings and
dynamic values

• Enumerate the contents of containers and collections, such as large tables and logs

• Subscribe to events emitted by managed resources

• Execute specific management methods with strongly typed input and output parameters

In each of these areas of scope, this specification defines minimal implementation requirements for
conformant Web service implementations. An implementation is free to extend beyond this set of
operations, and to choose not to support one or more of the preceding areas of functionality if that
functionality is not appropriate to the target device or system.

This specification intends to meet the following requirements:

• Constrain Web services protocols and formats so that Web services can be implemented with a
small footprint in both hardware and software management services.

• Define minimum requirements for compliance without constraining richer implementations.

• Ensure composability with other Web services specifications.

• Minimize additional mechanisms beyond the current Web services architecture.

2 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References
IETF, RFC 3066, H. Alvestrand, Tags for the Identification of Languages, January 2001. 200

IETF, RFC 3986, T. Berners-Lee et al, Uniform Resource Identifiers (URI): Generic Syntax, August 1998. 201

IETF, RFC 4559, K. Jaganathan et al, SPNEGO-based Kerberos and NTLM HTTP Authentication in
Microsoft Windows, June 2006.

202
203

Version 1.0.0 1

http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4559.txt

Web Services for Management (WS-Management) Specification DSP0226

204 OASIS, A. Nadalin et al, Web Services Security Username Token Profile 1.0, March 2004.

205 OASIS, S. Anderson et al, Web Services Trust Language (WS-Trust), December 2005.

The Unicode Consortium, The Unicode Standard v3.0, January 2000. 206

207 W3C, M. Gudgin, et al, SOAP Version 1.2 Part 1: Messaging Framework, June 2003.

208
209

W3C, M. Gudgin, et al, SOAP Message Transmission Optimization Mechanism (MTOM), November
2004.

210 W3C, D. Box et al, Web Services Addressing (WS-Addressing), August 2004.

211 W3C, J. Alexander et al, Web Services Enumeration (WS-Enumeration), March 2006.

W3C, D. Box et al, Web Services Eventing (WS-Eventing), March 2006. 212

213 W3C, S. Bajaj, et al, Web Services Policy Framework (WS-Policy), April 2006.

214 W3C, J. Alexander et al, Web Services Transfer (WS-Transfer), September 2006.

W3C, J. Clark et al, XML Path Language Version 1.0 (XPath 1.0), November 1999. 215

216 W3C, J. Cowan et al, XML Information Set Second Edition (XML Infoset), February 2004.

W3C, H. Thompson et al, XML Schema Part 1: Structures (XML Schema 1), May 2001. 217

218

219

W3C, P. Biron et al, XML Schema Part 2: Datatypes (XML Schema 2), May 2001.

2.2 Other References
IETF, RFC 2478, E. Baize et al, The Simple and Protected GSS-API Negotiation Mechanism, December
1998.

220
221

IETF, RFC 2616, R. Fielding et al, Hypertext Transfer Protocol (HTTP 1.1), June 1999. 222

223 IETF, RFC 2818, E. Rescorla, HTTP over TLS (HTTPS), May 2000.

IETF, RFC 4122, P. Leach et al, A Universally Unique Identifier (UUID) URN Namespace, July 2005. 224

225 K. Ballinger et al, Web Services Metadata Exchange (WS-MetadataExchange), September 2004.

226 OASIS, G. Della-Libera et al, WS-Secure Conversation 1.3, May, 2004.

OASIS, A. Nadalin et al, Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), March
2004.

227
228

229 W3C, M. Gudgin, et al, SOAP Version 1.2 Part 2: Adjuncts, June 2003.

W3C, E. Christensen et al, Web Services Description Language Version 1.1 (WSDL/1.1), March 2001. 230

231

232

233

234
235
236

237
238
239

W3C, S. Boag et al, XQuery 1.0: An XML Query Language (XQuery 1.0), January 2007.

3 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

3.1
can
used for statements of possibility and capability, whether material, physical, or causal

3.2
cannot
used for statements of possibility and capability, whether material, physical, or causal

2 Version 1.0.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust
http://www.unicode.org/book/u2.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2006/SUBM-WS-Enumeration-20060315/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060927/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc2478.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc4122.txt
http://specs.xmlsoap.org/ws/2004/09/mex/
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-spec-cd-01.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-xquery-20070123/

DSP0226 Web Services for Management (WS-Management) Specification

3.3 240
241
242
243

244
245
246
247

248
249
250

251
252
253

254
255

indicates a course of action permissible within the limits of the document 256

 257
258

quirements to be followed strictly to conform to the document and from which no deviation is 259
260

261
262

quirements to be followed strictly to conform to the document and from which no deviation is 263
264

265
266
267

r excluding others, or that a certain course of action is preferred but not necessarily required 268

269
270

t a certain possibility or course of action is deprecated but not prohibited 271

272
273

plication that uses the Web services defined in this document to access the management 274
275

276
277

e that receives notifications (defined in WS-Eventing) 278

conditional
indicates requirements to be followed strictly to conform to the document when the specified conditions
are met

3.4
mandatory
indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

3.5
may
indicates a course of action permissible within the limits of the document

3.6
need not
indicates a course of action permissible within the limits of the document

3.7
optional

3.8
shall
indicates re
permitted

3.9
shall not
indicates re
permitted

3.10
should
indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning o

3.11
should not
indicates tha

3.12
client
the client ap
service

3.13
event sink
a Web servic

Version 1.0.0 3

Web Services for Management (WS-Management) Specification DSP0226

3.14
service

279
280

n that provides management services to clients by exposing the Web services defined in this 281
282

ner," is associated with a physical transport address, 283
284

285
source 286

 be of interest to an administrator 287
a printer, or an abstract entity, such as a 288

289

290
ss 291

tation (type) of a managed resource 292
ntation of management-related operations and properties. An 293

uters. 294

295
tance 296

source class 297
298
299

300
301

ant when used with the 302
WS- na303
A selecto nstance of the resource. A selector may 304
not be pre 305

306

consists of one or more resource classes. 307

• ances. 308

y are isolated or identified through parts of the 309
torSet fields in the default 310

311

Abbreviated Terms 312

nd abbreviations are used in this document. 313

 314
315

Form

an applicatio
document
Typically, a service is equivalent to the network "liste
and is essentially a type of manageability access point.

3.15
managed re
an entity that can
It may be a physical object, such as a laptop computer or
service.

3.16
resource cla
an abstract represen
A resource class defines the represe
example of a resource class is the description of operations and properties for a set of laptop comp

3.17
resource ins
an instantiation of a re
An example is the set of management-related operations and property values for a specific laptop
computer.

3.18
selector
a resource-relative name and value pair that acts as an instance-level discrimin

Ma gement default addressing model
r is essentially a filter or "key" that identifies the desired i
sent when service-specific addressing models are used.

The relationship of services to resource classes and instances is as follows:

• A service

A resource class may contain zero or more inst

If more than one instance for a resource class exists, the
SOAP address for the resource, such as the ResourceURI and Selec
addressing model.

4 Symbols and
The following symbols a

4.1
BNF
Backus-Naur 316

317
318

byte-order mark 319

4.2
BOM

4 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

4.3 320
321

 322

323
324
325

326
327

ation Program Interface 328

329
330
331

332
333

Simple and Protected GSSAPI Negotiation Mechanism 334

 335
336

Structured Query Language 337

 338
339

urce Identifier 340

 341
342

ource Locator 343

 344
345

rmation Format 346

347
348

Universally Unique Identifier 349

350
351
352

CQL
CIM Query Language

4.4
EPR
Endpoint Reference

4.5
GSSAPI
Generic Security Services Applic

4.6
SOAP
Simple Object Access Protocol

4.7
SPNEGO

4.8
SQL

4.9
URI
Uniform Reso

4.10
URL
Uniform Res

4.11
UTF
UCS Transfo

4.12
UUID

4.13
WSDL
Web Services Description Language

Version 1.0.0 5

Web Services for Management (WS-Management) Specification DSP0226

5 Addressing 353

354
355

356

WS357
serv358
EPR359

5.1360

WS361
WS ent also defines a default addressing model for use in addressing resources. In cases 362

ssing 363
ecific 364

365

d by 366
PR (the address and 367

uch 368
369

e 370
ct 371

372

Rul373
wsen:Pull, for example, this EPR would be the same as the original wsen:Enumerate, even though 374

375
ly. Similarly, the wse:Renew request uses the EPR 376

obtained by the wse:SubscriptionManager received in the wse:SubscribeResponse. 377

Wh378
sub essage for the same individual managed resource. Clients are not required to 379
process or enhance EPRs given to them by the service before using them to address a managed 380

381

382
383

rns an EPR to a client, that EPR must continue to 384
385

 386
387
388

389

390
391

roperation between clients and services. 392

nent 393
ResourceURI and SelectorSet SOAP headers. This specification is independent of the actual 394

WS-Management relies on WS-Addressing to define references to other Web service endpoints and to
define some of the headers used in SOAP messages.

5.1 Endpoint References

-Addressing created endpoint references (EPRs) to convey information needed to address a Web
ice endpoint. WS-Management defines a default addressing model that can optionally be used in
s.

.1 Use of WS-Addressing Endpoint References

-Management uses WS-Addressing EPRs as the addressing model for individual resource instances.
-Managem

where this default addressing model is not appropriate, such as systems with well-established addre
models or with opaque EPRs retrieved from a discovery service, services may use those service-sp
addressing models if they are based on WS-Addressing.

RR55..11..11--11: All messages that are addressed to a resource class or instance that are reference
an EPR must follow the WS-Addressing rules for representing content from the E
reference parameters) in the SOAP message. This rule also applies to continuation messages s
as wsen:Pull or wsen:Release, which continue an operation begun in a previous message. Even
though such messages contain contextual information that binds them to a previous operation, th
information from the WS-Addressing EPR is still required in the message to help route it to the corre
handler.

e RR55..11..11--11 clarifies that messages such as wsen:Pull or wse:Renew still require a full EPR. For

wsen:EnumerateResponse returns a context object that would seem to obviate the need for the EPR. The
EPR is still required to route the message proper

en a service includes an EPR in a response message, it must be willing to accept that EPR in a
sequent request m

resource.

RR55..11..11--22: An EPR returned by a service shall be acceptable to that service to refer to the same
managed resource.

Additionally, EPRs must be durable: when a service retu
be valid while the managed resource still exists.

RR55..11..11--33: All EPRs returned by a service, whether expressed using the WS-Management default
addressing model (see 5.1.2) or any other addressing model, shall be valid as long as the managed
resource exists.

5.1.2 WS-Management Default Addressing Model

WS-Management defines a default addressing model for resources. A service is not required to use this
addressing model, but it is suitable for many new implementations and can increase the chances of
successful inte

The remainder of this document often uses examples of this addressing model that contain its compo
parts, the

6 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

data d for a 395
given res pecifications. 396

Desc tio397
addressin 398

399
ules 400

401

 402
hea403

 transport address of the service 404

quired if the default addressing model is used): the URI of the 405
ce representation 406

ce to be accessed if 407
408

The to be marked with an s:mustUnderstand attribute set to "true" in all 409
mes odel. Otherwise, a service that does not understand this 410
add resource that was not requested by the client. 411

The model is defined in the following XML outline for an EPR: 412

 mo el and does not define the structure of the ResourceURI or the set of values for selectors
ource. These may be vendor specific or defined by other s

rip n and use of this addressing model in this specification do not indicate that support for this
g model is a requirement for a conformant service.

All of the normative text, examples, and conformance rules in 5.1.2 and 5.1.2.2 presume that the service
is based on the default addressing model. In cases where this addressing model is not in use, these r
do not apply.

The default addressing model uses a representation of an EPR that is a tuple of the following SOAP
ders:

• wsa:To (required): the

• wsman:ResourceURI (re
resource class representation or instan

• wsman:SelectorSet (optional): identifies or "selects" the resource instan
more than one instance of a resource class exists

 wsman:ResourceURI value needs
sages that use the default addressing m

gressin model might inadvertently return a

 WS-Management default addressing

(1) <wsa:EndpointReference> 413
(2) <wsa:Address> 414
(3) Network address 415
(4) </wsa:Address> 416
(5) <wsa:ReferenceParameters> 417
(6) <wsman:ResourceURI> resource URI </wsman:ResourceURI> 418
(7) <wsman:SelectorSet> 419
(8) <wsman:Selector Name="selector-name"> * 420
(9) Selector-value 421
(10)422 </wsman:Selector>
(11) </wsman:SelectorSet> ? 423
(12) </wsa:ReferenceParameters> 424
(13) </wsa:EndpointReference> 425

426

427
428

429
430

Typically, this URI represents the resource class, but it may represent the instance. The combination 431
of this URI and the wsa:To URI form the full address of the resource class or instance. 432

wsa:ReferenceParameters/wsman:SelectorSet: 433
the optional set of selectors as described in 5.1.2.2 434
These values are used to select an instance if the ResourceURI identifies a multi-instanced target. 435

The preceding format is used when defining addresses in metadata, or when specifying return addresses 436
in message bodies, as in wse:NotifyTo, wsa:ReplyTo, and wsa:FaultTo. 437

The following definitions provide additional, normative constraints on the preceding outline:

wsa:Address
the URI of the transport address

wsa:ReferenceParameters/wsman:ResourceURI
the URI of the resource class or instance to be accessed

Version 1.0.0 7

Web Services for Management (WS-Management) Specification DSP0226

When the d ault addressing model is used in a SOAPef message, WS-Addressing specifies that 438
tran ugh this requirement is described in WS-slations take place and the headers are flattened out. Altho439
Addressing, it is worth repeating because of its critical natur440

EXA441

e.

MPLE: The following is an example EPR definition:
(14) <wsa:EndpointReference xmlns:wsa="..."> 442
(15) <wsa:Address> Address </wsa:Address> 443
(16) <wsa:ReferenceParameters xmlns:wsman="..."> 444
(17) <wsman:ResourceURI>resURI</wsman:ResourceURI> 445
(18) <wsman:SelectorSet> 446
(19) <wsman:Selector Name="Selector-name"> 447
(20) Selector-value 448
(21) </wsman:Selector> 449
(22) </wsman:SelectorSet> 450
(23) </wsa:ReferenceParameters> 451
(24) </wsa:EndpointReference> 452

This used in a SOAP message. wsa:Address becomes 453
wsa ped and juxtaposed. 454

 address definition is translated as follows when
:To, and the reference properties and reference parameters are unwrap

(25) <s:Envelope ...> 455
(26) <s:Header> 456
(27) <wsa:To> Address </wsa:To> 457
(28) <wsa:Action> Action URI </wsa:Action> 458
(29) <wsman:ResourceURI mustUnderstand="true">resURI</wsman:ResourceURI> 459
(30) <wsman:SelectorSet> 460
(31) <wsman:Selector Name="Selector-name"> 461
(32) Selector-value 462
(33) </wsman:Selector> 463
(34) </wsman:SelectorSet> 464
(35) ... 465
(36) </s:Header> 466
(37) <s:Body> ... </s:Body> 467
(38) </s:Envelope> 468

, w469
e to be managed, but the actual method or operation to be executed against this 470

reso e wsa:Action header. 471

EXA essing model in an 472
actu473

The wsa:To sman:ResourceURI, and wsman:SelectorSet elements work together to reference the
resource instanc

urce is indicated by th

MPLE: The following is an example of WS-Addressing headers based on the default addr
al message:
(1) <s:Envelope 474
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 475
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 476
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 477
(5) <s:Header> 478
(6) ... 479
(7) <wsa:To>http://123.99.222.36/wsman</wsa:To> 480
(8) <wsman:ResourceURI mustUnderstand="true"> 481
(9) http://example.org/hardware/2005/02/storage/physDisk 482
(10) </wsman:ResourceURI> 483
(11 t> 484) <wsman:SelectorSe
(12) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 485
(13 486) </wsman:SelectorSet>
(14) <wsa:Action> http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 487

 </wsa:Action> 488
(15) <wsa:MessageID> urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91 489

 </wsa:MessageID> 490

8 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

(16) ... 491
(17) </s:Header> 492
(18) <s:Body> ... </s:Body> 493
(19) </s:Envelope> 494

s apply to the preceding message example: 495

wsa:496
transport-level) address of the service 497

wsm498
 class or resource instance to be accessed 499

wsm500
501

ctorSet/wsman:Selector 502
e resource 503

504
the selector is "LUN" (logical unit number), and the selected device is unit number "2". 505

wsa:506
507

508
quely for tracking and correlation purposes 509

 this specification, but it is not 510
511

5.1. ceURI 512

513

 514
515

The516
defa517
doc rk 518
toge al resource being targeted. 519

ecific or organization-specific URIs should contain the Internet domain name in 520
 ResourceURI in the following 521

522

EXA523

The following definition

To
the network (or

an:ResourceURI
the ResourceURI of the resource

an:SelectorSet
a wrapper for the selectors

wsman:Sele
identifies or selects the resource instance to be accessed, if more than one instance of th
exists
In this case,

Action
identifies which operation is to be carried out against the resource (in this case, a "Get")

wsa:MessageID
identifies this specific message uni
The format defined in RFC 4122 is often used in the examples in
required.

2.1 Resour

The ResourceURI is used to indicate the class resource or instance.

RR55..11..22..11--11: The format of the wsman:ResourceURI is unconstrained provided that it meets RFC 3986
requirements.

 format and syntax of the ResourceURI is any valid URI according to RFC 3986. Although there is no
ult scheme, http: and urn: are common defaults. If http: is used, users may expect to find Web-based

umentation of the resource at that address. The wsa:To and the wsman:ResourceURI elements wo
ther to define the actu

RR55..11..22..11--22: Vendor-sp
the first token sequence after the scheme, such as "example.org" in
example.

MPLE:
(20) <s:Header> 524
(21) <wsa:To> http://123.15.166.67/wsman </wsa:To> 525
(22) <wsman:ResourceURI> 526
(23) http//schemas.example.org/2005/02/hardware/physDisk 527
(24) </wsman:ResourceURI> 528
(25) 529 ...
(26) </s:Header> 530

Version 1.0.0 9

Web Services for Management (WS-Management) Specification DSP0226

RR55..11..22..11--33: When the default addressing model is used the wsman:ResourceURI reference 531
n URIs: 532

533
534
535
536
537

eration/Pull 538
ew 539

tus 540
541

as.xmlsoap.org/ws/2004/08/eventing/Subscribe 542

543
ed by the service 544

urceURI: 545

546
http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus 547

548

de is 549
550
551

552
553

 ResourceURI element should not appear in other messages, such as responses or 554
event555

In p 556
reso557
has558

s 559
560
561

/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI. 562

563
rly 564

565

ctive of 566
addressing and a wsa:Action URI from the perspective of execution. In many cases, the ResourceURI is 567

ithin 568
569

Although a single URI could theoretically be used alone to define an instance of a multi-instance 570
cate the WS-Management service, 571

572
 573

574

parameter is required in messages with the following wsa:Actio

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
http://schemas.xmlsoap.org/ws/2004/09/transfer/Create
http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate
http://schemas.xmlsoap.org/ws/2004/09/enum
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Ren
http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetSta
ttp://schemas.xmlsoap.org/ws/2004/09/enumeration/Release h

http://schem

 the following messages require the EPR to be returned in the wse:SubscriptionManager element of the
wse:SubscribeResponse message (WS-Eventing), the format of the EPR is determin
and might or might not include the Reso

http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew

While the ResourceURI SOAP header is required when the WS-Management default addressing mo
used, it may be short and of a very simple form, such as http://example.com/* or
http://example.com/resource.

RR55..11..22..11--44:: For the request message of custom actions (methods), the ResourceURI header may be
present in the message to help route the message to the correct handler.

RR55..11..22..11--55: The
s unless the associated EPR includes it in its ReferenceParameters.

ractice, the wsman:ResourceURI element is required only in requests to reference the targeted
urce class. Responses are not addressed to a management resource, so the wsman:ResourceURI

 no meaning in that context.

RR55..11..22..11--66: When the default addressing model is used and the wsman:ResourceURI element i
missing or of the incorrect form, the service shall issue a wsa:DestinationUnreachable fault with a
detail code of

http://schemas.dmtf.org

RR55..11..22..11--77: The wsman:ResourceURI element shall be used to indicate only the identity of a
resource, and may not be used to indicate the action being applied to that resource, which is prope
expressed using the wsa:Action URI.

Note that custom WSDL-based methods have both a ResourceURI identity from the perspe

simply a pseudonym for the WSDL identity and Port, and the wsa:Action URI is the specific method w
that port (or interface) definition.

resource, it is recommended that the wsa:To element be used to lo
that the wsman:ResourceURI element be used to identify the resource class, and that the
wsman:SelectorSet element be used to reference the resource instance. If the resource consists of only a
single instance, then the wsman:ResourceURI element alone refers to the single instance.

10 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

This usage is not a strict requirement, just a guideline. The service can use distinct selectors for any
given operation, even against the same resource class, and may allow or requ

575
ire selectors for 576

wsen:Enumerate operations. 577

578

Cus distinct identities: the ResourceURI, which can identify the WSDL and port (or 579
inte dentifies the specific method. If only one method exists in the 580
inte esourceURI and wsa:Action URI are identical. 581

It is not an error to use the wsa:Action URI for the ResourceURI of a custom method, but both are still 582
requ niform processing on both clients and servers. 583

EXA n to reset a network card might have the following EPR usage: 584

See the recommendations in 7.2 regarding addressing uniformity.

tom actions have two
rface), and the wsa:Action URI, which i
rface, in a sense the R

ired in the message for u

MPLE 1: The following actio
(1) <s:Header> 585
(2) <wsa:To> 586
(3) http://1.2.3.4/wsman/ 587
(4) </wsa:To> 588
(5) <wsman:ResourceURI>http://example.org/2005/02/networkcards/reset 589

 </wsman:ResourceURI> 590
(6) <wsa:Action> 591
(7) http://example.org/2005/02/networkcards/reset 592
(8) </wsa:Action> 593
(9) ... 594
(10) </s:Header>

URI is equivalent

595

In m to a WSDL name and port, and the wsa:Action URI 596
con597

EXA598

any cases, the Resource
tains an additional token as a suffix, as in the following example.

MPLE 2:
(1) <s:Header> 599
(2) <wsa:To> 600
(3) http://1.2.3.4/wsman 601
(4) </wsa:To> 602
(5) <wsman:ResourceURI>http://example.org/2005/02/networkcards 603

 </wsman:ResourceURI> 604
(6) <wsa:Action> 605
(7) http://example.org/2005/02/networkcards/reset 606
(8) </wsa:Action> 607
(9) ... 608
(10) </s:Header> 609

Fina as in the following 610
exa611

EXA612

lly, the ResourceURI may be completely unrelated to the wsa:Action URI,
mple.

MPLE 3:
(1) <s:Header> 613
(2) <wsa:To>http://1.2.3.4/wsman</wsa:To> 614
(3) <wsman:ResourceURI> 615
(4) http://example.org/products/management/networkcards 616
(5) </wsman:ResourceURI> 617
(6) <wsa:Action> 618
(7) http://example.org/2005/02/netcards/reset 619
(8) </wsa:Action> 620
(9) ... 621
(10) </s:Header> 622

All of these uses are legal. 623

Version 1.0.0 11

Web Services for Management (WS-Management) Specification DSP0226

When used with subscriptions, the EPR described by wsa:Address and wsman:ResourceURI (and 624
cted. 625

d to 626
et 627

628

629

630
 631

632

633
634
635
636

ice in order to reference the specific instance. The selectors are interpreted as 637
bein638

In s639
reso640
sys rt 641
of th642

643
644

:Selector values may appear with the wsman:SelectorSet element, as required to 645
ctor 646

647

If the client need ce can 648
prov ope 649
of th650

t is to be treated as a single reference 651
m to the ResourceURI. 652

RR55..11.. ine all 653
selectors in the messa y were logically joined by AND. If the set of 654

c e instance, a wsman:InvalidSelectors fault should be 655
return656

657

tDetail/InsufficientSelectors 658

• 659

/faultDetail/TypeMismatch 660

• of range or 661
662

663

• 664

665

optionally the wsman:SelectorSet values) identifies the event source to which the subscription is dire
In many cases, the ResourceURI identifies a real or virtual event log and the subscription is intende
provide real-time notifications of any new entries added to the log. In many cases, the wsman:SelectorS
element might not be used as part of the EPR.

5.1.2.2 Selectors

In the WS-Management default addressing model, selectors are optional elements used to identify
instances within a resource class. For operations such as wxf:Get or wxf:Put, the selectors are used to
identify a single instance of the resource class referenced by the ResourceURI.

In practice, because the ResourceURI often acts as a table or a "class," the SelectorSet element is a
discriminant used to identify a specific "row" or "instance." If only one instance of a resource class is
implied by the ResourceURI, the SelectorSet can be omitted because the ResourceURI is acting as the
full identity of the resource. If more than one selector value is required, the entire set of selectors is
interpreted by the serv

g separated by implied logical AND operators.

ome information domains, the values referenced by the selectors are "keys" that are part of the
urce content itself, whereas in other domains the selectors are part of a logical or physical directory

tem or search space. In these cases, the selectors are used to identify the resource, but are not pa
e representation.

RR55..11..22..22--11: If a resource has more than one instance, a wsman:SelectorSet element may be used to
distinguish which instance is targeted if the WS-Management default addressing model is in use. Any
number of wsman
identify the precise instance of the resource class. The service may consider the case of sele
names and values (see 13.6), as required by the underlying execution environment.

s to discover the policy on how the case of selector values is interpreted, the servi
ide metadata documents that describe this policy. The format of such metadata is beyond the sc
is specification.

RR55..11..22..22--22: All content within the SelectorSet elemen
para eter with a scope relative

22..22--33: A service using the WS-Management default addressing model shall exam
ge and process them as if the

sele tors is incorrect for the targeted resourc
ed to the client with the following detail codes:

• if selectors are missing:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faul

if selector values are the wrong types:

http://schemas.dmtf.org/wbem/wsman/1/wsman

if the selector value is of the correct type from the standpoint of XML types, but out
otherwise illegal in the specific information domain:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

if the name is not a recognized selector name

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnexpectedSelectors

12 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR55..11..22..22--44: The Selector Name attribute shall not be duplicated at the same level of nesting. If this 666
uld return a wsman:InvalidSelectors fault with the following detail code: 667

eSelectors 668

This e to use 669
com hich the ResourceURI itself implicitly identifies the instance. 670

The671

occurs, the service sho

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Duplicat

 specification does not mandate the use of selectors. Some implementations may decid
plex URI schemes in w

 format of the SelectorSet element is as follows:

(1) <s:Envelope 672
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 673
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 674
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 675
(5) <s:Header> 676
(6) ... 677
(7) <wsa:To> service transport address </wsa:To> 678
(8) <wsman:ResourceURI> ResourceURI </wsman:ResourceURI> 679
(9) <wsman:SelectorSet> 680
(10) <wsman:Selector Name="name"> value </wsman:Selector> + 681
(11) </wsman:SelectorSet> ? 682
(12) ... 683
(13) </s:Header> 684
(14) <s:Body> ... </s:Body> 685
(15) </s:Envelope> 686

ons provide additional, normative constraints on the preceding outline: 687

wsa:688
689

wsm690
691

692
ce 693

694
695
696
697

wsm698
699

The700

EXA selector on line 9 is a part of a SelectorSet that contains a nested EPR 701
(line702

The following definiti

To
network address

an:ResourceURI
used to indicate the resource class

wsman:SelectorSet
the wrapper for one or more Selector elements required to reference the instan

wsman:SelectorSet/wsman:Selector
used to describe the selector and its value
If more than one selector is required, one Selector element exists for each part of the overall
selector. The value of this element is the Selector value.

an:SelectorSet/wsman:Selector/@Name
the name of the selector (to be treated in a case-insensitive manner)

 value of a selector may be a nested EPR.

MPLE: In the following example, the
s 10–18) with its own Address, ResourceURI, and SelectorSet elements:
(1) <s:Envelope 703
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 704
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 705
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 706
(5) <s:Header> 707
(6) ... 708
(7) <wsman:SelectorSet> 709
(8) <wsman:Selector Name="Primary"> 123 </wsman:Selector> 710
(9) <wsman:Selector Name="EPR"> 711

Version 1.0.0 13

Web Services for Management (WS-Management) Specification DSP0226

(10) <wsa:EndpointReference> 712
(11) <wsa:Address> address </wsa:Address> 713
(12) <wsa:ReferenceParameters> 714
(13) <wsman:ResourceURI> resource URI </wsman:ResourceURI> 715
(14) <wsman:SelectorSet> 716
(15) <wsman:Selector Name="name"> value </wsman:Selector> 717
(16) </wsman:SelectorSet> 718
(17) </wsa:ReferenceParameters> 719
(18) </wsa:EndpointReference> 720
(19) </wsman:Selector> 721
(20) </wsman:SelectorSet> 722
(21) 723 ...
(22) 724 </s:Header>
(23) <s:Body> ... </s:Body> 725
(24) </s:Envelope> 726

727
 shall be one of the following values: 728

729

730

• ssing model 731

732
733

RR55..11..22..22--66: 734
735

736

ary to allow resources that can answer questions about 737
738

739

..11..22..22--88: A service may fail to process a selector value of more than 4096 characters, including 740
any embedded selectors, and may fail to process a message that contains more than 8096 741

ra t. 742

743

When faults based on the default format are generated, they often contain specific fault detail codes. 744
Thes de ddressing is 745
used746

5.1.747

Altho lt addressing model, in some cases this model is not 748
749

750
 the wsman:ResourceURI with 751

752

753
fication. 754

RR55..11..22..22--55: For those services using the WS-Management default addressing model, the value of a
wsman:Selector

• a simple type as defined in the XML schema namespace

http://www.w3.org/2001/XMLSchema

a nested wsa:EndpointReference using the WS-Management default addre

A service may fault selector usage with wsman:InvalidSelectors if the selector is not a simple type or of a
supported schema.

A conformant service may reject any selector or nested selector with a nested EPR
whose wsa:Address value is not the same as the primary wsa:To value or is not

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous.

The prim purpose for this nesting mechanism is
other resources.

RR55..11..22..22--77: A service may fail to process a selector name of more than 2048 characters.

RR55

cha cters of content in the root SelectorSet elemen

5.1.2.3 Faults for Default Addressing Model

e detail co s are called out separately in 14.6 and do not apply when service-specific a
.

3 Service-Specific Endpoint References

ugh WS-Management specifies a defau
available or appropriate.

RR55..11..33--11: A conformant service may not understand the header values used by the
WS-Management default addressing model. If the client marks
mustUnderstand="true", the service shall return an s:NotUnderstood fault.

RR55..11..33--22: A conformant service may require additional header values to be present that are
beyond the scope of this speci

14 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Services can thus use alternative addressing models for referencing resources with WS-Management.
These addressing models might or might not use ResourceURI or SelectorSet element

755
s and still be valid 756

addressing models if they conform to the rules of WS-Addressing. 757

el, a service might not explicitly define any addressing 758
759
760

761
on. 762

763

reted as a "must comply" instruction in 764
WS- r example, if a SOAP header that is listed as being optional in this specification is 765
tagg "true", the service is required to comply or return a fault. To ensure that the 766
servi mustUnderstand attribute can be omitted. 767

If the wsa:Act understood, the implementation might not know how to process the message. 768
So, for the following elements, the omission or inclusion of mustUnderstand="true" has no real effect on 769
the m770

771

772

sTo 773

774

: A conformant service shall process any of the preceding elements identically regardless of 775
776

As a corollary, clients can omit mustUnderstand="true" from any of the preceding elements with no 777
778

779
780

s for the service to be tolerant of inconsistent mustUnderstand usage by clients when the 781
be misinterpreted. 782

783
784

l 785
786
787

788

ssages, the wsa:To address contains the network address of the service. In some cases, 789
this 790
mult to 791
allow792
is in 793
NOTE: WS-Management does not preclude multiple listener services from coexisting on the same physical 794
system. Such services would be discovered and distinguished using mechanisms beyond the scope of this 795
specification. 796

In addition to a defined alternative addressing mod
model at all and instead use an opaque EPR generated at run-time, which is handled according to the
standard rules of WS-Addressing.

When such addressing models are used, the client application has to understand and interoperate with
discovery methods for acquiring EPRs that are beyond the scope of this specificati

5.2 mustUnderstand Usage

The mustUnderstand attribute for SOAP headers is to be interp
Management. Fo
ed with mustUnderstand=
ce treats a header as optional, the

ion URI is not

essage in practice, as mustUnderstand is implied:

• wsa:To

• wsa:MessageID

• wsa:Relate

• wsa:Action

RR55..22--11
whether mustUnderstand="true" is present.

change in meaning.

RR55..22--22: If a service cannot comply with a header marked with mustUnderstand="true", it shall issue
an s:NotUnderstood fault.

The goal i
request is not likely to

It is important that clients using the WS-Management default addressing model (ResourceURI and
SelectorSet) use mustUnderstand="true" on the wsman:ResourceURI element to ensure that the service
is compliant with that addressing model. Implementations that use service-specific addressing models wil
otherwise potentially ignore these header values and behave inconsistently with the intentions of the
client.

5.3 wsa:To

In request me
address is sufficient to locate the resource. In other cases, the service is a dispatching agent for
iple resources. In these cases, the EPR typically contains additional fields (reference parameters)
 the service to identify a resource within its scope. For example, when the default addressing model
use, these additional fields are the ResourceURI and SelectorSet fields.

Version 1.0.0 15

Web Services for Management (WS-Management) Specification DSP0226

RR55..33--11: The wsa:To header shall be present in all messages, whether requests, responses, or 797
798

ed, 799
800

events. In the absence of other requirements, it is recommended that the network address for
resources that require authentication be suffixed by the token sequence /wsman. If /wsman is us
unauthenticated access should not be allowed.

(1) <wsa:To> http://123.15.166.67/wsman </wsa:To> 801

802
 803

n is used, authenticated access shall not be required. 804

RR55..33--22: In the absence of other requirements, it is recommended that the network address for
resources that do not require authentication be suffixed by the token sequence /wsman-anon. If
/wsman-ano

(1) <wsa:To> http://123.15.166.67/wsman-anon </wsa:To>

If the service exposes only one set of resources, the wsa:To header is the only addressing element
required.

805

806
807

808
ady be established by the client. However, in cases where the message is 809

810
811

d a group of 812
reso813
NOT ges that are continuations of prior messages, such as wsen:Pull or wsen:Release (both 814
of wh co815
information816

RR55..33 e resource in the 817
follow818

819
820

821

• rce cannot be located ("not found"), a wsa:DestinationUnreachable fault is returned. 822

 rs occur, a wsman:InternalError fault is returned. 823

824
825

O826

essing 827
828

5.4829

The ressing-related header blocks occur in WS-Management messages. 830

.44.. ss the following WS-Addressing header 831
ck l as specified in WS-Addressing and may be present, but a conformant 832

c al headers and fail to process the message, issuing a 833
834

 when a response is expected) 835

836

837

Including the network transport address in the SOAP message may seem redundant because the
network connection would alre
routed through intermediaries, the network transport address is required so that the intermediaries can
examine the message and make the connection to the actual endpoint.

The wsa:To header may encompass any number of tokens required to locate the service an
urces within that service.
E: All secondary messa
ich ntinue wsen:Enumerate), still contain an EPR. The fact that these messages also contain context

 from a prior message is not material to the SOAP messaging and addressing model.

--33: The service should issue faults when failing to evaluate the address of th
ing situations:

• If the resource is offline, a wsa:EndpointUnavailable fault is returned with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ResourceOffline

If the resou

• If the resource is valid, but internal erro

• If the resource cannot be accessed for security reasons, a wsman:AccessDenied fault is
returned.

5.4 ther WS-Addressing Headers

WS-Management depends on WS-Addressing to describe the rules around use of other WS-Addr
headers.

.1 Processing WS-Addressing Headers

 following additional add

RR55. 11--11: A conformant service shall recognize and proce
blo s. Any others are optiona
servi e may reject any addition
s:NotUnderstood fault.

• wsa:ReplyTo (required

• wsa:FaultTo (optional)

• wsa:MessageID (required)

16 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

• wsa:Action (required) 838

839

The s840

5.4841

WS842

quest messages when a reply is required. 843
844
845

at the reply is to be delivered over the same connection on which 846
847
848

Som849
and may omit a wsa:ReplyTo element. 850

RR55..44..22--22: A conformant service may require that all responses be delivered over the same 851
852
853
854

855

r of 856
857

858
859

This860
serv861

 862
863
864
865

n headers. 866

• wsa:RelatesTo (required in responses)

 use of the e header blocks is discussed in subsequent clauses.

.2 wsa:ReplyTo

-Management requires the following usage of wsa:ReplyTo in addressing:

RR55..44..22--11: A wsa:ReplyTo header shall be present in all re
This address shall be either a valid address for a new connection using any transport supported by
the service or the URI http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous (see
WS-Addressing), which indicates th
the request arrived. If the wsa:ReplyTo header is missing, a
wsa:MessageInformationHeaderRequired fault is returned.

e messages, such as event deliveries, wse:SubscriptionEnd, and so on, do not require a response

connection on which the request arrives. In this case, the URI discussed in RR55..44..22--11 shall indicate
this. Otherwise, the service shall return a wsman:UnsupportedFeature fault with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

RR55..44..22--33: When delivering events for which acknowledgement of delivery is required, the sende
the event shall include a wsa:ReplyTo element and observe the usage in 10.8 of this specification.

RR55..44..22--44: The service shall fully duplicate the entire wsa:Address of the wsa:ReplyTo element in
the wsa:To header of the reply, even if some of the information is not understood by the service.

 rule applies in cases where the client includes suffixes on the HTTP or HTTPS address that the
ice does not understand. The service returns these suffixes nonetheless.

RR55..44..22--55: Any reference parameters supplied in the wsa:ReplyTo address shall be included in the
actual response message as top-level headers as specified in WS-Addressing unless the response is
a fault. If the response is a fault, the service should include the reference parameters but may omit
these values if the resulting message size would exceed encoding limits.

WS-Addressi g allows clients to include client-defined reference parameters in wsa:ReplyTo
The WS-Addressing specification requires that these reference parameters be extracted from requests 867
and er and placing all of the values 868
as t tter correlate 869
resp870

EXA g example, the header x:someHeader is included in the reply message: 871

 placed in the responses by removing the ReferenceParameters wrapp
op-level SOAP headers in the response as discussed in 5.1. This allows clients to be
onses with the original requests. This step cannot be omitted.

MPLE: In the followin
(1) <s:Envelope 872
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 873
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 874
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 875
(5) <s:Header> 876
(6) ... 877
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To> 878
(8) <wsa:ReplyTo> 879
(9) <wsa:Address> 880
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 881
(11) </wsa:Address> 882

Version 1.0.0 17

Web Services for Management (WS-Management) Specification DSP0226

(12) <wsa:ReferenceParameters> 883
(13) <x:someHeader xmlns:x="..."> user-defined content </x:someHeader> 884
(14) </wsa:ReferenceParameters> 885
(15) </wsa:ReplyTo> 886
(16) ... 887
(17) </s:Header> 888
(18) <s:Body> ... </s:Body> 889
(19) </s:Envelope> 890

plyTo address is not usable or is missing, the service should not reply to the 891
les of the current network 892

transport. In these cases, the service should locally log some type of entry to help locate the client 893
r.894

5.4895

WS-Mana896

897
898
899

900

If both the wsa:FaultTo an901
mec902
unc903

 a 904
905

RR55..44..3906
trans907

RR55..44..22--66: If the wsa:Re
request and it should close or terminate the connection according to the ru

defect late

.3 wsa:FaultTo

gement qualifies the use of wsa:FaultTo as indicated in this clause.

RR55..44..33--11: A conformant service may support a wsa:FaultTo address that is distinct from the
wsa:ReplyTo address. If such a request is made and is not supported by the service, a
wsman:UnsupportedFeature fault shall be returned with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

d wsa:ReplyTo headers are omitted from a request, transport-level
hanisms are typically used to fail the request because the address to which the fault is to be sent is

ertain. In such a case, it is not an error for the service to simply shut down the connection.

RR55..44..33--22: If wsa:FaultTo is omitted, the service shall return the fault to the wsa:ReplyTo address if
fault occurs.

3--33: A conformant service may require that all faults be delivered to the client over the same
port or connection on which the request arrives. In this case, the URI shall be

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous (see the WS-Addressing 908
specification). If services do not support separately addressed fault delivery and the wsa:FaultTo is 909

d910
911

912
NOTE: This specification does not restrict richer implementations from fully supporting wsa:FaultTo. 913

914

any other a dress, a wsman:UnsupportedFeature fault shall be returned with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

RR55..44..33--44: Any reference parameters supplied in the wsa:FaultTo address should be included as
top-level headers in the actual fault, as specified in the WS-Addressing specification. In some cases
including this information would cause the fault to exceed encoding size limits, and thus may be
omitted in those cases.

, 915
916
917

WS-Addressing allows clients to include client-defined reference parameters in wsa:FaultTo headers. The 918
sinWS-Addres g specification requires that these reference parameters be extracted from requests and 919

plac oving the ReferenceParameters wrapper and placing all of the values as top-920
leve ith the original requests. 921
This d encoding 922
limi923

EXA g example, the header x:someHeader is included in fault messages if they occur: 924

ed in the faults by rem
l SOAP headers in the fault. This allows clients to better correlate faults w
 step can be omitted in cases where the resulting fault would be large enough to excee

t restrictions (see 6.2, rules in 13.1, and rules in 13.4).

MPLE: In the followin
(1) <s:Envelope 925
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 926
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 927
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 928

18 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

(5) <s:Header> 929
(6) ... 930
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To> 931
(8) <wsa:FaultTo> 932
(9) <wsa:Address> 933
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 934
(11) </wsa:Address> 935
(12) <wsa:ReferenceParameters> 936
(13) <x:someHeader xmlns:x="..."> user-defined content </x:someHeader> 937
(14) </wsa:ReferenceParameters> 938
(15) </wsa:FaultTo> 939
(16) ... 940
(17) </s:Header> 941
(18) <s:Body> ... </s:Body> 942
(19) </s:Envelope>

RR55..44..33--55: If the wsa:FaultTo address is not usable, the service should not reply to th

943

e request. 944
945
946
947

RR55..44..33--66: The service shall properly duplicate the wsa:Address of the wsa:FaultTo element in the 948
on is not understood by the service. 949

P or HTTPS 950
address that the service does not understand. If the service removes this information when constructing 951
the 952

5.4 ssageID and wsa:RelatesTo 953

WS954

RR55..44..4 format, as long as they are valid URIs 955
accor rent even if the characters in the URIs differ 956
only by case. 957

The followi cification. The first is considered a best practice 958
959

960
961

:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 962

is required by 963
964
965
966
967

968

UUIDs have a numeric meaning as well as a string meaning, and this can lead to confusion. A UUID in 969
. 970

971
972

pret the URI in any way, but are not allowed to alter the case usage when 973
repeating the message or any of the MessageID values in subsequent messages. 974

Similarly, if no wsa:FaultTo address is supplied, and the service does not have sufficient information
to fault the response properly, it should not reply and should close the network connection. In these
cases, the service should locally log some type of entry to help locate the client defect later.

wsa:To of the reply, even if some of the informati

This rule applies in cases where the client includes private content suffixes on the HTT

address, the subsequent message might not be correctly processed.

.4 wsa:Me

-Management qualifies the use of wsa:MessageID and wsa:RelatesTo as follows:

4--11: The MessageID and RelatesTo URIs may be of any
ding to RFC 3986. Two URIs are considered diffe

ng two formats are endorsed by this spe
because it is backed by IETF RFC 4122:

urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
or
uuid

In these formats, each x is an uppercase or lowercase hexadecimal digit (lowercase
RFC 4122); there are no spaces or other tokens. The value may be a DCE-style universally unique
identifier (UUID) with provable uniqueness properties in this format, however, it is not necessary to
have provable uniqueness properties in the URIs used in the wsa:MessageID and wsa:RelatesTo
headers.

Regardless of format, the URI should not exceed the maximum defined in RR1133..11--66.

lowercase is a different URI from the same UUID in uppercase. This is because URIs are case-sensitive
If a UUID is converted to its decimal equivalent the case of the original characters is lost. WS-
Management works with the URI value itself, not the underlying decimal equivalent representation.
Services are free to inter

Version 1.0.0 19

Web Services for Management (WS-Management) Specification DSP0226

The r975
sim976
com ed 977
to a978

RR55..44..44--22 uld be generated according to any algorithm that ensures that no two 979
980
981

nsmitted by the service, the 982
MessageID shall not be reused. 983

The an 984
issu t required to detect this difference, nor 985
is it requi analyze the986

o element shall be present in all response messages and faults, shall 987
contai d shall match the original in case, 988

989

a:InvalidMessageInformationHeader 990
991

ples show wsa:MessageID usage: 992

 RFC 4122 equires the digits to be lowercase, which is the responsibility of the client. The service
ply processes the values as URI values and is not required to analyze the URI for correctness or
pliance. The service replicates the client usage in the wsa:RelatesTo reply header and is not allow
lter the case usage.

: The MessageID sho
MessageIDs are repeated. Because the value is treated as case-sensitive (RR55..44..44--11), confusion can
arise if the same value is reused differing only in case. As a result, the service shall not create or
employ MessageID values that differ only in case. For any message tra

 client ensures that MessageID values are not reused in requests. Although services and clients c
e different MessageIDs that differ only in case, the service is no

red to URI for syntactic correctness or repeated use.

RR55..44..44--33: The RelatesT
n the MessageID of the associated request message, an

being treated as a URI value and not as a binary UUID value.

RR55..44..44--44: If the MessageID is not parsable or is missing, a ws
fault should be returned.

EXAMPLE: The following exam
(20) <wsa:MessageID> 993
(21) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91 994
(22) </wsa:MessageID> 995
(23) 996
(24) <wsa:MessageID> 997
(25) anotherScheme:ID/12310/1231/16607/25 998
(26) </wsa:MessageID> 999

a:RelatesTo with no 1000
change in meaning. 1001

5.41002

The1003

The wsa:Action URI shall not be used to identify the specific resource class or instance, 1004
1005

1006

NOTE: The mustUnderstand attribute can be omitted for either wsa:MessageID or ws

.5 wsa:Action

 wsa:Action URI indicates the "operation" being invoked against the resource.

RR55..44..55--11:
but only to identity the operation to use against that resource.

RR55..44..55--22: For all resource endpoints, a service shall return a wsa:ActionNotSupported fault
(defined in WS-Addressing) if a requested action is not supported by the service for the specified
resource.

In other words, to model th

1007
1008

e "Get" of item "Disk", the wsa:Action URI contains the "Get". The wsa:To, and 1009
 is 1010

lectorSet 1011
1012

ays. 1013

Imp1014
"Dis1015
inte er 1016
pos1017

potentially other SOAP headers, indicate what is being accessed. When the default addressing model
used, for example, the ResourceURI typically contains the reference to the "Disk" and the Se
identifies which disk. Other service-specific addressing models can factor the identity of the resource in
different w

lementations are free to support additional custom methods that combine the notion of "Get" and
k” into a single "GetDisk" action if they strive to support the separated form to maximize
roperation. One of the main points behind WS-Management is to unify common methods wherev
sible.

20 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR55..44..55--33: If a service ex ties, a conformant service shall 1018
at least expose that capability using the definitions in Table 1 according to the rules of this 1019

tion. The service may optionally expose additional similar using a distinct 1020
1021

 Description1022

poses any of the following types of capabili

specifica functionality
wsa:Action URI.

Table 1 – wsa:Action URI s

Action URI Description

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get Models any simple single item retrieval
http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse Response to "Get"
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put Models an update of an entire item
http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse Response to "Put"
http://schemas.xmlsoap.org/ws/2004/09/transfer/Create Models creation of a new item
http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse Response to "Create"
http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete Models the deletion of an item
http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse te" Response to "Dele
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate Begins an enumeration or query
http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse Response to "Enumerate"
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull Retrieves the next batch of results

from enumeration
http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse Response to "Pull"
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew Renews an enumerator that may ha

timed out
ent)

ve

(not required in WS-Managem
http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewResponse Response to "Renew"

(not required in WS-Management)
http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus Gets the status of the enumer

(not required in WS-Man
ator

agement)
http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusResponse Response to "GetStatus"

(not required in WS-Management)
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release Releases an active enumerator
http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse Response to "Release"
http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd Notifies that an enumerator has

terminated
(not required in WS-Management)

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe Models a subscription to an e
source

vent

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse Response to "Subscribe"
http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew Renews a subscription prior to its

expiration
http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse Response to "Renew"
http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus Requests the status of a subscription
http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse Response to "GetStatus"
http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe Removes an active subscription
http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse Unsubscribe" Response to "
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd Delivers a message to indicate that a

subscription has terminated

Version 1.0.0 21

Web Services for Management (WS-Management) Specification DSP0226

Action URI Description

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events Delivers batched events based on a
subscription

http://schemas.dmtf.org/wbem/wsman/1/wsman/Heartbeat

e
cate that the

A pseudo-event that models a
heartbeat of an active subscription;
delivered when no real events ar
available, but used to indi
event subscription and delivery
mechanism is still active

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents that the A pseudo-event that indicates
real event was dropped

http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack

y sequenced

Used by event subscribers to
acknowledge receipt of events; allows
event streams to be strictl

http://schemas.dmtf.org/wbem/wsman/1/wsman/Event Used for a singleton event that does
not define its own action

RR55..44..55--44: A custom action may be supported if the operation is a custom method whose semantic
meaning is not present in the table, or if the item is an event.

RR55..44..55--55: All event deliveries shall contain a unique action URI that identifies the type of the event
delivery. For singleton deliveries with only one event per message (the delivery mode
http://schemas

1023
1024

1025
1026

.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push), the wsa:Action URI defines 1027
the event type. For other delivery modes, the Action varies, as described in clause 9 of this 1028

1029

1030

 indicate the source. When 1031
the e1032
can1033

1034
1035

22 s 1036
1037

NOTE: Processing the wsa:From header is trivial because it has no effect on the meaning of the message. 1038
1039

1040

rs that can be used with any operation. 1041

1042

1043
so that a client can comply 1044

with nt message to 1045
indic h1046

specification.

5.4.6 wsa:From

The wsa:From header can be used in any messages, responses, or events to
same conn ction is used for both request and reply, this header provides no useful information, but
 be useful in cases where the response arrives on a different connection.

RR55..44..66--11: A conformant service may include a wsa:From address in the message. A conformant
service should process any incoming message that has a wsa:From element.

RR55..44..66-- : A conformant service should not fault any message with a wsa:From element, regardles
of whether the mustUnderstand attribute is included.

The From address is primarily for auditing and logging purposes.

6 WS-Management Control Headers
WS-Management defines several SOAP heade

6.1 wsman:OperationTimeout

Most management operations are time-critical due to quality-of-service constraints and obligations. If
operations cannot be completed in a specified time, the service returns a fault

its obligations. The following header value can be supplied with any WS-Manageme
ate t at the client expects a response or a fault within the specified time:

(1) <wsman:OperationTimeout> xs:duration </wsman:OperationTimeout>

RR66..11--11:: All request messages may contain a wsman:OperationTimeout header element that
indicates the maximum amount of time the

1047

1048
 client is willing to wait for the service to issue a response. 1049

22 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

The service should interpret the timeout countdown as beginning from the point the message is
processed until a response is generated.

: The service should immediately issue a wsman:TimedOut fault if the co

1050
1051

RR66..11--22 untdown time is 1052
1053

e returned. 1054

RR66..11-- edFeature fault 1055
1056

1057

on 1058
t. 1059

1060
f transport timeout is likely. 1061

rk latency is not 1062
rieved, 1063

1064

1065
1066

not attempt to address behavior in this situation. Clearly, services can attempt to undo the effects of any 1067
1068
1069

1070
ard of the deletion, even though it issues a wsman:TimedOut fault. The 1071

ormation in the fault (see 14.5) regarding its internal policy in this 1072
rega e ut 1073
this1074

RR66..11--55: If the mustUnderstand attribute is applied to the wsman:OperationTimeout element, the 1075
1076
1077

n always omit the mustUnderstand header for uniform behavior against all implementations. It is 1078
tand is 1079

omi1080

1081

exceeded and the operation is not yet complete. If the OperationTimeout value is not valid, a
wsa:InvalidMessageInformationHeader fault should b

33: If the service does not support user-defined timeouts, a wsman:Unsupport
should be returned with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OperationTimeout

RR66..11--44: If the wsman:OperationTimeout element is omitted, the service may interpret this omissi
as an instruction to block indefinitely until a response is available, or it may impose a default timeou

These rules do not preclude services from supporting infinite or very long timeouts. Because network
connections seldom block indefinitely with no traffic occurring, some type o
Also note that the countdown is initiated from the time the message is received, so netwo
included. If a client needs to discover the range of valid timeouts or defaults, metadata can be ret
but the format of such metadata is beyond the scope of this specification.

If the timeout occurs in such a manner that the service has already performed some of the work
associated with the request, the service state reaches an anomalous condition. This specification does

partially complete operations, but this is not always practical. In such cases, the service can keep a local
log of requests and operations, which the client can query later.

For example, if a wxf:Delete operation is in progress and a timeout occurs, the service decides whether to
attempt a rollback or roll-forw
service can elect to include additional inf

rd. The s rvice can attempt to return to the state that existed before the operation was attempted, b
 is not always possible.

service shall observe the requested value or return the fault specified in RR66..11--22. The service should
attempt to complete the request within the specified time or issue a fault without any further delay.

Clients ca
not an error for a compliant service to ignore the timeout value or treat it as a hint if mustUnders

tted.

EXAMPLE: The following is an example of a correctly formatted 30-second timeout in the SOAP header:
(1) <wsman:OperationTimeout>PT30S</wsman:OperationTimeout>

If the transport timeout occurs before the actual wsman:OperationTimeout, the operation can

1082

 be treated 1083
ection. In practice, the network transport timeout can be 1084
an:OperationTimeout. 1085

EnvelopeSize 1086

n 1087
1088

The1089
1090

as specified in 13.3, the same as a failed conn
configured to be longer than any expected wsm

6.2 wsman:Max

To prevent a response beyond the capability of the client, the request message can contain a restrictio
on the response size.

 following header value may be supplied with any WS-Management message to indicate that the
client expects a response whose total SOAP envelope does not exceed the specified number of octets:

(1) <wsman:MaxEnvelopeSize> xs:positiveInteger </wsman:MaxEnvelopeSize> 1091

Version 1.0.0 23

Web Services for Management (WS-Management) Specification DSP0226

The limitation re for 1092
the 1093

1094
indicates the 1095
respo eturn a 1096

n1097

1098

1099
1100
1101

ersed 1102
(such that the 1103

1104

1105

1106

RR66..22-- number is 1107
the sa ested size 1108

: 1109

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MinimumEnvelopeLimit 1110

A se1111
appl1112

RR66..22 ould return 1113
1114

1115

ute because 1116
this1117
attri1118

RR66..22--66: Clients should not add the Policy attribute to the wsman:MaxEnvelopeSize element when it 1119
Services should ignore the Policy attribute if it appears in the 1120
lement when used as a SOAP header. 1121

1122

1123
Typically, tra ck 1124
in th , it can employ 1125
the 1126

is on the entire envelope. Resource-constrained implementations need a reliable figu
required amount of memory for all SOAP processing, not just the SOAP Body.

RR66..22--11: All request messages may contain a wsman:MaxEnvelopeSize header element that
maximum number of octets (not characters) in the entire SOAP envelope in the

nse. If the service cannot compose a reply within the requested size, it should r
wsman:E codingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

RR66..22--22: If the mustUnderstand attribute is set to “true”, the service shall comply with the request. If
the response would exceed the maximum size, the service should return a wsman:EncodingLimit
fault. Because a service might execute the operation prior to knowing the response size, the service
should undo any effects of the operation before issuing the fault. If the operation cannot be rev

 as a destructive wxf:Put or wxf:Delete, or a wxf:Create), the service shall indicate
operation succeeded in the wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess

RR66..22--33: If the mustUnderstand attribute is set to “false”, the service may ignore the header.

44: Services should reject any MaxEnvelopeSize value less than 8192 octets. This
fe minimum in which faults can be reliably encoded for all character sets. If the requ

is less than this, the service should return a wsman:EncodingLimit fault with the following detail code

rvice might have its own encoding limit independent of what the client specifies, and the same fault
ies.

--55: If the service cannot compose a reply within its own internal limits, the service sh
a wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ServiceEnvelopeLimit

The definition of the wsman:MaxEnvelopeSize element in the schema contains a Policy attrib
 element is used for other purposes. This specification does not define a meaning for the Policy
bute when the wsman:MaxEnvelopeSize element is used as a SOAP header.

is used as a SOAP header.
wsman:MaxEnvelopeSize e

6.3 wsman:Locale

Management operations often span locales, and many items in responses can require translation.
nslation is required for descriptive information, intended for human readers, that is sent ba

e response. If the client requires such output to be translated into a specific language
optional wsman:Locale header, which makes use of the standard XML attribute xml:lang, as follows:

(1) <wsman:Locale xml:lang="xs:language" s:mustUnderstand="false"/>

: If the mustUnderstand attribute is omitted or set to “false”, the servi

1127

RR66..33--11 ce should use this value 1128
m 1129

1130

RR66..33-- sure that the replies 1131
contai issue a 1132

1133

man/faultDetail/Locale 1134

when co posing the response message and adjust any localizable values accordingly. This use is
recommended for most cases. The locale is treated as a hint in this case.

22: If the mustUnderstand attribute is set to “true”, the service shall en
n localized information where appropriate, or else the service shall

wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/ws

24 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

A service may always fault if wsman:Locale contains s:mustUnderstand set to “true”, because it may
not be able to ensure that the reply is localize

1135
d. 1136

Some implem1137
be c alization actually occurred. 1138

66 1139
1140

 1141
t appears 1142

of the message. This attribute may be omitted if no descriptive content appears in the 1143
xml:lang attribute is not an error, even if no descriptive content occurs. 1144

1145

entations delegate the request to another subsystem for processing, so the service cannot
ertain that the loc

RR66..33--33: The value of the xml:lang attribute in the wsman:Locale header shall be a valid RFC 30
language code.

RR66..33--44: In any response, event, or singleton message, the service should include the xml:lang
attribute in the s:Envelope (or other elements) to signal to the receiver that localized conten
in the body
body. Including the

EXAMPLE:
(1) <s:Envelope 1146
(2) xml:lang="en-us" 1147
(3) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1148
(4) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1149
(5) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1150
(6) <s:Header> ... </s:Header> 1151
(7) <s:Body> ... </s:Body> 1152
(8) </s:Envelope> 1153

The xml:lang s the 1154
clie1155

1156
processed in the initial message only. It should be ignored in subsequent messages because the first 1157

1158
. 1159

1160
so changing the locale during the enumeration serves no 1161

ments in subsequent wsen:Pull messages, but the 1162
nables the 1163

1164

 RR66..33--11) that the wsman:Locale element never contain a 1165
y, the client will not receive faults in unexpected places. 1166

1167

ture of the 1168
1169

clie t r to 1170
swit1171

RR66..44--11: Any request message may contain a wsman:OptionSet header, which wraps a set of 1172
s 1173

1174

1175
rs unless it is acting in the role of a client to another service. 1176

1177
1178

attribute can appear on any content in the message, although a simpler approach allow
nt always to check for the attribute in one place, the s:Envelope wrapper.

RR66..33--55: For operations that span multiple message sequences, the wsman:Locale element is

message establishes the required locale. The service may issue a fault if the wsman:Locale is
present in subsequent messages and the value is different from that used in the initiating request

This rule applies primarily to wsen:Enumerate and wsen:Pull messages. The locale is clearly established
during the initial wsen:Enumerate request,
purpose. The service ignores any wsman:Locale ele
client can ensure that the value does not change between wsen:Pull requests. This uniformity e
client to construct messages more easily.

It is recommended (as established in
mustUnderstand attribute. In this wa

6.4 wsman:OptionSet

The OptionSet header is used to pass a set of switches to the service to modify or refine the na
request. This facility is intended to help the service observe any context or side effects desired by the

nt, but no to alter the output schema or modify the meaning of the addressing. Options are simila
ches used in command-line shells in that they are service-specific, text-based extensions.

optional witches or controls on the message. These switches help the service compose the desired
reply or observe the required side effect.

RR66..44--22: The service should not send responses, unacknowledged events, or singleton messages
that contain wsman:OptionSet heade
Those headers are intended for request messages to which a subsequent response is expected,
including acknowledged events.

Version 1.0.0 25

Web Services for Management (WS-Management) Specification DSP0226

RR66..44--33: If the mustUnderstand attribute is omitted from the OptionSet block, the service may i
the entire wsman:OptionSet block. If it is present and the service does not support wsman:OptionS
the service shall return a s:NotUnderstood fault.

gnore 1179
et, 1180

1181

Services can process an OptionSet block if it is present, but they are not required to understand or 1182
proc1183
opti1184
enti1185

R6.4-4 n individual instance of that 1186
1187

ns are 1188
1189

t 1190
 1191

(xs:string). This specification places no restrictions on whether the names or values are to be treated 1192
1193
1194
1195

Interpretation of the option with regard to case sensitivity is up to the service and the definition of the 1196
spe n1197
exp1198
Mus1199

RR66..44-- ent. The service shall 1200
1201
1202

 1203

 1204
1205

re wsman:OptionSet block. 1206

a s to 1207
1208
1209

ay optionally contain a Type attribute, which indicates the data type of the 1210
ent. A service may require that this attribute be present on any given option 1211

pes 1212
declared in the http://www.w3.org/2001/XMLSchema namespace are supported in this version of 1213

1214

This rule can help some services distinguish numeric or date/time types from other string values. 1215

arameterization 1216
technique for the message; they should be used only as a modifier for it. 1217

Opti a d 1218
operation1219

RR66..44--1220

 detail code: 1221

 1222

ess individual options, as shown in RR66..44--66. However, if MustComply is set to “true” on any given
on, then mustUnderstand needs to be set to "true". Doing so avoids the incongruity of allowing the
re OptionSet block to be ignored while having MustComply on individual options.

R6.4-4: Each resource class may observe its own set of options, and a
resource class may further observe its own set of options. Consistent option usage is not required
across resource class and instance boundaries. The metadata formats and definitions of optio
beyond the scope of this specification and may be service-specific.

RR66..44--55: Any number of individual option elements may appear under the wsman:OptionSe
wrapper. Option names may be repeated if appropriate. The content shall be a simple string

in a case-sensitive or case-insensitive manner. However, case usage shall be retained as the
message containing the OptionSet element and its contents are propagated through SOAP
intermediaries.

cific optio because the value might be passed through to real-world subsystems that inconsistently
ose case usage. Where interoperation is a concern, the client can omit both mustUnderstand and
tComply attributes.

66: Individual option values may be advisory or may be required by the cli
observe and execute any option marked with the MustComply attribute set to "true", or return a
wsman:InvalidOptions fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported

Any option not marked with this attribute (or if the attribute is set to "false") is advisory to the service,
and the service may ignore it. If any option is marked with MustComply set to "true", then the
mustUnderstand attribute shall be used on the enti

This cap bility is required when the service delegates interpretation and execution of the option
another component. In many cases, the SOAP processor cannot know if the option was observed
and can only pass it along to the next subsystem.

RR66..44--77: Options m
content of the Option elem
and that it be set to the QName of a valid XML schema data type. Only the standard simple ty

WS-Management.

RR66..44--88: Options should not be used as a replacement for the documented p

ons re primarily used to establish context or otherwise instruct the service to perform side-ban
s while performing the operation, such as turning on logging or tracing.

99: The following faults should be returned by the service:

• when options are not supported, wsman:InvalidOptions with the following

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported

26 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

• when one or more option names are not valid or supported by the specific
resource, ws

1223
man:InvalidOptions with the following detail code: 1224

1225

1226
1227

1228

t is 1229
1230
1231

 1232
t, or the service may ignore the values of wsman:OptionSet in such messages. 1233

1234
1235
1236

s are intended to make operations more efficient or to preprocess output on behalf of the client. For 1237
1238

 1239
1240
1241

 is required, a custom operation with 1242
on. This ensures that no backdoor parameters 1243

ce en issuing a wse:Subscribe request, the 1244
mes technique for passing an event filter to the service, so the option is not used to 1245
circ1246
EXA1247

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName

• when the value is not correct for the option name, wsman:InvalidOptions with the following
detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

RR66..44--1100: For operations that span multiple message sequences, the wsman:OptionSet elemen
processed in the initial message only. It should be ignored in subsequent messages because the first
message establishes the required set of options. The service may issue a fault if the
wsman:OptionSet is present in subsequent messages and the value is different from that used in the
initiating reques

This rule applies primarily to wsen:Enumerate and wsen:Pull messages. The set of options is established
once during the initial wsen:Enumerate request, so changing the options during the enumeration would
constitute an error.

Option
example, the options could indicate to the service that the returned values are to be recomputed and that
cached values are not to be used, or that any optional values in the reply may be omitted. Alternately, the
options could be used to indicate verbose output within the limits of the XML schema associated with the
reply.

Option values are not intended to contain XML. If XML-based input
its own wsa:Action URI is the correct model for the operati
are introdu d over well-known message types. For example, wh

sage already defines a
umvent this and pass a filter using an alternate method.
MPLE: The following is an example of wsman:OptionSet:

(1) <s:Envelope 1248
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1249
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1250
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 1251
(5) xmlns:xs="http://www.w3.org/2001/XMLSchema"> 1252
(6) <s:Header> 1253
(7) ... 1254
(8) <wsman:OptionSet s:mustUnderstand="true"> 1255
(9) <wsman:Option Name="VerbosityLevel" Type="xs:int"> 1256
(10) 3 1257
(11) </wsman:Option> 1258
(12) <wsman:Option Name="LogAllRequests" MustComply ="true"/> 1259
(13) </wsman:OptionSet> 1260
(14) ... 1261
(15) </s:Header> 1262
(16) <s:Body> ... </s:Body> 1263
(17) </s:Envelope> 1264

The 1265

wsman:OptionSet 1266
1267

t is requiring the service to 1268
1269

following definitions provide additional, normative constraints on the preceding outline:

used to wrap individual option blocks
In this example, s:mustUnderstand is set to "true", indicating that the clien
process the option block using the given rules.

Version 1.0.0 27

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

Web Services for Management (WS-Management) Specification DSP0226

wsman:OptionSet/wsman:Option/@Name 1270
1271

which it applies. The name may be repeated in subsequent 1272
ific. 1273

wsm Option/@MustComply 1274
n advisory or a hint 1275

Type 1276
ates the data type of the element content, which helps the service to 1277

1278
1279

wsm1280
1281
1282
1283
1284

identifies the option (an xs:string), which may be a simple name or a URI
This name is scoped to the resource to
elements. The name cannot be blank and can be a short non-colliding URI that is vendor-spec

an:OptionSet/wsman:
if set to "true", indicates that the option shall be observed; otherwise, indicates a

wsman:OptionSet/wsman:Option/@
(optional) if present, indic
interpret the content
A service may require this attribute to be present on any given option element.

an:OptionSet/wsman:Option
the content of the option
The value may be any simple string value. If the option value is empty, the option should be
interpreted as logically "true", and the option should be "enabled". The following example enables
the "Verbose" option:

(1) <wsman:Option Name="Verbose"/> 1285

t present in the message. All other cases require an explicit string 1286
1287
1288

1289

1290
f a 1291

R of that resource after the operation is 1292
he resource representation 1293
ions to underlying systems. 1294

To provid when such a change has happened, two SOAP headers are 1295
defi q1296

In a1297

Options are logically false if they are no
to indicate the option value. The reasoning for allowing the same option to repeat is to allow specification
of a list of options of the same name.

6.5 wsman:RequestEPR

Some service operations, including WS-Transfer "Put", are able to modify the resource representation in
such a way that the update results in a logical identity change for the resource, such as the "rename" o
document. In many cases, this modification in turn alters the EP
completed, as EPRs are often dynamically derived from naming values within t
itself. This behavior is common in SOAP implementations that delegate operat

e the client a way to determine
ned to re uest and return the EPR of a resource instance.

ny WS-Management request message, the following header may appear:

(1) <wsman:RequestEPR .../>

RR66..55--11: A service receiving a mes

1298

sage that contains the wsman:RequestEPR header block should 1299
an:RequestedEPR header block. This block contains the most 1300

ed or a status code if the service cannot determine or return 1301
ges that may have occurred as a result of the current 1302
or. The header block in the corresponding response 1303

1304

return a response that contains a wsm
recent EPR of the resource being access
the EPR. This EPR reflects any identity chan

vioperation, as set forth in the following beha
message has the following format:

(1) <wsman:RequestedEPR ... > 1305
(2) [<wsa:EndpointReference> 1306
(3) wsa:EndpointReferenceType 1307
(4) </wsa:EndpointReference> | 1308
(5) <wsman:EPRInvalid/> | 1309
(6) <wsman:EPRUnknown/>] 1310
(7) </wsman:RequestedEPR> 1311

28 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

The 1312

wsm1313
ed as a child element of the wsman:RequestedEPR element 1314

1315
1316
1317
1318

wsm1319
one of three elements that can be returned as a child element of the wsman:RequestedEPR element 1320

) indicates that the service understands the request to 1321
1322
1323

 client 1324
1325

wsm1326
one of three elements that can be returned as a child element of the wsman:RequestedEPR element 1327

 is required) indicates that the service understands the request to 1328
t is unable to determine whether existing references to the 1329

1330
1331
1332

1333

Resource access applies to all synchronous operations regarding getting, setting, and enumerating 1334
r! Reference source not found. specification is used as a basis for simple 1335

unary resource access: Get, Put, Delete, and Create. Multi-instance retrieval is achieved using WS-1336
 1337

nt as a series of single 1338
1339

7.11340

WS space. 1341

EXA1342

following definitions describe additional, normative constraints on the preceding format:

an:RequestedEPR/wsa:EndpointReference
one of three elements that can be return
The use of this element indicates that the service understood the request to return the EPR of the
resource and is including the EPR of the resource. The returned EPR is calculated after all
intentional effects or side effects of the associated request message have occurred. Note that the
EPR may not have changed as a result of the operation, but the service is still obligated to return it.

an:RequestedEPR/wsman:EPRInvalid

The use of this element (no value is required
return the EPR of the resource but is unable to calculate a full EPR. However, the service is able to
determine that this message exchange has modified the resource representation in such a way that
any previous references to the resource are no longer valid. When EPRInvalid is returned, the
shall not use the old wsa:EndpointReference in subsequent operations.

an:RequestedEPR/wsman:EPRUnknown

The use of this element (no value
return the EPR of the resource bu
resource are still valid. When EPRUnknown is returned, the client may attempt to use the old
wsa:EndpointReference in subsequent operations. The result of using an old
wsa:EndpointReference, however, is unpredictable; a result may be a fault or a successful response.

7 Resource Access

values. The WS-TransferErro

Enumeration messages. This specification does not define any messages or techniques for batched
operations, such as batched Get or Delete. All such operations can be se
messages.

 WS-Transfer

-Transfer brings wxf:Get, wxf:Put, wxf:Create, and wxf:Delete into the WS-Management

MPLE 1: Following is a full example of a hypothetical wxf:Get request:
(1) <s:Envelope 1343
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1344
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1345
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1346
(5) <s:Header> 1347
(6) <wsa:To>http://1.2.3.4/wsman/</wsa:To> 1348
(7) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 1349

 </wsman:ResourceURI> 1350
(8) <wsa:ReplyTo> 1351
(9) <wsa:Address> 1352
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1353
(11) </wsa:Address> 1354
(12) </wsa:ReplyTo> 1355
(13) <wsa:Action> 1356
(14) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1357
(15) </wsa:Action> 1358
(16) <wsa:MessageID> 1359

Version 1.0.0 29

Web Services for Management (WS-Management) Specification DSP0226

(17) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 1360
(18) </wsa:MessageID> 1361
(19) <wsman:SelectorSet> 1362
(20) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 1363
(21) </wsman:SelectorSet> 1364
(22) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 1365
(23) </s:Header> 1366
(24) <s:Body/> 1367
(25) </s:Envelope> 1368

st (line 10), the action is a 1369
1370

the nt information. This example assumes that the WS-Management default 1371
add in 30 seconds or return a 1372
faul1373

Also1374

EXA request: 1375

Note that the wsa:ReplyTo occurs on the same connection as the reque
wxf:Get (line 14), and the ResourceURI (line 17) and wsman:SelectorSet (line 20) are used to address

requested manageme
ressing model is in use. The service is expected to complete the operation
t to the client (line 22).

 note that the s:Body has no content in a wxf:Get request.

MPLE (continued): The following shows a hypothetical response to the preceding hypothetical wxf:Get
(26) <s:Envelope 1376
(27) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1377
(28) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1378
(29) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1379
(30) <s:Header> 1380
(31) <wsa:To> 1381
(32) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1382
(33) </wsa:To> 1383
(34) <wsa:Action s:mustUnderstand="true"> 1384
(35) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 1385
(36) </wsa:Action> 1386
(37) <wsa:MessageID s:mustUnderstand="true"> 1387
(38) urn:uuid:217a431c-b071-3301-9bb8-5f538bec89b8 1388
(39) </wsa:MessageID> 1389
(40) <wsa:RelatesTo> 1390
(41) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 1391
(42) </wsa:RelatesTo> 1392
(43) </s:Header> 1393
(44) <s:Body> 1394
(45) <PhysicalDisk 1395

 xmlns="http://schemas.example.org/2005/02/samples/physDisk"> 1396
(46) <Manufacturer> Acme, Inc. </Manufacturer> 1397
(47) <Model> 123-SCSI 42 GB Drive </Model> 1398
(48) <LUN> 2 </LUN> 1399
(49) <Cylinders> 16384 </Cylinders> 1400
(50) <Heads> 80 </Heads> 1401
(51) <Sectors> 63 </Sectors> 1402
(52) <OctetsPerSector> 512 </OctetsPerSector> 1403
(53) <BootPartition> 0 </BootPartition> 1404
(54) </PhysicalDisk> 1405
(55) </s:Body> 1406
(56) </s:Envelope> 1407

1408
1409

original request to allow the client to correlate the 1410
response. 1411

The s:Body (lines 44-55) contains the requested resource representation. 1412

Note that the response uses the wsa:To address (line 32) that the original request had specified in
wsa:ReplyTo. Also, the wsa:MessageID for this response is unique (line 38). The wsa:RelatesTo (line 41)
contains the UUID of the wsa:MessageID of the

30 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

The same general approach exists for wxf:
The wxf:Create and wxf:Put operations ar

Delete, except that no content exists in the response s:Body. 1413
e similar, except that they contain content in the request s:Body 1414

1415

1416

1417
1418
1419
1420

e 1421
ample, although it might be possible to return running process 1422

1423
1424
1425
1426

URI as 1427
for 1428

s, 1429
1430
1431
1432

XML 1433
1434
1435

nd 1436
1437

1438
1439

 than one resource that can be 1440
subsequently returned through a wxf:Get operation. Similarly, a wxf:Put operation can result in a rename 1441

 some unrelated instance, or the deletion of some unrelated instance. 1442
ific, and this specification makes no statements about the taxonomy 1443

1444

1445

The1446
com d complexity of the 1447

1448

ant service should support wxf:Get operations to service metadata requests 1449
1450

This n e 1451
and1452

1453

1454
 be returned. 1455

to specify the values being created or updated.

7.2 Addressing Uniformity

In general, the service can expose addressing usage that is identical for the WS-Transfer operations.
Where practical, the EPR of the resource can be the same whether a wxf:Get, wxf:Delete, or wxf:Put
operation is being used. This is not a strict requirement, but it reduces the education and training required
to construct and use WS-Management-aware tools.

wxf:Create is a special case, in that the EPR of the newly created resource is often not known until th
resource is actually created. For ex
information using a hypothetical ProcessID in an addressing header, it is typically not possible to assert
the ProcessID during the creation phase because the underlying system does not support the concept.
Thus, the wxf:Create operation would not have the same addressing headers as the corresponding
wxf:Get or wxf:Delete operations.

If the WS-Management default addressing model is in use, it would be typical to use the Resource
a "type" and selector values for "instance" identification. Thus, the same address would be used
wxf:Get, wxf:Put, and wxf:Delete when working with the same instance. When enumerating all instance
the selectors would be omitted and the ResourceURI would be used alone to indicate the "type" of the
object being enumerated. The wxf:Create operation might also share this usage, or have its own
ResourceURI and selector usage (or not even use selectors). This pattern is not a requirement.

Throughout, it is expected that the s:Body of the messages contains XML with correct and valid
namespaces referring to XML Schemas that can validate the message. Most services and clients do not
perform real-time validation of messages in production environments because of performance
constraints; however, during debugging or other systems verification, validation might be enabled, a
messages without the appropriate XML namespaces declarations would be considered invalid.

When performing WS-Transfer operations, side effects might occur. For example, deletion of a particular
resource by using wxf:Delete can result in several other dependent instances disappearing, and a
wxf:Create operation can result in the logical creation of more

of the target instance, a rename of
These side effects are service spec
and semantics of objects over which these operations apply.

7.3 WS-Transfer:Get

 wxf:Get operation retrieves resource representations. The message can be targeted to return a
plex XML Infoset (an "object") or to return a single, simple value. The nature an

representation is not constrained by this specification.

RR77..33--11: A conform
about the service itself or to verify the result of a previous action or operation.

 stateme t does not constrain implementations from supplying additional similar methods for resourc
 metadata retrieval.

RR77..33--22: Execution of wxf:Get should not in itself have side effects on the value of the resource.

RR77..33--33: If an object cannot be retrieved due to locking conditions, simultaneous access, or similar
conflicts, a wsman:Concurrency fault should

Version 1.0.0 31

Web Services for Management (WS-Management) Specification DSP0226

In practice, wxf:Get is designed to return XML that correspond to real-world objects. To retrieve ind
property values, either the client can postprocess the XML content for the desired value, or the service
can sup

ividual 1456
1457

port fragment-level WS-Transfer (7.7). 1458

ed in clause 14. An inability to locate or access the resource is 1459
AP message when the EPR is defective. There are no "Get-specific" 1460

1461

7.4 WS-Transfer:Put 1462

If a resou1463
the 1464

1465

RR77..44--22: If a single resource instance can be updated (within the constraints of its schema) by using 1466
1467
1468
1469

stance contains a mix of read-only and read-write values, the wxf:Put 1470
-only and read-write values if the XML content is legal with regard 1471

ing 1472
1473
1474

1475
nt. 1476

1477
 zero), it will 1478

1479

 definition ha nOccurs=0), the wxf:Put 1480
 ng the update. 1481

In s of the associated XML schema. 1482

EXA e that wxf:Get returns the following information: 1483

Fault usage is generally as describ
equivalent to problems with the SO
faults.

rce can be updated in its entirety within the constraints of the corresponding XML schema for
resource, the service can support the wxf:Put operation.

RR77..44--11: A conformant service may support wxf:Put.

a SOAP message, and that resource subsequently can be retrieved using wxf:Get, a service should
support updating the resource by using wxf:Put. The service may additionally export a custom
method for updates.

RR77..44--33: If a single resource in
message may contain both the read
to its XML schema namespace. In such cases, the service should ignore the read-only values dur
the update operation. If none of the values are writeable, the service should return a
wsa:ActionNotSupported fault.

This situation typically happens if a wxf:Get operation is performed, a value is altered, and the entire
updated representation is sent using wxf:Put. In this case, any read-only values will still be prese

Note that a complication arises because wxf:Put contains the complete new representation for the
instance. If the resource schema requires the presence of any given value (minOccurs is not
be supplied as part of the wxf:Put message, even if it is not being altered from its original value.

If the schema s default values for elements that are optional (mi
message can omit these values and rely on the defaults being observed duri

hort, the s:Body of the wxf:Put message complies with the constraints

MPLE 1: For example, assum
(1) <s:Body> 1484
(2) <MyObject xmlns="examples.org/2005/02/MySchema"> 1485
(3) <A> 100 1486
(4) 200 1487
(5) <C> 100 </C> 1488
(6) </MyObject> 1489

1490

EXA1491

(7) </s:Body>

MPLE 2: The corresponding XML schema has defined A, B, and C as minOccurs=1:
(8) <xs:element name="MyObjecct"> 1492
(9) <xs:complexType> 1493
(10) <xs:sequence> 1494
(11) <xs:element name="A" type="xs:int" minOccurs="1" maxOccurs="1"/> 1495
(12) <xs:element name="B" type="xs:int" minOccurs="1" maxOccurs="1"/> 1496
(13) <xs:element name="C" type="xs:int" minOccurs="1" maxOccurs="1"/> 1497
(14) ... 1498
(15) </xs:sequence> 1499
(16) </xs:complexType> 1500
(17) </xs :element> 1501

32 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

In this case, the corresponding wxf:Put needs to contain all three elements because the schema
mandates that all three be present. Even if the only value being updated is , the client has to supply
all three values. This usually m

1502
 1503

eans that the client first has to issue a wxf:Get to preserve the current 1504
1505
1506
1507

To u o 1508
tran1509

1510
antically distinct. 1511

..44-- correct content to update the resource, the service 1512
shoul1513

t: 1514

1515

1516

1517

1518

Namespace 1519

1520
ncurrency fault. 1521

 1522
1523

Because WS-Management services typically delegate the wxf:Put to underlying subsystems, the service 1524
mig1525
info1526

se in all 1527
cases. Knowing whether the actual resulting representation is different from the requested update is 1528

1529
1530

The impli on of this rule s 1531
submitted in th1532
retu1533

RR77..44-- ecause of 1534
encod1535

1536

1537

xf:Put operation may contain updates of multiple values. The service shall 1538
successfully carry out an update of all the specified values or return the fault that was the cause of 1539
the error. If any fault is returned, the implication is that 0…n-1 values were updated out of n possible 1540
update values. 1541

values of <A> and <C>, change to the desired value, and then write the object using wxf:Put. As
noted in RR77..44--33, the service can ignore attempts to update values that are read-only with regard to the
underlying real-world object.

pdate is lated values without having to supply values that will not change, use the fragment-level
sfer mechanism described in 7.7.

RR77..44--44: A conformant service should support wxf:Put using the same EPR as a corresponding
wxf:Get or other messages, unless the Put mechanism for a resource is sem

RR77 55: If the supplied Body does not have the
d return a wxf:InvalidRepresentation fault and detail codes as follows:

• if any values in the s:Body are not correc

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues

• if any values in the s:Body are missing:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues

• if the wrong XML schema namespace is used and is not recognized by the service:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Invalid

RR77..44--66: If an object cannot be updated because of locking conditions, simultaneous access, or
similar conflicts, the service should return a wsman:Co

RR77..44--77: A wxf:Put operation may result in a change to the EPR for the resource because the values
being updated may in turn cause an identity change.

ht not always be aware of an identity change. Clients can make use of the mechanism in 6.5 to be
rmed of EPR changes that may have occurred as a side effect of executing wxf:Put.

RR77..44--88: It is recommended that the service return the new representation in the Put respon

often difficult because resource-constrained implementations may have insufficient resources to
determine the equivalence of the requested update with the actual resulting representation.

cati is that if the new representation is not returned, it precisely matches what wa
e wxf:Put message. Because implementations can rarely assure this, they can always

rn the new representation.

99: If the success of an operation cannot be reported as described in this clause b
ing limits or other reasons, and it cannot be reversed, the service should return a

wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess

RR77..44--1100: The w

Version 1.0.0 33

Web Services for Management (WS-Management) Specification DSP0226

7.5 WS-Transfer:Delete 1542

1543

1544
1545

1546

1547
1548

1549
1550
1551

1552
1553

1554
1555

1556
1557
1558
1559
1560

1561
1562
1563

1564
1565

1566

1567
1568
1569
1570
1571

1572

1573
1574
1575

1576
1577

1578

1579

1580

1581

The WS-Transfer:Delete operation deletes resource instances.

In general, the addressing can be the same as for a corresponding wxf:Get operation for uniformity, but
this is not absolutely required.

RR77..55--11: A conformant service may support wxf:Delete.

RR77..55--22: A conformant service should support wxf:Delete using the same EPR as a corresponding
wxf:Get or other messages, unless the deletion mechanism for a resource is semantically distinct.

RR77..55--33: If deletion is supported and the corresponding resource can be retrieved using wxf:Get, a
conformant service should support deletion using wxf:Delete. The service may additionally export a
custom action for deletion.

RR77..55--44: If an object cannot be deleted due to locking conditions, simultaneous access, or similar
conflicts, a wsman:Concurrency fault should be returned.

In practice, wxf:Delete removes the resource instance from the visibility of the client and is a logical
deletion.

The operation might result in an actual deletion, such as removal of a row from a database table, or it
might simulate deletion by unbinding the representation from the real-world object. Deletion of a "printer,"
for example, does not result in literal annihilation of the printer, but simply removes it from the access
scope of the service, or "unbinds" it from naming tables. WS-Management makes no distinction between
literal deletions and logical deletions.

To delete individual property values within an object which itself is not to be deleted, either the client can
perform a wxf:Put operation with those properties removed, or the service can support fragment-level
WS-Transfer (7.7).

Fault usage is generally as described in clause 14. Inability to locate or access the resource is equivalent
to problems with the SOAP message when the EPR is defective. There are no "Delete-specific" faults.

7.6 WS-Transfer:Create

The WS-Transfer:Create operation creates resources and models a logical "constructor." In general, the
addressing is not the same as that used for wxf:Get or wxf:Delete in that the EPR assigned to a newly
created instance for subsequent access is not necessarily part of the XML content used for creating the
resource. Because the EPR is usually assigned by the service or one of its underlying systems, the
CreateResponse contains the applicable EPR of the newly created instance.

RR77..66--11: A conformant service may support wxf:Create.

RR77..66--22: If a single resource can be created using a SOAP message and that resource can be
subsequently retrieved using wxf:Get, then a service should support creation of the resource using
wxf:Create. The service may additionally export a custom method for instance creation.

RR77..66--33: If the supplied SOAP Body does not have the correct content for the resource to be
created, the service should return a wxf:InvalidRepresentation fault and detail codes as follows:

• if one or more values in the <s:Body> were not correct:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues

• if one or more values in the <s:Body> were missing:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues

34 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

• if the wrong XML schema namespace was used and is not recognized by the service: 1582

1583

1584
1585

1586
1587
1588

1589
1590
1591

1592
1593

1594
1595

1596
1597

1598

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace

RR77..66--44: A service shall not use wxf:Create to perform an update on an existing representation. If
the targeted object already exists, the service should return a wsman:AlreadyExists fault.

The message body for wxf:Create is not required to use the same schema as that returned with a wxf:Get
operation for the resource. Often, the values required to create a resource are different from those
retrieved using a wxf:Get operation or those used for updates with a wxf:Put operation.

WS-Transfer specifies that wxf:CreateResponse contains the initial representation of the object. However,
due to restrictions in WSDL/1.1 (and the upcoming WSDL 2.0 specification), a SOAP Body cannot
actually be defined that contains juxtaposed elements at the top level.

This specification places a restriction such that the only returned value is the wxf:ResourceCreated
element, which contains the EPR of the newly created resource.

If a service needs to support creation of individual values within a representation (fragment-level creation,
array insertion, and so on), it can support fragment-level WS-Transfer (7.7).

RR77..66--55: The response to a wxf:Create message shall contain the new EPR of the created resource
in the wxf:ResourceCreated element.

RR77..66--66: The response shall not contain the initial representation of the object, in spite of language
within the WS-Transfer specification. 1599

1600
1601
1602

1603

This last restriction is due to the fact that some SOAP processors cannot process multiple child elements
within a SOAP s:Body. In general, clients can simply issue a wxf:Get message to retrieve the
representation, because they will have just acquired an EPR to the new resource.

EXAMPLE: The following is a hypothetical example of a response for a newly created virtual drive:
(1) <s:Envelope 1604
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1605
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1606
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 1607
(5) xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"> 1608
(6) <s:Header> 1609
(7) ... 1610
(8) <wsa:Action> 1611
(9) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse 1612
(10) </wsa:Action> 1613
(11) ... 1614
(12) </s:Header> 1615
(13) <s:Body> 1616
(14) <wxf:ResourceCreated> 1617
(15) <wsa:Address> 1618
(16) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous/ 1619
(17) </wsa:Address> 1620
(18) <wsa:ReferenceParameters> 1621
(19) <wsman:ResourceURI> 1622
(20) http://example.org/2005/02/virtualDrive 1623
(21) </wsman:ResourceURI> 1624
(22) <wsman:SelectorSet> 1625
(23) <wsman:Selector Name="ID"> F: </wsman:Selector> 1626
(24) </wsman:SelectorSet> 1627
(25) </wsa:ReferenceParameters> 1628
(26) </wxf:ResourceCreated> 1629
(27) </s:Body> 1630
(28) </s:Envelope> 1631

Version 1.0.0 35

Web Services for Management (WS-Management) Specification DSP0226

1632
1633
1634
1635

1636
1637

1638
1639

1640
1641

1642
1643

1644

1645

1646
1647
1648
1649

1650
1651
1652
1653

1654
1655
1656
1657
1658

1659

1660
1661

This example assumes that the default addressing model is in use. The response contains a
wxf:ResourceCreated block (lines 14-26), which contains the new endpoint reference of the created
resource, including its ResourceURI and the SelectorSet. This address would be used to retrieve the
resource in a subsequent wxf:Get operation.

Note that the service might use a network address that is the same as the <wsa:To> address in the
wxf:Create request, or it might simply use the anonymous address as shown (line 16).

RR77..66--77: The service may ignore any values in the initial representation that are considered read-
only from the point of view of the underlying real-world object.

This rule allows wxf:Get, wxf:Put, and wxf:Create to share the same schema. Note that wxf:Put also
allows the service to ignore read-only properties during an update.

RR77..66--88: If the success of an operation cannot be reported as described in this section and cannot
be reversed, the service should return a wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess

7.7 Fragment-Level WS-Transfer

Because WS-Transfer works with entire instances and it can be inconvenient to specify hundreds or
thousands of EPRs just to model fragment-level access with full EPRs, WS-Management supports the
concept of fragment-level (property) access of resources that are normally accessed through
WS-Transfer operations. This access is done through special use of WS-Transfer.

Because of the XML schema limitations discussed in 7.6, simply returning a subset of the XML defined for
the object being accessed is often incorrect because a subset may violate the XML schema for that
fragment. To support transfer of fragments or individual elements of a representation object, several
modifications to the basic WS-Transfer operations are made.

R7.7-1: A conformant service may support fragment-level WS-Transfer. If the service supports
fragment-level access, the service shall not behave as if normal WS-Transfer operations were in
place but shall operate exclusively on the fragments specified. If the service does not support
fragment-level access, it shall return a wsman:UnsupportedFeature fault with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FragmentLevelAccess

RR77..77--22: A conformant service that supports fragment-level WS-Transfer shall accept the following
SOAP header in all requests and include it in all responses that transport the fragments:

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 1662
(2) xpath to fragment 1663

1664 (3) </wsman:FragmentTransfer>

The value of this header is the XPath 1.0 expression that identifies the fragment being transferred
with relation to the full representation of the object. If an expression other than

1665
XPath 1.0 is used, a

Dialect attribute can be added to indicate this, as follows:
1666
1667

(4) <wsman:FragmentTransfer s:mustUnderstand="true" 1668
(5) Dialect="URIToNewFragmentDialect"> 1669
(6) dialect expression 1670

1671

1672
1673
1674

(7) </wsman:FragmentTransfer>

The client needs to understand that unless the header is marked mustUnderstand="true", the service
might process the request while ignoring the header, resulting in unexpected and potentially serious side
effects.

36 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

1675
1676
1677
1678

Note that XPath is explicitly defined as a dialect due to its importance, but it is not mandated that
implementations support XPath as a fragment dialect. Any other type of language to describe fragment-
level access is permitted as long as the Dialect value is set to indicate to the service what dialect is being
used.

RR77..77--33: For WS-Transfer fragment operations that use XPath 1.0 (Dialect URI of
http://www.w3.org/TR/1999/REC-xpath-19991116), the value of the
/s:Envelope/s:Header/wsman:FragmentTransfer element is an XPath expression. This XPath
expression is evaluated using the following context:

1679
1680
1681
1682

1683
1684
1685
1686

1687

1688

1689

• Context Node: the root element of the XML representation of the resource addressed in the
request that would be returned as the initial child element of the SOAP Body response if a WS-
Transfer Get operation was applied against the addressed resource without using fragment
transfer

• Context Position: 1

• Context Size: 1

• Variable Bindings: none

• Function Libraries: Core Function Library [XPath 1.0] 1690

• Namespace Declarations: the [in-scope namespaces] property [XML Infoset] of the request
/s:Envelope/s:Header/wsman:FragmentTransfer element

1691
1692

1693
1694

This rule means that the XPath is to be interpreted relative to the XML representation of the resource and
not relative to any of the SOAP content.

For WS-Enumeration, the XPath is interpreted as defined in the WS-Enumeration specification, although
the output is subsequently wrapped in wsman:XmlFragment wrappers after the XPath is evaluated.

1695
1696

1697
1698

1699
1700

1701
1702
1703

1704
1705
1706
1707
1708

1709

1710
1711

1712
1713
1714
1715

1716

An XPath value can refer to the entire node, so the concept of a fragment includes the entire object,
making fragment-level WS-Transfer a proper superset of normal WS-Transfer.

If the full XPath expression syntax cannot be supported, a common subset for this purpose is described in
ANNEX C of this specification. However, in such cases, the Dialect URI is still that of XPath.

RR77..77--44: If a service understands fragment transfers but does not understand the specified fragment
Dialect URI or the default dialect, the service shall issue a wsman:FragmentDialectNotSupported
fault.

RR77..77--55: All transfers in either direction of the XML fragments shall be wrapped with a
<wsman:XmlFragment> wrapper that contains a definition that suppresses validation and allows any
content to pass. A service shall reject any attempt to use wsman:FragmentTransfer unless the s:Body
wraps the content using a wsman:XmlFragment wrapper. If any other usage is encountered, the
service shall fault the request by using a wxf:InvalidRepresentation fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFragment

Fragment transfer can occur at any level, including single element, complex elements, simple values, and
attributes. In practice, services typically support only value-level access to elements.

RR77..77--66: If fragment-level WS-Transfer is supported, a conformant service should support at least
leaf-node, value-level access using an XPath expression that uses the /text() NodeTest. In this case,
the value is not wrapped with XML but is transferred directly as text within the wsman:XmlFragment
wrapper.

In essence, the transferred content is whatever an XPath operation over the full XML would produce.

Version 1.0.0 37

Web Services for Management (WS-Management) Specification DSP0226

RR77..77--77: If fragment-level WS-Transfer is supported but the filter expression exceeds the capability
of the service, the service should return a wsman:CannotProcessFilter fault with text explaining why
the filter was problematic.

1717
1718
1719

1720
1721
1722
1723

1724

1725
1726

1727

1728
1729

1730

RR77..77--88: For all fragment-level operations, partial successes are not permitted. The entire meaning
of the XPath expression or other dialect shall be fully observed by the service in all operations, and
the entire fragment that is specified shall be successfully transferred in either direction. Otherwise,
faults occur as if none of the operation had succeeded.

All faults are the same as for normal, "full" WS-Transfer operations.

The following clauses show how the underlying WS-Transfer operations change when transferring XML
fragments.

7.8 Fragment-Level WS-Transfer:Get

Fragment-level WS-Transfer:Get is similar to full wxf:Get, except for the wsman:FragmentTransfer header
(lines 25-27).

EXAMPLE 1: The following example is drawn from the example in 7.1:
(1) <s:Envelope 1731
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1732
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1733
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1734
(5) <s:Header> 1735
(6) <wsa:To> 1736
(7) http://1.2.3.4/wsman 1737
(8) </wsa:To> 1738
(9) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 1739

 </wsman:ResourceURI> 1740
(10) <wsa:ReplyTo> 1741
(11) <wsa:Address> 1742
(12) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1743
(13) </wsa:Address> 1744
(14) </wsa:ReplyTo> 1745
(15) <wsa:Action> 1746
(16) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1747
(17) </wsa:Action> 1748
(18) <wsa:MessageID> 1749
(19) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 1750
(20) </wsa:MessageID> 1751
(21) <wsman:SelectorSet> 1752
(22) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 1753
(23) </wsman:SelectorSet> 1754
(24) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 1755
(25) <wsman:FragmentTransfer s:mustUnderstand="true"> 1756
(26) Manufacturer 1757
(27) </wsman:FragmentTransfer> 1758
(28) </s:Header> 1759
(29) <s:Body/> 1760

1761

1762
1763

(30) </s:Envelope>

In this case, the service will execute the specified XPath expression against the representation that would
normally have been retrieved, and then return a fragment instead.

38 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

EXAMPLE 2: The service repeats the wsman:FragmentTransfer element in the wxf:GetResponse (lines 48-50) to
reference the fragment and signal that a fragment has been transferred. The response is wrapped in a
wsman:XmlFragment wrapper, which suppresses the schema validation that would otherwise apply.

1764
1765
1766

(31) <s:Envelope 1767
(32) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1768
(33) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1769
(34) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1770
(35) <s:Header> 1771
(36) <wsa:To> 1772
(37) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1773
(38) </wsa:To> 1774
(39) <wsa:Action s:mustUnderstand="true"> 1775
(40) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 1776
(41) </wsa:Action> 1777
(42) <wsa:MessageID s:mustUnderstand="true"> 1778
(43) urn:uuid:1a7e7314-d791-4b4b-3eda-c00f7e833a8c 1779
(44) </wsa:MessageID> 1780
(45) <wsa:RelatesTo> 1781
(46) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 1782
(47) </wsa:RelatesTo> 1783
(48) <wsman:FragmentTransfer s:mustUnderstand="true"> 1784
(49) Manufacturer 1785
(50) </wsman:FragmentTransfer> 1786
(51) </s:Header> 1787
(52) <s:Body> 1788
(53) <wsman:XmlFragment> 1789
(54) <Manufacturer> Acme, Inc. </Manufacturer> 1790
(55) </wsman:XmlFragment> 1791
(56) </s:Body> 1792

1793

1794
1795

1796
1797

1798

(57) </s:Envelope>

The output (lines 53-55) is like that supplied by a typical XPath processor and might or might not contain
XML namespace information or attributes.

To receive the value in isolation without an XML element wrapper, the client can use XPath techniques
such as the text() operator to retrieve just the values.

EXAMPLE 3: The following example request uses text() to get the manufacturer name:
(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 1799
(2) Manufacturer/text() 1800

1801

1802

(3) </wsman:FragmentTransfer>

This request results in the following XML in the response SOAP Body:
(1) <wsman:XmlFragment> 1803
(2) Acme, Inc. 1804

1805

1806

1807
1808
1809
1810
1811

(3) </wsman:XmlFragment>

7.9 Fragment-Level WS-Transfer:Put

Fragment-level WS-Transfer:Put works like regular wxf:Put except that it transfers only the part being
updated. Although the fragment can be considered part of an instance from the observer's perspective,
the referenced fragment is treated as the "instance" during the execution of the operation.
NOTE: wxf:Put is always an update operation of an existing element, whether a simple element or an array. To create
or insert new elements, wxf:Create is required.

Version 1.0.0 39

Web Services for Management (WS-Management) Specification DSP0226

EXAMPLE 1: Consider the following XML for illustrative purposes: 1812
(1) <a> 1813
(2) 1814
(3) <c> </c> 1815
(4) <d> </d> 1816
(5) 1817
(6) <e> 1818
(7) <f> </f> 1819
(8) <g> </g> 1820
(9) </e> 1821

1822

1823
1824
1825
1826

1827
1828

(10)

Although <a> is the entire representation of the resource instance, if the operation references the a/b
node during the wxf:Put operation, using an XPath expression of “b”, then the content of is updated
without touching other parts of <a> , such as <e> . If the client wants to update only <d> , then the XPath
expression used is “b/d”.

EXAMPLE 2: Continuing from the example in 7.1, if the client wanted to update the <BootPartition> value from 0 to
1, the following wxf:Put fragment could be sent to the service:

(1) <s:Envelope 1829
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1830
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1831
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1832
(5) <s:Header> 1833
(6) <wsa:To> 1834
(7) http://1.2.3.4/wsman 1835
(8) </wsa:To> 1836
(9) <wsman:ResourceURI>http://example.org/2005/02/physicalDisk 1837

 </wsman:ResourceURI> 1838
(10) <wsa:ReplyTo> 1839
(11) <wsa:Address> 1840
(12) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1841
(13) </wsa:Address> 1842
(14) </wsa:ReplyTo> 1843
(15) <wsa:Action> 1844
(16) http://schemas.xmlsoap.org/ws/2004/09/transfer/Put 1845
(17) </wsa:Action> 1846
(18) <wsa:MessageID> 1847
(19) urn:uuid:d9726315-bc91-2222-9ed8-c044c9658a87 1848
(20) </wsa:MessageID> 1849
(21) <wsman:SelectorSet> 1850
(22) <wsman:Selector Name="LUN"> 2 </wsman:Selector> 1851
(23) </wsman:SelectorSet> 1852
(24) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout> 1853
(25) <wsman:FragmentTransfer s:mustUnderstand="true"> 1854
(26) BootPartition 1855
(27) </wsman:FragmentTransfer> 1856
(28) </s:Header> 1857
(29) <s:Body> 1858
(30) <wsman:XmlFragment> 1859
(31) <BootPartition> 1 </BootPartition> 1860
(32) </wsman:XmlFragment> 1861
(33) </s:Body> 1862
(34) </s:Envelope> 1863

40 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

EXAMPLE 3: The <BootPartition> wrapper is present because the XPath value specifies this. If
“BootPartition/text()” were used as the expression, the Body would contain just the value, as in the following example:

1864
1865

(35) <s:Header> 1866
(36) ... 1867
(37) <wsman:FragmentTransfer s:mustUnderstand="true"> 1868
(38) BootPartition/text() 1869
(39) </wsman:FragmentTransfer> 1870
(40) </s:Header> 1871
(41) <s:Body> 1872
(42) <wsman:XmlFragment> 1873
(43) 1 1874
(44) </wsman:XmlFragment> 1875

1876

1877
1878
1879
1880

1881

(45) </s:Body>

If the corresponding update occurs, the new representation matches, so no s:Body result is expected,
although returning it is always legal. If a value does not match what was requested, the service needs to
supply only the parts that are different than what is requested. This situation would generally not occur for
single values because a failure to honor the new value would result in a wxf:InvalidRepresentation fault.

EXAMPLE 4: The following is a sample reply:

(46) <s:Envelope 1882
(47) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 1883
(48) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 1884
(49) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 1885
(50) <s:Header> 1886
(51) <wsa:To> 1887
(52) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous 1888
(53) </wsa:To> 1889
(54) <wsa:Action s:mustUnderstand="true"> 1890
(55) http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse 1891
(56) </wsa:Action> 1892
(57) <wsa:MessageID s:mustUnderstand="true"> 1893
(58) urn:uuid:ee7f13b5-0091-430b-9ed8-2e12fbaa8a7e 1894
(59) </wsa:MessageID> 1895
(60) <wsa:RelatesTo> 1896
(61) urn:uuid:d9726315-bc91-2222-9ed8-c044c9658a87 1897
(62) </wsa:RelatesTo> 1898
(63) <wsman:FragmentTransfer s:mustUnderstand="true"> 1899
(64) BootPartition/text() 1900
(65) </wsman:FragmentTransfer> 1901
(66) </s:Header> 1902
(67) <s:Body> 1903
(68) <wsman:XmlFragment> 1904
(69) 1 1905
(70) </wsman:XmlFragment> 1906
(71) </s:Body> 1907

1908

1909
1910

1911
1912

1913

(72) </s:Envelope>

RR77..99--11: As for normal wxf:Put, the service may ignore any read-only values supplied as part of the
fragment for updating.

RR77..99--22: If the service encounters an attempt to update a read-only value, it should return a
wsa:ActionNotSupported fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ActionMismatch

Version 1.0.0 41

Web Services for Management (WS-Management) Specification DSP0226

1914
1915
1916
1917
1918

1919
1920
1921
1922

1923
1924

1925

NOTE: The fragment-level Put operation implies replacement or update and does not insert new values into the
representation object. Thus, it is not appropriate to use wxf:Put to insert a new value at the end of an array, for
example. The entire array can be returned and then updated and replaced (because it is therefore an update of the
entire array), but a single operation to insert a new element in the middle or at the end of an array is actually a
wxf:Create operation.

WS-Transfer states that if the new representation differs from the input, the new representation is to be
returned in the response. With fragment-level wxf:Put, this rule applies only to the portion of the
representation object being written, not the entire object. If a single value is written and accepted, but has
side effects on other values in the representation, the entire object is not returned.

To set a value to NULL without removing it as an element, use an attribute value of xsi:nil on the element
being set to NULL to ensure that the fragment path is adjusted appropriately.

EXAMPLE 5:
(73) <s:Header> ... 1926
(74) <wsman:FragmentTransfer s:mustUnderstand="true"> 1927
(75) AssetLabel 1928
(76) </wsman:FragmentTransfer> 1929
(77) ... 1930
(78) </Header> 1931
(79) <s:Body> 1932
(80) <wsman:XmlFragment xmlns:xsi="www.w3.org/2001/XMLSchema-instance"> 1933
(81) <AssetLabel xsi:nil="true"/> 1934
(82) </wsman:XmlFragment> 1935

1936

1937

1938
1939
1940
1941
1942
1943
1944

1945

(83) </s:Body>

7.10 Fragment-Level WS-Transfer:Delete

Fragment-level WS-Transfer:Delete applies only if the XML schema for the targeted object supports
optional elements that can be removed from the representation object, or supports arrays (repeated
elements) with varying numbers of elements and the client wants to remove an element in an array. If
replacement of an entire array is needed, fragment-level WS-Transfer:Put can be used. For array access,
the XPath array access notation can conveniently be used. To delete a value that is legal to remove
(according to the rules of the schema for the object), the wsman:FragmentTransfer expression identifies
the item to be removed.

EXAMPLE 1:
(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 1946
(2) VolumeLabel 1947

1948

1949
1950

1951

1952
1953

(3) </wsman:FragmentTransfer>

To set a value to NULL without removing it as an element, use fragment-level wxf:Put with a value of
xsi:nil.

To delete an array element, use the XPath [] operators.

EXAMPLE 2: The following example deletes the second <BlockedIPAddress> element in the representation. (XPath
arrays are 1 based.)

(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 1954
(2) BlockedIPAddress[2] 1955

1956

1957
1958

1959
1960

(3) </wsman:FragmentTransfer>

The <s:Body> is empty for all wxf:Delete operations, even with fragment-level access, and all normal
faults for wxf:Delete apply.

RR77..1100--11: If a value cannot be deleted because of locking conditions or similar phenomena, the
service should return a wsman:AccessDenied fault.

42 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

7.11 Fragment-Level WS-Transfer:Create 1961

1962
1963
1964
1965
1966
1967

1968
1969

1970

Fragment-level WS-Transfer:Create applies only if the XML schema for the targeted object supports
optional elements that are not currently present, or supports arrays with varying numbers of elements and
the client wants to insert an element in an array (a repeated element). If entire array replacement is
needed, Fragment-level wxf:Put can be used. For array access, the XPath array access notation (the []
operators) can conveniently be used.
NOTE: wxf:Create can be used only to add new content, not to update existing content.

To insert a value that can be legally added (according to the rules of the schema for the object), the
wsman:FragmentTransfer expression identifies the item to be added.

EXAMPLE 1: For example, assume the following message fragment is sent to a LogicalDisk resource:
(1) <wsman:FragmentTransfer s:mustUnderstand="true"> 1971
(2) VolumeLabel 1972

1973

1974

(3) </wsman:FragmentTransfer>

EXAMPLE 2: In this case, the <Body> contains both the element and the value:
(4) <s:Body> 1975
(5) <wsman:XmlFragment> 1976
(6) <VolumeLabel> MyDisk </VolumeLabel> 1977
(7) </wsman:XmlFragment> 1978

1979

1980

1981

(8) </s:Body>

This operation creates a <VolumeLabel> element where none existed before.

EXAMPLE 3: To create the target using the value alone, apply the XPath text() operator to the path, as follows:
(9) <wsman:FragmentTransfer s:mustUnderstand="true"> 1982
(10) VolumeLabel/text() 1983

1984

1985

(11) </wsman:FragmentTransfer>

EXAMPLE 4: The body of wxf:Create contains the value to be inserted and is the same as for fragment-level wxf:Put:
(12) <s:Body> 1986
(13) <wsman:XmlFragment> 1987
(14) MyDisk 1988
(15) </wsman:XmlFragment> 1989

1990

1991
1992
1993

1994

(16) </s:Body>

To create an array element in the target, the XPath [] operator may be used. To insert a new element at
the end of the array, the user needs to know the number of elements in the array so that the new index
can be used.

EXAMPLE 5: The following message fragment is sent to an InternetServer resource:
(17) <wsman:FragmentTransfer s:mustUnderstand="true"> 1995
(18) BlockedIPAddress[3] 1996

1997

1998
1999
2000

2001

(19) </wsman:FragmentTransfer>

Insertion of a new element within the array is done using the index of the desired location, and the array
expands at that location to accommodate the new element. Note that using wxf:Put at this location
overwrites the existing array element, whereas wxf:Create inserts a new element, making the array larger.

The body of wxf:Create contains the value to be inserted and is the same as for fragment-level wxf:Put.

Version 1.0.0 43

Web Services for Management (WS-Management) Specification DSP0226

EXAMPLE 6: 2002
(20) <s:Body> 2003
(21) <wsman:XmlFragment> 2004
(22) <BlockedIPAddress> 123.12.188.44 </BlockedIPAddress> 2005
(23) </wsman:XmlFragment> 2006

2007

2008
2009

2010
2011

2012
2013

2014
2015
2016

2017
2018

(24) </s:Body>

This operation adds a third IP address to the <BlockedIPAddress> array (a repeated element), assuming
that at least two elements are at that level already.

RR77..1111--11: A service shall not use wxf:Create to perform an update on an existing representation. If
the targeted object already exists, the service should return a wsman:AlreadyExists fault.

RR77..1111--22: If the wxf:Create fails because the result would not conform to the schema in some way,
the service should return a wxf:InvalidRepresentation fault.

As defined in 7.6, the wxf:CreateResponse contains the EPR of the created resource. In the case of
fragment-level wxf:Create, the response additionally contains the wsman:FragmentTransfer block,
including the path (line 12), in a SOAP header.

EXAMPLE 7: In the following example, note that the wxf:ResourceCreated EPR continues to refer to the entire
object, not just the fragment.

(25) <s:Envelope 2019
(26) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2020
(27) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2021
(28) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 2022
(29) xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"> 2023
(30) <s:Header> 2024
(31) ... 2025
(32) <wsa:Action> 2026
(33) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse 2027
(34) </wsa:Action> 2028
(35) <wsman:FragmentTransfer s:mustUnderstand="true"> 2029
(36) Path To Fragment 2030
(37) </wsman:FragmentTransfer> 2031
(38) ... 2032
(39) </s:Header> 2033
(40) <s:Body> 2034
(41) <wxf:ResourceCreated> 2035
(42) <wsa:Address> ... </wsa:Address> 2036
(43) <wsa:ReferenceParameters> 2037
(44) <wsman:SelectorSet> 2038
(45) <wsman:Selector ...> ... </wsman:Selector> 2039
(46) </wsman:SelectorSet> 2040
(47) </wsa:ReferenceParameters> 2041
(48) </wxf:ResourceCreated> 2042
(49) </s:Body> 2043

2044

2045

(50) </s:Envelope>

As discussed in 7.6, to remain compatible with WSDL, only the EPR of the item is returned in the SOAP
Body, in spite of other options discussed in the WS-Transfer specification. 2046

44 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

8 WS-Enumeration 2047

2048
2049

2050

2051
2052

2053

2054
2055
2056

2057
2058
2059

The WS-Enumeration specification is used as a basis for iteration through the members of a collection.
WS-Management qualifies and extends WS-Enumeration as described in this clause.

8.1 General

If a resource with multiple instances provides a mechanism for enumerating or querying the set of
instances, WS-Enumeration performs the iteration.

RR88..11--11: A service may support WS-Enumeration if enumeration of any kind is supported.

RR88..11--22: If simple, unfiltered enumeration of resource instances is exposed through Web services, a
conformant service shall support WS-Enumeration to expose this. The service may also support other
techniques for enumerating the instances.

RR88..11--33: If filtered enumeration (queries) of resource instances is exposed through Web services, a
conformant service should support WS-Enumeration to expose this. The service may also support
other techniques for enumerating the instances.

The WS-Enumeration specification indicates that enumeration is a three-part operation: 2060

2061

2062

2063
2064

2065

2066
2067
2068
2069

2070
2071

2072
2073
2074

2075
2076
2077
2078

2079
2080
2081
2082
2083

2084

2085

1) An initial wsen:Enumerate message is issued to establish the enumeration context.

2) wsen:Pull operations are used to iterate over the result set.

3) When the enumeration iterator is no longer required and not yet exhausted, a wsen:Release
message is issued to release the enumerator and associated resources.

As with other WS-Management methods, the enumeration can make use of wsman:OptionSet.

RR88..11--44: A service can implement any of the following messages from WS-Enumeration, but
implementing them is not recommended: Renew, GetStatus, or EnumerationEnd, and any associated
responses. Because these messages are optional, it is recommended that the service fault both
Renew and GetStatus requests with a wsa:ActionNotSupported fault.

RR88..11--55: If a service is exposing enumeration, it shall at least support the following messages:
wsen:Enumerate, wsen:Pull, and wsen:Release, and their associated responses.

If the service does not support stateful enumerators, the wsen:Release is a simple no-op, so it is trivial to
implement. (It always succeeds when the operation is valid.) However, it is supported to allow for the
uniform construction of clients.

RR88..11--66: The wsen:Pull and wsen:Release operations are a continuation of the original
wsen:Enumerate operation. The service should enforce the same authentication and authorization
throughout the entire sequence of operations and should fault any attempt to change credentials
during the sequence.

Some transports such as HTTP might drop or reestablish connections between wsen:Enumerate and
subsequent wsen:Pull operations, or between wsen:Pull operations. It is expected that services will allow
the enumeration to continue uninterrupted, but for practical reasons some services might require that the
same connection be used. This specification establishes no requirements in this regard. However, RR88..11--66
establishes that the user credentials do not change during the entire enumeration sequence.

8.2 WS-Enumeration:Enumerate

Enumerations are initiated by the wsen:Enumerate message.

Version 1.0.0 45

Web Services for Management (WS-Management) Specification DSP0226

8.2.1 General 2086

2087

2088
2089
2090

2091

2092
2093

2094

2095
2096
2097

2098
2099

WS-Management qualifies the Enumerate operation as described in this clause.

RR88..22..11--11: A conformant service may accept a wsen:Enumerate message with an EndTo
address; however, RR88..11--44 recommends not supporting the EnumerationEnd message, so a service
may instead issue a wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

RR88..22..11--22: A conformant service shall accept a wsen:Enumerate message with an Expires timeout
or fault with wsman:UnsupportedFeature and the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ExpirationTime

RR88..22..11--33: The wsman:Filter element (see 8.3) in the wsen:Enumerate body shall be either simple
text or a single complex XML element. A conformant service shall not accept mixed content of both
text and elements, or multiple peer XML elements under the wsman:Filter element.

Although this use of mixed content is allowed in the general case of WS-Enumeration, it is unnecessarily
complex for WS-Management implementations.

A common filter dialect is XPath 1.0 (identified by the Dialect URI http://www.w3.org/TR/1999/REC-xpath-
19991116). Resource-constrained implementations might have difficulty exporting full XPath processing
and yet still want to use a subset of XPath syntax. As long as the filter expression is a proper subset of
the specified dialect, it is legal and can be described using that Dialect value.

2100
2101
2102
2103

2104
2105

2106
2107
2108
2109
2110

2111
2112

2113
2114

2115

2116
2117
2118

2119
2120
2121
2122
2123

2124

2125
2126
2127

No rule mandates the use of XPath or any subset as a filtering dialect. If no Dialect is specified, the
default interpretation is that the Filter value is XPath (as specified in WS-Enumeration).

RR88..22..11--44: A conformant service may not support the entire syntax and processing power of the
specified Filter Dialect. The only requirement is that the specified Filter is syntactically correct within
the definition of the Dialect. Subsets are therefore legal. If the specified Filter exceeds the capability
of the service, the service should return a wsen:CannotProcessFilter fault with some text indicating
what went wrong.

Some services require filters to function because their search space is so large that simple enumeration
is meaningless or impossible.

RR88..22..11--55: If a wsman:Filter is required, a conformant service shall fault any request without a
wsman:Filter, by using a wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired

RR88..22..11--66: A conformant service may block, fault (using wsman:Concurrency faults), or allow other
concurrent operations on the resource for the duration of the enumeration, and may include or
exclude the results of such operations as part of any enumeration still in progress.

If clients execute other operations, such as wxf:Create or wxf:Delete, while an enumeration is occurring,
this specification makes no restrictions on the behavior of the enumeration. The service can include or
exclude the results of these operations in real-time, can produce an initial snapshot of the enumeration
and execute the wsen:Pull requests from this snapshot, or can deny access to other operations while
enumerations are in progress.

8.2.2 Enumeration "Count" Option

To give clients an estimate of the number of items in an enumeration, two optional SOAP headers are
defined: one for use in the request message to return an approximate count of items in an enumeration
sequence, and a corresponding header for use in the response to return this value to the client.

46 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

These SOAP headers are defined for use with the wsen:Enumerate and wsen:Pull messages and their
responses. The header used in wsen:Enumerate and wsen:Pull is as follows:

2128
2129

(1) <s:Header> 2130
(2) ... 2131
(3) <wsman:RequestTotalItemsCountEstimate …/> 2132

2133

2134

(4) </s:Header>

The header used by the service to return the value is as follows:

(5) <s:Header> 2135
(6) ... 2136
(7) <wsman:TotalItemsCountEstimate> 2137
(8) xs:nonNegativeInteger 2138
(9) </wsman: TotalItemsCountEstimate> 2139

2140

2141

2142
2143
2144
2145
2146
2147

2148
2149
2150
2151
2152
2153
2154
2155
2156

(10) </s:Header>

The following definitions provide additional, normative constraints on the preceding headers:

wsman:RequestTotalItemsCountEstimate
when present as a SOAP header on an wsen:Enumerate or wsen:Pull message, indicates that the
client is requesting that the associated response message includes an estimate of the total number
of items in the enumeration sequence
This SOAP header does not have any meaning defined by this specification when included with any
other messages.

wsman:TotalItemsCountEstimate
when present as a SOAP header on an wsen:EnumerateResponse or wsen:PullResponse message,
indicates the approximate number of items in the enumeration sequence
This is the total number of items and not the remaining number of items in the sequence. This SOAP
header does not have any meaning defined by this specification when included with any other
messages.
When a service understands the TotalItemsCountEstimate feature but cannot determine the number
of items, the service will respond with the wsman:TotalItemsCountEstimate element having an xsi:nil
attribute with value ‘true’, and having no value, as follows:

2157

2158
2159
2160
2161

2162
2163
2164
2165

2166
2167
2168
2169

2170

2171
2172
2173

(1) <wsman:TotalItemsCountEstimate xsi:nil="true"/>

RR88..22..22--11: A conformant service may support the ability to return an estimate of the number of
items in an enumeration sequence. If a service receives a wsen:Enumerate or wsen:Pull message
without the wsman:RequestTotalItemsCountEstimate SOAP header, the service shall not return the
wsman:TotalItemsCountEstimate SOAP header on the associated response message.

RR88..22..22--22: The value returned in the wsman:TotalItemsCountEstimate SOAP header is only an
estimate of the number of items in the sequence. The client should not use the
wsman:TotalItemsCountEstimate value for determining an end of enumeration instead of using
EndOfSequence.

This mechanism is intended to assist clients in determining the percentage of completion of an
enumeration as it progresses. When a service sends a result count estimate after a previous estimate for
the same enumeration sequence, the most recent total results count estimate is considered to be the
more precise estimate.

8.2.3 Optimization for Enumerations with Small Result Sets

To optimize the number of round-trip messages required to enumerate the items in an enumerable
resource, a client can request optimized enumeration behavior. This behavior is useful in cases where the
enumeration has such a small number of items that the initial wsen:EnumerateResponse could

Version 1.0.0 47

Web Services for Management (WS-Management) Specification DSP0226

2174
2175
2176

2177
2178
2179

2180

reasonably include the entire result, without the need for a subsequent wsen:Pull to retrieve the items.
This mechanism can be used even for large enumerations to get the first few results in the initial
response.

A client initiates an optimized enumeration by placing the wsman:OptimizeEnumeration element as child
element of the wsen:Enumerate element, and can optionally include the wsman:MaxElements element,
as follows:

EXAMPLE:
(1) <s:Body> 2181
(2) <wsen:Enumerate> 2182
(3) ... 2183
(4) <wsman:OptimizeEnumeration/> 2184
(5) <wsman:MaxElements>xs:positiveInteger</wsman:MaxElements> ? 2185
(6) </wsen:Enumerate> 2186

2187

2188

2189
2190
2191

2192
2193
2194
2195
2196

2197
2198
2199
2200

2201
2202
2203

2204
2205
2206
2207

2208
2209

2210
2211
2212
2213
2214
2215

(7) </s:Body>

The following definitions provide additional, normative constraints on the preceding outline:

wsen:Enumerate/wsman:OptimizeEnumeration
when present as a child of the wsen:Enumerate element, indicates that the client is requesting an
optimized enumeration

wsen:Enumerate/wsman:MaxElements
(optional) indicates the maximum number of items the consumer is willing to accept in the
wsen:EnumerateResponse
It plays the same role as wsen:Pull/wsen:MaxElements. When this element is absent, its implied
value is 1.

RR88..22..33--11: A conformant service may support enumeration optimization. If a service receives the
wsman:OptimizeEnumeration element in a wsen:Enumerate message and it does not support
enumeration optimization, it should ignore the element and complete the enumeration request as
described in WS-Enumeration.

If the service ignores the element, the client continues with a subsequent wsen:Pull as if the option was
not in force. The client requires no special mechanisms over what was needed for normal
WS-Enumeration if the optimization request is ignored.

RR88..22..33--22: A conformant service that receives a wsen:Enumerate message without the
wsman:OptimizeEnumeration element shall not return any enumeration items in the
wsen:EnumerateResponse message and shall return a wsen:EnumerationContext initialized to return
the first items when the first wsen:Pull message is received.

If the service implements the optimization even if it was not requested, clients unaware of the optimization
will incorrectly process the enumeration result.

RR88..22..33--33: A conformant service that receives a wsen:Enumerate message with the
wsman:OptimizeEnumeration element shall not return more elements in the Enumerate response
message than requested in the wsman:MaxElements element (or no more than1 item if the
wsman:MaxElements element is not present). Implementations may return fewer items based on
either the wsman:OperationTimeout SOAP header, wsman:MaxEnvelopeSize SOAP header, or
implementation-specific constraints.

48 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

When requested by the client, a service implementing the optimized enumeration will respond with the
following additional content in a wsen:EnumerateResponse message:

2216
2217

(1) <s:Body> 2218
(2) <wsen:EnumerateResponse> 2219
(3) <wsen:EnumerationContext> ... </wsen:EnumerationContext> 2220
(4) <wsman:Items> 2221
(5) ...same as for wsen:Items in wsen:PullResponse 2222
(6) </wsman:Items> ? 2223
(7) <wsman:EndOfSequence/> ? 2224
(8) ... 2225
(9) </wsen:EnumerateResponse> 2226

2227

2228

2229
2230
2231
2232
2233
2234

2235
2236
2237

2238
2239

2240
2241
2242
2243
2244
2245

2246

(10) </s:Body>

The following definitions provide additional, normative constraints on the preceding outline:

wsman:Items
(optional) contains one or more enumeration-specific elements as would have been encoded for
wsen:Items in a wsen:PullResponse
The service will return no more than wsman:MaxElements elements in this list if
wsman:MaxElements is specified in the request message, or one element if wsman:MaxElements
was omitted.

wsman:EndOfSequence
(optional) indicates that no more elements are available from this enumeration and that the entire
result (even if there are zero elements) is contained within the wsman:Items element

wsen:EnumerationContext
required context for requesting additional items, if any, in subsequent Pull messages

If the wsman:EndOfSequence is also present, the wsen:EnumerationContext cannot be used in a
subsequent wsen:Pull request. The service should observe the same fault usage that would occur if
the wsen:EnumerationContext were used in a wsen:Pull request after the wsen:EndOfSequence
element occurred in a wsen:PullResponse. Although the wsen:EnumerationContext element must be
present, no value is required; therefore, in cases where the wsman:EndOfSequence element is
present, the value for wsen:EnumerationContext can be empty.

EXAMPLE:
(1) <s:Body> 2247
(2) <wsen:EnumerateResponse> 2248
(3) <wsen:EnumerationContext/> 2249
(4) <wsman:Items> 2250
(5) Items 2251
(6) </wsman:Items> 2252
(7) <wsman:EndOfSequence/> 2253
(8) ... 2254
(9) </wsen:EnumerateResponse> 2255

2256

2257
2258
2259
2260

2261
2262

(10) </s:Body>

RR88..22..33--44: A conformant service that supports optimized enumeration and is responding with a
wsen:EnumerateResponse message shall include the wsman:Items element, the
wsman:EndOfSequence element, or both in the response as an indication to the client that the
optimized enumeration request was understood and honored.

If neither wsman:Items nor wsman:EndOfSequence is in the wsen:EnumerateResponse message, the
client can continue to use the enumeration message exchanges as they are defined in WS-Enumeration.

Version 1.0.0 49

Web Services for Management (WS-Management) Specification DSP0226

RR88..22..33--55: A conformant service that supports optimized enumeration and has not returned all
items of the enumeration sequence in the wsen:EnumerateResponse message shall return a
wsen:EnumerationContext element that is initialized such that a subsequent wsen:Pull message will
return the set of items after those returned in the wsen:EnumerateResponse. If all items of the
enumeration sequence have been returned in the wsen:EnumerateResponse message, the service
should return an empty wsen:EnumerationContext element and shall return the
wsman:EndOfSequence element in the response.

2263
2264
2265
2266
2267
2268
2269

2270
2271

2272
2273

2274

2275
2276
2277
2278
2279
2280

A client that has requested optimized enumeration can determine if this request was understood and
honored by the service by examining the response message.

Clients concerned about the size of the initial response, irrespective of the number of items, can use the
wsman:MaxEnvelopeSize mechanism described in 6.2.

8.3 Filter Interpretation

In WS-Enumeration, the Filter expression is constrained to be a Boolean predicate. To support ad hoc
queries including projections, WS-Management defines a wsman:Filter element of exactly the same form
as in WS-Enumeration except that the filter expression is not constrained to be a Boolean predicate. This
allows the use of enumeration using existing query languages such as SQL and CQL, which combine
predicate and projection information in the same syntax. The use of projections is defined by the filter
dialect, not by WS-Management.

2281

2282

2283

2284

2285

(1) <wsman:Filter Dialect="xs:anyURI"?> xs:any </wsman:Filter>

The Dialect attribute is optional. When not specified, it has the following implied value:

http://www.w3.org/TR/1999/REC-xpath-19991116

This dialect allows any full XPath expression or subset to be used.

The wsman:Filter element is a child of the wsen:Enumerate element.

2286
2287

2288
2289
2290

2291
2292
2293

2294
2295

2296
2297
2298
2299

If the filter dialect used for the wsen:Enumerate message is XPath 1.0, the context node is the same as
that specified by WS-Enumeration.

RR88..33--11: If a service supports filtered enumeration using wsen:Filter, it shall also support filtering
using wsman:Filter. This rule allows client stacks to always pick the wsman XML namespace for the
Filter element. Even though a service supports wsman:Filter, it is not required to support projections.

RR88..33--22: If a service supports filtered enumeration using wsman:Filter, it should also support filtering
using wsen:Filter. This rule allows clients coded to WS-Enumeration to interact with a
WS-Management service.

RR88..33--33: If a wsen:Enumerate request contains both wsen:Filter and wsman:Filter, the service shall
return a wsen:CannotProcessFilter fault.

Filters are generally intended to select entire XML infosets or "object" representations. However, most
query languages have both filtering and compositional capabilities in that they can return subsets of the
original representation, or perform complex operations on the original representation and return
something entirely new.

50 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

2300
2301
2302

2303

2304
2305

2306
2307

2308

2309
2310
2311

This specification places no restriction on the capabilities of the service, but services may elect to provide
only simple filtering capability and no compositional capabilities. In general, filtering dialects fall into the
following simple hierarchy:

1) simple enumeration with no filtering

2) filtered enumeration with no representation change (within the capabilities of XPath, for
example)

3) filtered enumeration in which a subset of each item is selected (within the capabilities of XPath,
for example)

4) composition of new output (XQuery), including simple projection

Most services fall into the first or second category. However, if a service wants to support fragment-level
enumeration to complement fragment-level WS-Transfer (7.7), the service can implement category 3 as
well. Only rarely will services implement category 4.

2312
2313
2314

2315
2316

2317
2318

XPath 1.0 can be used simply for filtering, or can be used to send back subsets of the representation (or
even the values without XML wrappers). In cases where the result is not just filtered but also "altered," the
technique in 8.6 applies.

If full XPath cannot be supported, a common subset for this purpose is described in D.3 of this
specification.

EXAMPLE 1: Following is a typical example of the use of XPath in a filter. Assume that each item in the enumeration
to be delivered has the following XML content:

(1) <s:Body> 2319
(2) ... 2320
(3) <wsen:Items> 2321
(4) <DiskInfo xmlns="..."> 2322
(5) <LogicalDisk>C:</LogicalDisk> 2323
(6) <CurrentMegabytes>12</CurrentMegabytes> 2324
(7) <BackupDrive> true </BackupDrive> 2325
(8) </DiskInfo> 2326
(9) ... 2327
(10) </wsen:Items> 2328

2329

2330
2331
2332

2333
2334

(11) </s:Body>

The anchor point for the XPath evaluation is at the first element of each item within the wsen:Items
wrapper, and it does not reference the s:Body or wsen:Items elements. The XPath expression is
evaluated as if each item in the wsen:Items block was a separate document.

EXAMPLE 2: When used for simple document processing, the following four XPath expressions "select" the entire
DiskInfo node:

(12) / 2335
(13) /DiskInfo 2336
(14) ../DiskInfo 2337

2338

2339
2340
2341

(15) .

If used as a "filter," this XPath expression does not filter out any instances and is the same as selecting all
instances, or omitting the filter entirely. However, using the following syntax, the XPath expression selects
the XML node only if the test expression in brackets evaluates to logical "true":

2342

2343
2344

2345

(1) ../DiskInfo[LogicalDisk="C:"]

In this case, the item is selected only if it refers to disk drive "C:"; otherwise the XML node is not selected.
This XPath expression filters out all DiskInfo instances for other drives.

EXAMPLE 3: Full XPath implementations may support more complex test expressions, as follows:
(1) ../DiskInfo[CurrentMegabytes>"10" and CurrentMegabytes <"200"] 2346

Version 1.0.0 51

Web Services for Management (WS-Management) Specification DSP0226

2347

2348
2349
2350

2351

2352

2353
2354

2355
2356
2357
2358

2359
2360
2361

2362
2363
2364
2365

2366
2367
2368
2369

2370
2371
2372

2373

2374
2375
2376
2377
2378

2379
2380

2381
2382
2383

2384
2385
2386
2387

2388
2389

This action selects only drives with free space within the range of values specified.

In essence, the XML form of the event passes logically through the XPath processor to see if it would be
selected. If so, it is delivered in the enumeration. If not, the item is discarded and not delivered as part of
the enumeration.

See the related clause (10.2.2) on filtering over WS-Eventing subscriptions.

8.4 WS-Enumeration:Pull

The wsen:Pull message continues an enumeration—that is, it retrieves batches of results from the initial
wsen:Enumerate message.

Because wsen:Pull allows the client to specify a wide range of batching and timing parameters, it is often
advisable for the client to know the valid ranges ahead of time. This information can be exported from the
service in the form of metadata, which is beyond the scope of this specification. No message-based
negotiation is available for discovering the valid ranges of the parameters.

Because wsman:MaxEnvelopeSize can be requested for any response in WS-Management, it is used in
the wsen:Pull message instead of wsen:MaxCharacters, which is generally redundant and preferably is
omitted. However, if wsman:MaxEnvelopeSize is present, it has the following characteristics:

RR88..44--11: If a service is exposing enumeration and supports wsen:Pull with the wsen:MaxCharacters
element, the service should implement wsen:MaxCharacters as a general guideline or hint, but may
ignore it if wsman:MaxEnvelopeSize is present, because it takes precedence. The service should not
fault in the case of a conflict but should observe the wsman:MaxEnvelopeSize value.

RR88..44--22: If a service is exposing enumeration and supports wsen:Pull with the wsen:MaxCharacters
element, and a single response element would cause the limit to be exceeded, the service may return
the single element in violation of the hint. However, the service shall not violate
wsman:MaxEnvelopeSize in any case.

A service can send a wsen:PullResponse with fewer elements to ensure that the
wsman:MaxEnvelopeSize is not exceeded. However, if a single item would cause this to be exceeded,
then the rules from 6.2 apply.

In general, wsen:MaxCharacters is a hint, and wsman:MaxEnvelopeSize is a strict rule.

RR88..44--33: If any fault occurs during a wsen:Pull, a compliant service should allow the client to retry
wsen:Pull with other parameters, such as a larger limit or with no limit, and attempt to retrieve the
items. The service should not cancel the enumeration as a whole, but retain enough context to be
able to retry if the client so wishes. However, the service may cancel the enumeration outright if an
error occurs with a wsen:InvalidEnumerationContext fault.

If a fault occurs with a wsen:Pull request, the service generally does not need to cancel the entire
enumeration, but can simply freeze the cursor and allow the client to try again.

The EnumerationContext from only the latest response is considered to be valid. Although the service can
return the same EnumerationContext values with each wsen:Pull, it is not required to do so and can in
fact change the EnumerationContext unpredictably.

RR88..44--44: A conformant service may ignore wsen:MaxTime if wsman:OperationTimeout is also
specified, as wsman:OperationTimeout takes precedence. These elements have precisely the same
meaning and may be used interchangeably. If both are used, the service should observe only the
wsman:OperationTimeout element.

Clients can use wsman:OperationTimeout and wsman:MaxEnvelopeSize rather than wsen:MaxTime and
wsen:MaxCharacters to allow for uniform message construction.

52 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

2390
2391
2392
2393

2394
2395
2396

2397
2398

2399
2400
2401
2402
2403
2404

Any fault issued for wsen:Pull applies to the wsen:Pull message itself, not the underlying enumeration
that is in progress. The most recent EnumerationContext is still considered valid, and if the service allows
a retry of the most recent wsen:Pull message, the client can continue. However, the service can terminate
early upon encountering any kind of problem (as specified in RR88..44--77).

RR88..44--55: The service shall accept a wsen:Pull message with an EPR identical to that specified for
the original wsen:Enumerate message. A wsa:MessageInformationHeaderRequired fault should be
returned if the EPR is missing or different.

If no content is available, the enumerator is still considered active and the wsen:Pull message can be
retried.

RR88..44--66: If a service cannot populate the wsen:PullResponse with any items before the timeout, it
should return a wsman:TimedOut fault to indicate that true timeout conditions occurred and that the
client is not likely to succeed by simply issuing another wsen:Pull message. If the service is only
waiting for results at the point of the timeout, it should return a response with no items and an
updated wsen:EnumerationContext, which may have changed, even though no items were returned,
as follows:

(1) <s:Body> 2405
(2) <wsen:PullResponse> 2406
(3) <wsen:EnumerationContext> ...possibly updated... </wsen:EnumerationContext> 2407
(4) <wsen:Items/> 2408
(5) </wsen:PullResponse> 2409

2410

2411
2412
2413
2414
2415
2416
2417

2418
2419
2420
2421
2422

2423
2424
2425

2426
2427
2428
2429
2430

2431
2432

2433
2434

2435
2436

(6) </s:Body>

An empty wsen:Items block is essentially a directive from the service to try again. If the service faults with
a wsman:TimedOut fault, it implies that a retry is not likely to succeed. Typically, the service knows which
one to return based on its internal state. For example, on the very first wsen:Pull message, if the service
is waiting for another component, a wsman:TimedOut fault could be likely. If the enumeration is
continuing with no problem and after 50 requests a particular wsen:Pull message times out, the service
can simply send back zero items in the expectation that the client can continue with another wsen:Pull
message.

RR88..44--77: The service may terminate the entire enumeration early at any time, in which case a
wsen:InvalidEnumerationContext fault is returned. No further operations are possible, including
wsen:Release. In specific cases, such as internal errors or responses that are too large, other faults
may also be returned. In all such cases, the service should invalidate the enumeration context as
well.

RR88..44--88: If the wsen:EndOfSequence marker occurs in the wsen:PullResponse message, the
wsen:EnumerationContext element shall be omitted, as the enumeration has completed. The client
cannot subsequently issue a wsen:Release message.

Normally, the end of an enumeration in all cases is reported by the wsen:EndOfSequence element being
present in the wsen:PullResponse content, not through faults. If the client attempts to enumerate past the
end of an enumeration, a wsen:InvalidEnumerationContext fault is returned. The client need not issue a
wsen:Release message if the wsen:EndOfSequence actually occurs because the enumeration is then
completed and the enumeration context is invalid.

RR88..44--99: If no wsen:MaxElements element is specified, the batch size is 1, as specified in
WS-Enumeration.

RR88..44--1100: If the value of wsen:MaxElements is larger than the service supports, the service may
ignore the value and use any default maximum of its own.

The service can export its maximum wsen:MaxElements value in metadata, but the format and location of
such metadata is beyond the scope of this specification.

Version 1.0.0 53

Web Services for Management (WS-Management) Specification DSP0226

RR88..44--1111: The wsen:EnumerationContext element shall be present in all wsen:Pull requests, even if
the service uses a constant value for the lifetime of the enumeration sequence. This rule is mandated
by WS-Enumeration and repeated here for clarity.

2437
2438
2439

2440

2441
2442
2443

2444
2445
2446
2447

2448
2449
2450
2451

2452
2453
2454
2455

2456
2457
2458
2459

2460

2461
2462

2463
2464
2465
2466
2467
2468
2469
2470
2471

2472

2473
2474
2475

8.5 WS-Enumeration:Release

wsen:Release is used only to perform an early cancellation of the enumeration. In cases in which it is not
actually needed, the implementation can expose a dummy implementation that always succeeds. This
promotes uniform client-side messaging.

RR88..55--11: The service shall recognize and process the wsen:Release message if the enumeration is
terminated early. If a wsen:EndOfSequence marker occurs in a wsen:PullResponse message, the
enumerator is already completed and a wsen:Release message cannot be issued because no up-to-
date wsen:EnumerationContext exists.

RR88..55--22: The client may fail to deliver the wsen:Release message in a timely fashion or may never
send it. A conformant service may terminate the enumeration after a suitable idle time has expired,
and any attempt to reuse the enumeration context shall result in a wsen:InvalidEnumerationContext
fault.

RR88..55--33: The service shall accept a wsen:Release message with an EPR identical to that specified
for the original wsen:Enumerate message, assuming the enumeration is still active and the
wsen:EndOfSequence element has not been sent by the service. If the EPR is missing or different,
the service should return a wsa:MessageInformationHeaderRequired fault.

RR88..55--44: The service may accept a wsen:Release message asynchronously to any wsen:Pull
requests already in progress and cancel the enumeration. The service may refuse such an
asynchronous request and fault it with a wsman:UnsupportedFeature fault with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AsynchronousRequest

The service may also queue or block the request and serialize it so that it is processed after the
wsen:Pull message.

In most cases, it is desirable to be able to asynchronously cancel an outstanding wsen:Pull message.
This capability requires the service to be able to receive the wsen:Release message asynchronously
while still processing a pending wsen:Pull message. Further, it requires that the
wsen:EnumerationContext element contain information that is constant between wsen:Pull operations.
Note that if the value of wsen:EnumerationContext is a simple increasing integer, wsen:Release will
always be using a previous value, so the service might consider it to be invalid. If the
wsen:EnumerationContext element contains a value that is constant across wsen:Pull requests (as well
as any other information that the service might need), the service can more easily implement the
cancellation.

8.6 Ad-Hoc Queries and Fragment-Level Enumerations

As discussed in 7.7, it is desirable that clients be able to access subsets of a representation. This is
especially important in the area of query processing, where users routinely want to execute XPath or
XQuery operations over the representation to receive ad-hoc results.

54 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

2476
2477
2478

2479
2480
2481
2482

Because SOAP messages need to conform to known schemas, and ad-hoc queries return results that are
dynamically generated and might conform to no schema, the wsman:XmlFragment wrapper from 7.7 is
used to wrap the responses.

RR88..66--11: The service may support ad-hoc compositional queries, projections, or enumerations of
fragments of the representation objects by supplying a suitable dialect in the wsman:Filter. The
resulting set of Items in the wsen:PullResponse element (or wsen:EnumerateResponse element if
OptimizedEnumeration is used) should be wrapped with wsman:XmlFragment wrappers as follows:

(1) <s:Body> 2483
(2) <wsen:PullResponse> 2484
(3) <wsen:EnumerationContext> ..possibly updated.. </wsen:EnumerationContext> 2485
(4) <wsen:Items> 2486
(5) <wsman:XmlFragment> 2487
(6) XML content 2488
(7) </wsman:XmlFragment> 2489
(8) <wsman:XmlFragment> 2490
(9) XML content 2491
(10) </wsman:XmlFragment> 2492
(11) ... 2493
(12) </wsen:Items> 2494
(13) </wsen:PullResponse> 2495

2496

2497
2498
2499

(14) </s:Body>

The schema for wsman:XmlFragment contains a directive to suppress schema validation, allowing a
validating parser to accept ad-hoc content produced by the query processor acting behind the
enumeration.

2500
2501

2502
2503

XPath 1.0 and XQuery 1.0 already support returning subsets or compositions of representations, so they
are suitable for use in this regard.

RR88..66--22: If the service does not support fragment-level enumeration, it should return a
wsen:FilterDialectRequestedUnavailable fault, the same as for any other unsupported dialect.

The XPath expression used for filtering is still that described in the WS-Enumeration specification. The
wsman:XmlFragment wrappers are applied after the XPath is evaluated to prevent schema violations if
the XPath selects node sets that are fragments and not legal according to the original schema.

2504
2505
2506

2507

2508
2509
2510
2511

8.7 Enumeration of EPRs

Typically, inferring the EPR of an enumerated object simply by inspection is not possible. In many cases,
it is desirable to enumerate the EPRs of objects rather than the objects themselves. Such EPRs can be
usable in subsequent wxf:Get or wxf:Delete requests, for example. Similarly, it is often desirable to
enumerate both the objects and the associated EPRs.

The default behavior for wsen:Enumerate is as defined in the WS-Enumeration specification. However,
WS-Management provides an additional extension for controlling the output of the enumeration.

2512
2513

2514
2515

2516

RR88..77--11: A service may optionally support the wsman:EnumerationMode modifier element with a
value of EnumerateEPR, which returns only the EPRs of the objects as the result of the enumeration.

EXAMPLE:
(1) <s:Envelope ...> 2517
(2) <s:Header> 2518
(3) ... 2519
(4) <wsa:Action> 2520
(5) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 2521
(6) </wsa:Action> 2522

Version 1.0.0 55

Web Services for Management (WS-Management) Specification DSP0226

(7) ... 2523
(8) </s:Header> 2524
(9) <s:Body> 2525
(10) <wsen:Enumerate> 2526
(11) <wsman:Filter Dialect="..."> filter </wsman:Filter> 2527
(12) <wsman:EnumerationMode> EnumerateEPR </wsman:EnumerationMode> 2528
(13) ... 2529
(14) </wsen:Enumerate> 2530
(15) </s:Body> 2531

2532

2533

(16) </s:Envelope>

The hypothetical response would appear as in the following example:
(17) <s:Body> 2534
(18) <wsen:PullResponse> 2535
(19) <wsen:Items> 2536
(20) <wsa:EndpointReference> ... </wsa:EndpointReference> 2537
(21) <wsa:EndpointReference> ... </wsa:EndpointReference> 2538
(22) <wsa:EndpointReference> ... </wsa:EndpointReference> 2539
(23) ... 2540
(24) </wsen:Items> 2541
(25) </wsen:PullResponse> 2542

2543

2544
2545

2546
2547
2548
2549

2550

(26) </s:Body>

The filter, if any, is still applied to the enumeration, but the response contains only the EPRs of the items
that would have been returned. These EPRs are intended for use in subsequent wxf:Get operations.

RR88..77--22: A service may optionally support the wsman:EnumerationMode modifier with the value of
EnumerateObjectAndEPR. If present, the enumerated objects are wrapped in a wsman:Item element
that juxtaposes two XML representations: the payload representation followed by the associated
wsa:EndpointReference.

EXAMPLE 1: The wsman:EnumerationMode example appears as follows:
(1) <s:Header> 2551
(2) ... 2552
(3) <wsa:Action> 2553
(4) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate 2554
(5) </wsa:Action> 2555
(6) </s:Header> 2556
(7) <s:Body> 2557
(8) <wsen:Enumerate> 2558
(9) <wsman:Filter Dialect="..."> filter </wsman:Filter> 2559
(10) <wsman:EnumerationMode> EnumerateObjectAndEPR </wsman:EnumerationMode> 2560
(11) ... 2561
(12) </wsen:Enumerate> 2562

2563

2564

(13) </s:Body>

EXAMPLE 2: The response appears as follows:
(1) <s:Body> 2565
(2) <wsen:PullResponse> 2566
(3) <wsen:Items> 2567
(4) <wsman:Item> 2568
(5) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object --> 2569
(6) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR --> 2570
(7) </wsman:Item> 2571
(8) <wsman:Item> 2572
(9) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object --> 2573
(10) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR --> 2574

56 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

(11) </wsman:Item> 2575
(12) ... 2576
(13) </wsen:Items> 2577
(14) </wsen:PullResponse> 2578

2579

2580
2581
2582

2583
2584

2585

2586

2587
2588
2589

2590

2591
2592

2593
2594
2595

2596
2597

2598
2599
2600

2601
2602
2603
2604
2605

2606

(15) </s:Body>

In the preceding example, each item is wrapped in a wsman:Item wrapper (line 8), which itself contains
the representation object (line 9) followed by its EPR (line 10). As many wsman:Item objects may be
present as is consistent with other encoding limitations.

RR88..77--33: If a service does not support the wsman:EnumerationMode modifier, it shall return a fault of
wsman:UnsupportedFeature with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EnumerationMode

9 Custom Actions (Methods)
Custom actions, or "methods," are ordinary SOAP messages with unique Actions. An implementation can
support resource-specific methods in any form, subject to the addressing model and restrictions
described in clause 5 of this specification.

RR99--11: A conformant service may expose any custom actions or methods.

RR99--22: If custom methods are exported, WS-Addressing rules, as described elsewhere in this
specification, shall be observed, and each custom method shall have a unique wsa:Action.

RR99--33: If a request does not contain the correct parameters for the custom action, the service may
return a wsman:InvalidParameter fault. Fault details for incorrect type and incorrect name may also
be included.

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch (incorrect type)
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName (incorrect name)

As defined by WS-Addressing, the Action URI is used to describe the semantics of the operation and the
wsa:To element describes the destination of the message. A custom method thus has a dedicated WS-
Addressing Action URI.

Because options are a parameterization technique for message types that are not user-extensible, such
as WS-Transfer, they are not appropriate for use as a custom method or combined with a custom
method. Custom operations defined in a WSDL document define any required parameters and thus
expose naming and type checking in a stringent way. Mixing wsman:OptionSet with a strongly typed
WSDL operation is likely to lead to confusion.

10 Eventing
2607
2608

2609

2610

WS-Management provides eventing functionality through the WS-Eventing specification. The use of
WS-Eventing for management is qualified and extended as described in this clause.

10.1 General

If the service emits events, it can publish those events using WS-Eventing messaging and paradigms.
WS-Management places additional restrictions and constraints on the general WS-Eventing specification. 2611

2612
2613

RR1100..11--11: If a resource can emit events and allows clients to subscribe to and receive event
messages, it shall do so by implementing WS-Eventing as specified in this specification.

Version 1.0.0 57

Web Services for Management (WS-Management) Specification DSP0226

RR1100..11--22: If WS-Eventing is supported, the Subscribe, Renew, and Unsubscribe messages shall be
supported. SubscriptionEnd is optional, and GetStatus is not recommended.

2614
2615

2616

2617
2618

2619

2620
2621

2622

2623
2624
2625
2626
2627

2628

2629
2630
2631

2632
2633
2634
2635

2636

2637
2638
2639

2640
2641
2642
2643

2644
2645

2646
2647
2648

2649
2650
2651
2652
2653
2654

2655
2656

10.2 Subscribe

The Subscribe message allows a client to express interest in receiving events. WS-Management qualifies
this message in this clause.

10.2.1 General

WS-Management uses wse:Subscribe substantially as documented in WS-Eventing, except that the
WS-Management default addressing model is incorporated as described in 5.1.

RR1100..22..11--11: The identity of the event source shall be based on the WS-Addressing EPR.

RR1100..22..11--22: A service need not support distinct addresses and distinct security settings for
wse:NotifyTo and wse:EndTo, and may require that these be the same network address, although
they may have separate reference parameters in all cases. If the service cannot support the
requested addressing, it should return a wsman:UnsupportedFeature fault with the following detail
code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

Verifying that the address is usable allows errors to be detected at the time the subscription is created.
For example, if the address cannot be reached due to firewall configuration and the service can detect
this, telling the client allows for it to be corrected immediately.

RR1100..22..11--33: Because many delivery modes require a separate connection to deliver the event, the
service should comply with the security profiles defined in clause 11 of this specification, if HTTP or
HTTPS is used to deliver events. If no security is specified, the service may attempt to use default
security mechanisms, or return a wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsecureAddress

Because clients might need to have client-side context sent back with each event delivery, the
wse:NotifyTo address in the wse:Delivery block can be used for this purpose. This wse:NotifyTo operation
can contain any number of client-defined reference parameters.

RR1100..22..11--44: A service may validate the address by attempting a connection while the wse:Subscribe
request is being processed to ensure delivery can occur successfully. If the service determines that
the address is not valid or permissions cannot be acquired, it should emit a
wsman:EventDeliverToUnusable fault.

This situation can occur when the address is incorrect or when the event source cannot acquire
permissions to deliver events properly.

RR1100..22..11--55: Any reference parameters supplied in the wse:NotifyTo address shall be included with
each event delivery as top-level headers as specified in WS-Addressing. If wse:EndTo is supported,
this behavior applies as well.

When the default addressing model is used by the service, the ResourceURI is often used to reference
the logical event source, and selector values can additionally be used to indicate a real or virtual log
within the scope of that source, or might even be used to limit the types or groups of events available.
This action can logically overlap with the Filter mechanism in the subscription body itself, so due
consideration should be given to the interplay among the address of the event source, the types of events
it can publish, and the subscription-level filtering.

If a client needs to have events delivered to more than one destination, more than one subscription is
required.

58 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR1100..22..11--66: If the events contain localized content, the service should accept a subscription with a
wsman:Locale block acting as a hint (see 6.3) within the wse:Delivery block of the wse:Subscribe
message. The language is encoded in an xml:lang attribute using RFC 3066 language codes.

2657
2658
2659

2660
2661

The service attempts to localize any descriptive content to the specified language when delivering
such events, which is outlined as follows:

(1) <wse:Subscribe> 2662
(2) <wse:Delivery> 2663
(3) <wse:NotifyTo> ... </wse:NotifyTo> 2664
(4) <wsman:Locale xml:lang="language-code"/> 2665
(5) </wse:Delivery> 2666

2667

2668
2669

2670
2671
2672
2673
2674
2675

2676

(6) </wse:Subscribe>

In this context, note that the wsman:Locale element (defined in 6.3) is not a SOAP header and
mustUnderstand cannot be used.

RR1100..22..11--77: The service should accept a subscription with a wsman:ContentEncoding block within the
wse:Delivery block of the wse:Subscribe message. This block acts as a hint to indicate how the
delivered events are to be encoded. The two standard xs:language tokens defined for this purpose
are "UTF-8" or "UTF-16", although other encoding formats may be specified if necessary. The service
should attempt to encode the events using the requested language token, as in the following
example:

EXAMPLE:
(1) <wse:Subscribe> 2677
(2) <wse:Delivery> 2678
(3) ... 2679
(4) <wse:NotifyTo> ... </wse:NotifyTo> 2680
(5) <wsman:ContentEncoding> UTF-16 </wsman:ContentEncoding> 2681
(6) </wse:Delivery> 2682

2683

2684

2685
2686
2687
2688
2689
2690

2691

(7) </wse:Subscribe>

10.2.2 Filtering

In WS-Eventing, the Filter expression is constrained to be a Boolean predicate. To support ad hoc queries
including projections, WS-Management defines a wsman:Filter element of exactly the same form as
WS-Eventing except that the filter expression is not constrained to be a Boolean predicate. This allows
the use of subscriptions using existing query languages such as SQL and CQL, which combine predicate
and projection information in the same syntax. The use of projections is defined by the filter dialect, not by
WS-Management.

If the filter dialect for either wse:Filter or wsman:Filter used for the wse:Subscribe message is
http://www.w3.org/TR/1999/REC-xpath-19991116 (the default dialect in both cases), the context node is
that specified by WS-Eventing (the SOAP Envelope element).

2692
2693

2694

2695

WS-Management defines the wsman:Filter element as a child of the wse:Subscribe element.

WS-Management defines the wsman:Filter element to allow projections, which is outlined as follows:

2696

2697

2698

2699

(1) <wsman:Filter Dialect="xs:anyURI"?> xs:any </wsman:Filter>

The Dialect attribute is optional. When not specified, it has the following implied value:

http://www.w3.org/TR/1999/REC-xpath-19991116

This dialect allows any full XPath expression or subset to be used.

Version 1.0.0 59

http://www.w3.org/TR/1999/REC-xpath-19991116

Web Services for Management (WS-Management) Specification DSP0226

RR1100..22..22--11: If a service supports filtered subscriptions using wse:Filter, it shall also support filtering
using wsman:Filter. This rule allows client stacks to always pick the wsman XML namespace for the
Filter element. Even though a service supports wsman:Filter, it is not required to support projections.

2700
2701
2702

2703
2704
2705

2706
2707

2708
2709
2710
2711

2712

2713

2714
2715

2716

2717

2718

RR1100..22..22--22: If a service supports filtered subscriptions using wsman:Filter, it should also support
filtering using wse:Filter. This rule allows clients coded to WS-Eventing to interact with a WS-
Management service.

RR1100..22..22--33: If a wse:Subscribe request contains both wse:Filter and wsman:Filter, the service shall
return a wse:InvalidMessage fault.

To allow eventing filter expressions to be defined independent of the delivery mode, WS-Management
defines a new filter dialect that is the same as defined by WS-Eventing except that the context node is
defined as the element that would be returned as the first child of the SOAP Body element if the Push
delivery mode was used. The URI for this filter dialect is:

http://schemas.dmtf.org/wbem/wsman/1/wsman/filter/eventRootXPath

The context node for this expression is as follows:

• Context Node: any XML element that could be returned as a direct child of the s:Body element
if the delivery mode was Push

• Context Position: 1

• Context Size: 1

• Variable Bindings: none

• Function Libraries: Core Function Library [XPath 1.0] 2719

• Namespace Declarations: the [in-scope namespaces] property [XML Infoset] of
/s:Envelope/s:Body/wse:Subscribe/wsman:Filter

2720
2721

2722
2723

RR1100..22..22--44: Services should support this filter dialect when they want to use an XPath-based filter,
rather than the default filter dialect defined by WS-Eventing.

The considerations described in 8.3 regarding the XPath 1.0 filter dialect also apply to the preceding
eventing filter.

2724
2725

2726
2727
2728
2729
2730
2731
2732

2733
2734

Resource-constrained implementations might have difficulty providing full XPath processing and yet still
want to use a subset of XPath syntax. This does not require the addition of a new dialect if the expression
specified in the filter is a true XPath expression. The use of the filter dialect URI does not imply that the
service supports the entire specification for that dialect, only that the expression conforms to the rules of
that dialect. Most services will use XPath only for filtering, but will not support the composition of new
XML or removing portions of XML that would result in the XML fragment violating the schema of the
event.

EXAMPLE 1: A typical example of the use of XPath in a subscription follows. Assume that each event that would be
delivered has the following XML content:

(1) <s:Body> 2735
(2) <LowDiskSpaceEvent xmlns="..."> 2736
(3) <LogicalDisk>C:</LogicalDisk> 2737
(4) <CurrentMegabytes>12</CurrentMegabytes> 2738
(5) <Megabytes24HoursAgo>17</Megabytes24HoursAgo> 2739
(6) </LowDiskSpaceEvent> 2740

2741

2742
2743
2744

(7) </s:Body>

Note that the event is wholly contained within the s:Body of the SOAP message. The anchor point for the
XPath evaluation is the first element of each event, and it does not reference the <s:Body> element as
such. The XPath expression is evaluated as if the event content was a separate XML document.

60 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

EXAMPLE 2: When used for simple document processing, the following four XPath expressions "select" the entire
<LowDiskSpaceEvent> node:

2745
2746

(8) / 2747
(9) /LowDiskSpaceEvent 2748
(10) ../LowDiskSpaceEvent 2749

2750

2751
2752

2753
2754

(11) .

If used as a "filter", this XPath expression does not filter out any instances and is the same as selecting all
instances of the event, or omitting the filter entirely.

EXAMPLE 3: However, using the following syntax, the XPath expression selects the XML node only if the test
expression in brackets evaluates to logical "true":

2755

2756
2757

2758

(1) ../LowDiskSpaceEvent[LogicalDisk="C:"]

In this case, the event is selected if it refers to disk drive "C:"; otherwise the XML node is not selected.
This XPath expression would filter out all <LowDiskSpaceEvent> events for other drives.

EXAMPLE 4: Full XPath implementations may support more complex test expressions:
2759

2760
2761
2762

(1) ../LowDiskSpaceEvent[LogicalDisk="C:" and CurrentMegabytes < "20"]

In essence, the XML form of the event is logically passed through the XPath processor to see if it would
be selected. If so, it is delivered as an event. If not, the event is discarded and not delivered to the
subscriber.

2763
2764
2765

2766
2767

2768
2769
2770

2771
2772
2773
2774
2775

2776
2777
2778
2779

2780
2781
2782

2783
2784
2785

2786
2787
2788

Note that XPath 1.0 can be used simply for filtering or can be used to send back subsets of the
representation (or even the values without XML wrappers). In cases where the result is not just filtered
but is "altered," the technique in 8.6 applies.

If full XPath cannot be supported, a common subset for this purpose is described in ANNEX D of this
specification.

RR1100..22..22--55: The wsman:Filter element shall contain either simple text or a single XML element of a
single or complex type. A service should reject any filter with mixed content or multiple peer XML
elements using a wse:EventSourceUnableToProcess fault.

RR1100..22..22--66: A conformant service may not support the entire syntax and processing power of the
specified filter dialect. The only requirement is that the specified filter is syntactically correct within the
definition of the dialect. Subsets are therefore legal. If the specified filter exceeds the capability of the
service, the service should return a wsman:CannotProcessFilter fault with text explaining why the
filter was problematic.

RR1100..22..22--77: If a service requires complex initialization parameters in addition to the filter, these
should be part of the wsman:Filter block because they logically form part of the filter initialization,
even if some of the parameters are not strictly used in the filtering process. In this case, a unique
dialect URI shall be devised for the event source and the schema and usage published.

RR1100..22..22--88: If the service supports composition of new XML or filtering to the point where the
resultant event would not conform to the original schema for that event, the event delivery should be
wrapped in the same way as content for fragment-level WS-Transfer (see 7.7 of this specification).

Events, regardless of how they are filtered or reduced, need to conform to some kind of XML schema
definition when they are actually delivered. Simply sending out unwrapped XML fragments during delivery
is not legal.

RR1100..22..22--99: If the service requires specific initialization XML in addition to the filter to formulate a
subscription, this initialization XML shall form part of the filter body and be documented as part of the
filter dialect.

Version 1.0.0 61

Web Services for Management (WS-Management) Specification DSP0226

2789
2790
2791

2792

2793

2794
2795
2796

2797
2798
2799
2800

2801

2802

This rule promotes a consistent location for initialization content, which may be logically seen as part of
the filter. The filter XML schema is more understandable if it separates the initialization and filtering parts
into separate XML elements.

For information about filtering over WS-Enumeration, see 8.3.

10.2.3 Connection Retries

Due to the nature of event delivery, the subscriber might not be reachable at event-time. Rather than
terminate all subscriptions immediately, typically the service will attempt to connect several times with
suitable timeouts before giving up.

RR1100..22..33--11: A service may observe any connection retry policy or allow the subscriber to define it by
including the following wsman:ConnectionRetry element in a subscription. If the service does not
accept the wsman:ConnectionRetry element, it should return a wsman:UnsupportedFeature fault with
the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DeliveryRetries

This only applies to failures to connect and does not include replay of actual SOAP deliveries.

(1) <wse:Subscribe> 2803
(2) <wse:Delivery> 2804
(3) <wse:NotifyTo> ... </wse:NotifyTo> 2805
(4) <wsman:ConnectionRetry Total="count"> xs:duration </wsman:ConnectionRetry> 2806
(5) </wse:Delivery> 2807

2808

2809

2810
2811

2812
2813

2814
2815

2816
2817
2818
2819

2820

2821
2822

2823
2824
2825
2826

2827
2828

(6) </wse:Subscribe>

The following definitions provide additional, normative constraints on the preceding outline:

wsman:ConnectionRetry
an xs:duration for how long to wait between retries while trying to connect

wsman:ConnectionRetry/@Total
how many retries to attempt, observing the above interval between the attempts

RR1100..22..33--22: If the retry counts are exhausted, the subscription should be considered expired and
any normal operations that would occur upon expiration should occur.

The retry mechanism applies only to attempts to connect. Failures to deliver on an established connection
can result in terminating the connection according to the rules of the transport in use, and terminating the
subscription. Other Web services mechanisms can be used to synthesize reliable delivery or safe replay
of the actual deliveries.

10.2.4 wse:SubscribeResponse

The service returns any service-specific reference parameters in the wse:SubscriptionManager EPR, and
these are included by the subscriber (client) later when issuing Unsubscribe and Renew messages.

RR1100..22..44--11: In wse:SubscribeResponse, the service may specify any EPR for the
wse:SubscriptionManager. However, it is recommended that the address contain the same wsa:To
address as the original wse:Subscribe request and differ only in other parts of the address, such as
the reference parameters.

RR1100..22..44--22: A conformant service may not return the wse:Expires field in the response, but as
specified in WS-Eventing, this implies that the subscription does not expire until explicitly canceled.

62 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

10.2.5 Heartbeats 2829

2830
2831
2832

2833
2834
2835
2836

2837
2838

2839
2840

A typical problem with event subscriptions is a situation in which no event traffic occurs. It is difficult for
clients to know whether no events matching the subscription have occurred or whether the subscription
has simply failed and the client was not able to receive any notification.

Because of this, WS-Management defines a "heartbeat" pseudo-event that can be sent periodically for
any subscription. This event is sent if no regular events occur so that the client knows the subscription is
still active. If the heartbeat event does not arrive, the client knows that connectivity is bad or that the
subscription has expired, and it can take corrective action.

The heartbeat event is sent in place of the events that would have occurred and is never intermixed with
"real" events. In all modes, including batched, it occurs alone.

To request heartbeat events as part of a subscription, the wse:Subscribe request has an additional field in
the wse:Delivery section:

(1) <wse:Delivery> 2841
(2) ... 2842
(3) <wsman:Heartbeats> xs:duration </wsman:Heartbeats> 2843
(4) ... 2844

2845

2846

2847
2848

2849

2850

2851
2852
2853
2854

2855
2856
2857
2858
2859

2860
2861
2862
2863

2864
2865
2866

2867
2868
2869

2870
2871

(5) </wse:Delivery>

wsman:Heartbeats specifies that heartbeat events are added to the event stream at the specified interval.

RR1100..22..55--11: A service should support heartbeat events. If the service does not support them, it shall
return a wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Heartbeats

Heartbeats apply to all delivery modes.

Heartbeats apply to "pull" mode deliveries as well, in that they are a hint to the publisher about how often
to expect a wsen:Pull request. The service can refuse to deliver events if the client does not regularly call
back at the heartbeat interval. If no events are available at the heartbeat interval, the service simply
includes a heartbeat event as the result of the wsen:Pull.

RR1100..22..55--22: While a subscription with heartbeats is active, the service shall ensure that either real
events or heartbeats are sent out within the specified wsman:Heartbeat interval. The service may
send out heartbeats at this interval in addition to the events, as long as the heartbeat events are sent
separately (not batched with other events). The goal is to ensure that some kind of event traffic
always occurs within the heartbeat interval.

RR1100..22..55--33: A conformant service may send out heartbeats at earlier intervals than specified in the
subscription. However, the events should not be intermixed with other events when batching delivery
modes are used. Typically, heartbeats are sent out only when no real events occur. A service may fail
to produce heartbeats at the specified interval if real events have been delivered.

RR1100..22..55--44: A conformant service shall not send out heartbeats asynchronously to any event
deliveries already in progress. They shall be delivered in sequence like any other events, although
they are delivered alone as single events or as the only event in a batch.

In practice, heartbeat events are based on a countdown timer. If no events occur, the heartbeat is sent
out alone. However, every time a real event is delivered, the heartbeat countdown timer is reset. If a
steady stream of events occurs, heartbeats might never be delivered.

Heartbeats need to be acknowledged like any other event if one of the acknowledged delivery modes is in
effect.

Version 1.0.0 63

Web Services for Management (WS-Management) Specification DSP0226

2872
2873
2874
2875

2876
2877

The client will assume that the subscription is no longer active if no heartbeats are received within the
specified interval, so the service can proceed to cancel the subscription and send any requested
SubscriptionEnd messages, as the client will likely resubscribe shortly. Used in combination with
bookmarks (see 10.2.6), heartbeats can achieve highly reliable delivery with known latency behavior.

The heartbeat event itself is simply an event message with no body and is identified by its wsa:Action URI
as follows:

(1) <s:Envelope ...> 2878
(2) <s:Header> 2879
(3) <wsa:To> </wsa:To> 2880
(4) <wsa:Action s:mustUnderstand="true"> 2881
(5) http://schemas.dmtf.org/wbem/wsman/1/wsman/Heartbeat 2882
(6) </wsa:Action> 2883
(7) ... 2884
(8) </s:Header> 2885
(9) <s:Body/> 2886

2887

2888

2889
2890
2891
2892
2893

2894
2895
2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906

2907
2908
2909

2910

2911
2912

(10) </s:Envelope>

10.2.6 Bookmarks

Reliable delivery of events is difficult to achieve, so management subscribers need to have a way to be
certain of receiving all events from a source. When subscriptions expire or when deliveries fail, windows
of time can occur in which the client cannot be certain whether critical events have occurred. Rather than
using a highly complex, transacted delivery model, WS-Management defines a simple mechanism for
ensuring that all events are delivered or that dropped events can be detected.

This mechanism requires event sources to be backed by logs, whether short-term or long-term. The client
subscribes in the same way as for WS-Eventing, and specifies that bookmarks are to be used. The
service then sends a new bookmark with each event delivery, which the client is responsible for
persisting. This bookmark is essentially a context or a pointer to the logical event stream location that
matches the subscription filter. As each new delivery occurs, the client updates the bookmark in its own
space. If the subscription expires or is terminated unexpectedly, the client can subscribe again, using the
last known bookmark. In essence, the subscription filter identifies the desired set of events, and the
bookmark tells the service where to start in the log. The client may then pick up where it left off.

This mechanism is immune to transaction problems, because the client can simply start from any of
several recent bookmarks. The only requirement for the service is to have some type of persistent log in
which to apply the bookmark. If the submitted bookmark is too old (temporally or positionally within the
log), the service can fault the request, and at least the client reliably knows that events have been
dropped.

RR1100..22..66--11: A conformant service may support the WS-Management bookmark mechanism. If the
service does not support bookmarks, it should return a wsman:UnsupportedFeature fault with the
following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Bookmarks

To request bookmark services, the client includes the wsman:SendBookmarks element in the
wse:Subscribe request as follows:

(1) <s:Body> 2913
(2) <wse:Subscribe> 2914
(3) <wse:Delivery> 2915
(51) ... 2916
(4) </wse:Delivery> 2917
(5) <wsman:SendBookmarks/> 2918
(6) </wse:Subscribe> 2919
(7) </s:Body> 2920

64 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

2921
2922

2923
2924
2925
2926

2927
2928
2929

wsman:SendBookmarks instructs the service to send a bookmark with each event delivery. Bookmarks
apply to all delivery modes.

The bookmark is a token that represents an abstract pointer in the event stream, but whether it points to
the last delivered event or the last event plus one (the upcoming event) makes no difference because the
token is supplied to the same implementation during a subsequent wse:Subscribe operation. The service
can thus attach any service-specific meaning and structure to the bookmark with no change to the client.

If bookmarks are requested, each event delivery contains a new bookmark value as a SOAP header, as
shown in the following outline. The format of the bookmark is entirely determined by the service and is
treated as an opaque value by the client.

(1) <s:Envelope 2930
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 2931
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 2932
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"> 2933
(5) <s:Header> 2934
(6) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To> 2935
(7) ... 2936
(8) <wsman:Bookmark> xs:any </wsman:Bookmark> 2937
(9) ... 2938
(10) </s:Header> 2939
(11) <s:Body> 2940
(12) ...event content... 2941
(13) </s:Body> 2942

2943

2944
2945

2946
2947
2948

2949
2950
2951

2952
2953
2954

2955
2956

(14) </s:Envelope>

wsman:Bookmark contains XML content supplied by the service that indicates the logical position of this
event or event batch in the event stream implied by the subscription.

RR1100..22..66--22: If bookmarks are supported, the wsman:Bookmark element content shall be either
simple text or a single complex XML element. A conformant service shall not accept mixed content of
both text and elements, or multiple peer XML elements under the wsman:Bookmark element.

RR1100..22..66--33: If bookmarks are supported, the service shall use a wsman:Bookmark element in the
header to send an updated bookmark with each event delivery. Bookmarks accompany only event
deliveries and are not part of any SubscriptionEnd message.

After the subscription has terminated, for whatever reason, a subsequent wse:Subscribe message on the
part of the client can include the bookmark in the subscription request. The service then knows where to
start.

The last-known bookmark received by the client is added to the wse:Subscribe message as a new block,
positioned after the WS-Eventing-defined child elements of wse:Subscribe, as in the following outline:

(1) <s:Body> 2957
(2) <wse:Subscribe> 2958
(3) <wse:Delivery> ... </wse:Delivery> 2959
(4) <wse:Expires> ... </wse:Expires> 2960
(5) <wsman:Filter> ... </wsman:Filter> 2961
(6) <wsman:Bookmark> 2962
(7) ...last known bookmark from a previous delivery... 2963
(8) </wsman:Bookmark> 2964
(9) <wsman:SendBookmarks/> 2965
(10) </wse:Subscribe> 2966
(11) </s:Body> 2967

Version 1.0.0 65

Web Services for Management (WS-Management) Specification DSP0226

2968

2969
2970
2971

2972
2973

2974
2975
2976

2977
2978
2979

2980
2981

2982

2983

2984

2985

2986
2987
2988

2989
2990

2991

2992
2993
2994

2995
2996
2997
2998
2999

3000

3001

3002

3003

3004

3005

3006
3007

The following definitions provide additional, normative constraints on the preceding outline:

wsman:Bookmark
arbitrary XML content previously supplied by the service as a wsman:Bookmark during event
deliveries from a previous subscription

wsman:SendBookmarks
an instruction to continue delivering updated bookmarks with each event delivery

RR1100..22..66--44: The bookmark is a pointer to the last event delivery or batched delivery. The service
shall resume delivery at the first event or events after the event represented by the bookmark. The
service shall not replay events associated with the bookmark or skip any events since the bookmark.

RR1100..22..66--55: The service may support a short queue of previous bookmarks, allowing the subscriber
to start using any of several previous bookmarks. If bookmarks are supported, the service is required
only to support the most recent bookmark for which delivery had apparently succeeded.

RR1100..22..66--66: If the bookmark cannot be honored, the service shall fault with a
wsman:InvalidBookmark fault with one of the following detail codes:

• bookmark has expired (the source is not able to back up and replay from that point):

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired

• format is unknown:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFormat

If multiple new subscriptions are made using a previous bookmark, the service can allow multiple reuse or
may limit bookmarks to a single subscriber, and can even restrict how long bookmarks can be used
before becoming invalid.

The following predefined, reserved bookmark value indicates that the subscription starts at the earliest
possible point in the event stream backed by the publisher:

http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest

If a subscription is received with this bookmark, the event source replays all possible events that match
the filter and any events that subsequently occur for that event source. The absence of any bookmark
means "begin at the next available event".

RR1100..22..66--77: A conformant service may support the reserved bookmark
http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest and not support any other type of
bookmark. If the http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest bookmark is
supported, the event source should send all previous and future events that match the filter starting
with the earliest such event.

10.2.7 Delivery Modes

A WS-Management implementation can support a variety of event delivery modes.

In essence, delivery consists of the following items:

• a delivery mode (how events are packaged)

• an address (the transport and network location)

• an authentication profile to use when connecting or delivering the events (security)

The standard security profiles are discussed in clause 12 and may be required for subscriptions if the
service needs hints or other indications of which security model to use at event-time.

66 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3008
3009

3010
3011

3012

3013

3014

3015

3016

3017
3018
3019

3020
3021

3022
3023
3024
3025

3026

3027
3028

3029

3030
3031
3032
3033
3034
3035
3036
3037
3038

3039

3040
3041

3042

3043
3044

3045

3046
3047

If the delivery mode is supported but not actually usable due to firewall configuration, the service can
return a wse:DeliveryModeRequestedUnavailable fault with additional detail to this effect.

RR1100..22..77--11: For any given transport, a conformant service should support at least one of the
following delivery modes to interoperate with standard clients:

http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push

http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events

http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull

Note that the delivery mode does not imply any specific transport.

Modes describe SOAP message behavior and are unrelated to the transport that is in use. A delivery
mode implies a specific SOAP message format, so a message that deviates from that format will require a
new delivery mode.

RR1100..22..77--22: The wse:NotifyTo address in the wse:Subscribe message shall support only a single
delivery mode.

This requirement is for the client because the service cannot verify whether this statement is true. If this
requirement is not observed by the client, the service might not operate correctly. If the subscriber
supports multiple delivery modes, the wse:NotifyTo address needs to be differentiated in some way, such
as by adding an additional reference parameter.

10.2.8 Event Action URI

Typically, each event type has its own wsa:Action URI to quickly identify and route the event. If an event
type does not define its own wsa:Action URI, the following URI can be used as a default:

 http://schemas.dmtf.org/wbem/wsman/1/wsman/Event

This URI can be used in cases where event types are inferred in real-time from other sources and not
published as Web service events, and thus do not have a designated wsa:Action URI. This specification
places no restrictions on the wsa:Action URI for events. More specific URIs can act as a reliable
dispatching point. In many cases, a fixed schema can serve to model many different types of events, in
which case the event "ID" is simply a field in the XML content of the event. The URI in this case might
reflect the schema and be undifferentiated for all of the various event IDs that might occur or it might
reflect the specific event by suffixing the event ID to the wsa:Action URI. This specification places no
restrictions on the granularity of the URI, but careful consideration of these issues is part of designing the
URIs for events.

10.2.9 Delivery Sequencing and Acknowledgement

The delivery mode indicates how the service will exchange events with interested parties. This clause
describes the delivery modes defined by WS-Eventing and WS-Management.

10.2.9.1 General

For some event types, ordered and acknowledged delivery is important, but for other types of events the
order of arrival is not significant. WS-Management defines four standard delivery modes:

• http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push

With this mode, each SOAP message has only one event and no acknowledgement or SOAP
response. The service can deliver events for the subscription asynchronously without regard to

Version 1.0.0 67

Web Services for Management (WS-Management) Specification DSP0226

3048
3049
3050

3051

3052
3053
3054

3055

3056
3057
3058

3059

3060
3061
3062

3063

3064

3065

3066
3067
3068

3069
3070
3071

3072
3073

3074
3075

3076
3077

any events already in transit. This mode is useful when the order of events does not matter,
such as with events containing running totals in which each new event can replace the previous
one completely and the time stamp is sufficient for identifying the most recent event.

• http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck

With this mode, each SOAP message has only one event, but each event is acknowledged
before another is sent. The service queues all undelivered events for the subscription and
delivers each new event only after the previous one has been acknowledged.

• http://schemas.dmtf.org/wbem/wsman/1/wsman/Events

With this mode, each SOAP message can have many events, but each batch is acknowledged
before another is sent. The service queues all events for the subscription and delivers them in
that order, maintaining the order in the batches.

• http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull

With this mode, each SOAP message can have many events, but each batch is acknowledged.
Because the receiver uses wsen:Pull to synchronously retrieve the events, acknowledgement is
implicit. The order of delivery is maintained.

Ordering of events across subscriptions is not implied.

The acknowledgement model is discussed in 10.8.

10.2.9.2 Push Mode

The standard delivery mode from WS-Eventing is
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push, in which each delivery consists of
a single event. No acknowledgement occurs, so the delivery cannot be faulted to cancel the subscription.

Therefore, subscriptions made with this delivery mode can have short durations to prevent a situation in
which deliveries cannot be stopped if the wse:SubscriptionManager content from the
wse:SubscribeResponse information is corrupted or lost.

To promote fast routing of events, the required wsa:Action URI in each event message can be distinct for
each event type, regardless of how strongly typed the event body is.

RR1100..22..99..22--11: A service may support the
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push delivery mode.

RR1100..22..99..22--22: To precisely control how to deal with events that are too large, the service may accept
the following additional instruction in a subscription:

(1) <wse:Delivery> 3078
(2) <wse:NotifyTo> ... </wse:NotifyTo> 3079
(3) ... 3080
(4) <wsman:MaxEnvelopeSize Policy="enumConstant"> 3081
(5) xs:positiveInteger 3082
(6) </wsman:MaxEnvelopeSize> 3083
(7) ... 3084

3085

3086

3087
3088

(8) </wse:Delivery>

The following definitions provide additional, normative constraints on the preceding outline:

wse:Delivery/wsman:MaxEnvelopeSize
the maximum number of octets for the entire SOAP envelope in a single event delivery

68 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3089
3090

3091

3092

3093

3094
3095
3096
3097
3098
3099
3100

3101

3102
3103

3104

3105
3106
3107

3108

3109

3110
3111

3112
3113
3114

3115

3116
3117
3118
3119

3120
3121
3122

3123

wse:Delivery/wsman:MaxEnvelopeSize/@Policy
an optional value with one of the following enumeration values:

• CancelSubscription: cancel on the first oversized event

• Skip: silently skip oversized events

• Notify: notify the subscriber that events were dropped as specified in 10.9

RR1100..22..99..22--33: If wsman:MaxEnvelopeSize is requested, the service shall not send an event body
larger than the specified limit. The default behavior is to notify the subscriber as specified in 10.9,
unless otherwise instructed in the subscription, and to attempt to continue delivery. If the event
exceeds any internal default maximums, the service should also attempt to notify as specified in 10.9
rather than terminate the subscription, unless otherwise specified in the subscription. If
wsman:MaxEnvelopeSize is too large for the service, the service shall return a wsman:EncodingLimit
fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

In the absence of any other Policy instructions, services are to deliver notifications of dropped events to
subscribers, as specified in 10.9.

10.2.9.3 PushWithAck Mode

This delivery mode is identical to the standard "Push" mode except that each delivery is acknowledged.
Each delivery still has one event, and the wsa:Action element indicates the event type. However, a
SOAP-based acknowledgement occurs as described in 10.7.

The delivery mode URI is:

http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck

In every other respect except the delivery mode URI, this mode is identical to Push mode as described in
10.2.9.2.

RR1100..22..99..33--11: A service should support the
http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck delivery mode. If the delivery mode is
not supported, the service should return a fault of wse:DeliveryModeRequestedUnavailable.

10.2.9.4 Batched Delivery Mode

Batching events is an effective way to minimize event traffic from a high-volume event source without
sacrificing event timeliness. WS-Management defines a custom event delivery mode that allows an event
source to bundle multiple outgoing event messages into a single SOAP envelope. Delivery is always
acknowledged, using the model defined in 10.7.

RR1100..22..99..44--11: A service may support the http://schemas.dmtf.org/wbem/wsman/1/wsman/Events
delivery mode. If the delivery mode is not supported, the service should return a fault of
wse:DeliveryModeRequestedUnavailable.

For this delivery mode, the wse:Delivery element has the following format:

(1) <wse:Delivery Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Events"> 3124
(2) <wse:NotifyTo> 3125
(3) wsa:EndpointReferenceType 3126
(4) </wse:NotifyTo> 3127
(5) <wsman:MaxElements> xs:positiveInteger </wsman:MaxElements> ? 3128
(6) <wsman:MaxTime> xs:duration </wsman:MaxTime> ? 3129
(7) <wsman:MaxEnvelopeSize Policy="enumConstant"> 3130
(8) xs:positiveInteger 3131

Version 1.0.0 69

Web Services for Management (WS-Management) Specification DSP0226

(9) </wsman:MaxEnvelopeSize> ? 3132
3133

3134

3135
3136

3137

3138
3139
3140

3141
3142
3143
3144
3145

3146
3147
3148

3149
3150

3151

3152

3153

3154
3155
3156
3157
3158
3159
3160
3161
3162

3163
3164

3165
3166
3167

3168
3169
3170

3171
3172

3173

(10) </wse:Delivery>

The following definitions provide additional, normative constraints on the preceding outline:

wse:Delivery/@Mode
required attribute that shall be defined as

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events

wse:Delivery/wse:NotifyTo
required element that shall contain the EPR to which event messages are to be sent for this
subscription

wse:Delivery/wsman:MaxElements
optional element that contains a positive integer that indicates the maximum number of event bodies
to batch into a single SOAP envelope
The resource shall not deliver more than this number of items in a single delivery, although it may
deliver fewer.

wse:Delivery/wsman:MaxEnvelopeSize
optional element that contains a positive integer that indicates the maximum number of octets in the
SOAP envelope used to deliver the events

wsman:MaxEnvelopeSize/@Policy
an optional attribute with one of the following enumeration values:

• CancelSubscription: cancel on the first oversized events

• Skip: silently skip oversized events

• Notify: notify the subscriber that events were dropped as specified in 10.9

wse:Delivery/wsman:MaxTime
optional element that contains a duration that indicates the maximum amount of time the service
should allow to elapse while batching Event bodies
This time may not be exceeded between the encoding of the first event in the batch and the
dispatching of the batch for delivery. Some publisher implementations may choose more complex
schemes in which different events included in the subscription are delivered at different latencies or
at different priorities. In such cases, a specific filter dialect can be designed for the purpose and used
to describe the instructions to the publisher. In such cases, wsman:MaxTime can be omitted if it is
not applicable; if present, however, it serves as an override of anything defined within the filter.

In the absence of any other instructions in any part of the subscription, services are to deliver notifications
of dropped events to subscribers, as specified in 10.9.

If a client wants to discover the appropriate values for wsman:MaxElements or wsman:MaxEnvelopeSize,
the client can query for service-specific metadata. The format of such metadata is beyond the scope of
this particular specification.

RR1100..22..99..44--22: If batched mode is requested in a Subscribe message, and none of the MaxElements,
MaxEnvelopeSize, and MaxTime elements are present, the service may pick any applicable defaults.
The following faults apply:

• If MaxElements is not supported, wsman:UnsupportedFeature is returned with the following
fault detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxElements

70 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

• If MaxEnvelopeSize is not supported, wsman:UnsupportedFeature is returned with the following
fault detail code:

3174
3175

3176

3177
3178

3179

3180
3181

3182

3183
3184
3185
3186
3187

3188
3189

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

• If MaxTime is not supported, wsman:UnsupportedFeature is returned with the following fault
detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxTime

• If MaxEnvelopeSize/@Policy is not supported, wsman:UnsupportedFeature is returned with the
following fault detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopePolicy

RR1100..22..99..44--33: If wsman:MaxEnvelopeSize is requested, the service shall not send an event body
larger than the specified limit. The default behavior is to notify the subscriber as specified in 10.9
unless otherwise instructed in the subscription, and to attempt to continue delivery. If the event
exceeds any internal default maximums, the service should also attempt notification as specified in
10.9 rather than terminate the subscription, unless otherwise specified in the subscription.

If a subscription has been created using batched mode, all event delivery messages shall have the
following format:

(1) <s:Envelope ...> 3190
(2) <s:Header> 3191
(3) ... 3192
(4) <wsa:Action> 3193
(5) http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 3194
(6) </wsa:Action> 3195
(7) ... 3196
(8) </s:Header> 3197
(9) <s:Body> 3198
(10) <wsman:Events> 3199
(11) <wsman:Event Action="event action URI"> 3200
(12) ...event body... 3201
(13) </wsman:Event> + 3202
(14) </wsman:Events> 3203
(15) </s:Body> 3204

3205

3206

3207
3208

3209

3210
3211
3212

3213
3214
3215

3216

3217

(16) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

s:Envelope/s:Header/wsa:Action
required element that shall be defined as

http://schemas.dmtf.org/wbem/wsman/1/wsman/Events

s:Envelope/s:Body/wsman:Events/wsman:Event
required elements that shall contain the body of the corresponding event message, as if
wsman:Event were the s:Body element

s:Envelope/s:Body/wsman:Events/wsman:Event/@Action
required attribute that shall contain the wsa:Action URI that would have been used for the contained
event message

RR1100..22..99..44--44: If batched mode is requested, deliveries shall be acknowledged as described in 10.7.

Dropped events (as specified in 10.9) are encoded with any other events.

Version 1.0.0 71

Web Services for Management (WS-Management) Specification DSP0226

EXAMPLE: The following example shows batching parameters supplied to a wse:Subscribe operation. The
service is instructed to send no more than 10 items per batch, to wait no more than 20 seconds from the time the
first event is encoded until the entire batch is dispatched, and to include no more than 8192 octets in the SOAP
message.

3218
3219
3220
3221

(1) ... 3222
(2) <wse:Delivery 3223
(3) Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Events"> 3224
(4) <wse:NotifyTo> 3225
(5) <wsa:Address>http://2.3.4.5/client</wsa:Address> 3226
(6) </wse:NotifyTo> 3227
(7) <wsman:MaxElements>10</wsman:MaxElements> 3228
(8) <wsman:MaxTime>PT20S</wsman:MaxTime> 3229
(9) <wsman:MaxEnvelopeSize>8192</wsman:MaxEnvelopeSize> 3230

3231

3232

(10) </wse:Delivery>

EXAMPLE: Following is an example of batched delivery that conforms to this specification:

(1) <s:Envelope 3233
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 3234
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing 3235
(4) xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd" 3236
(5) xmlns:wse="http://schemas.xmlsoap.org/ws/2004/09/eventing"> 3237
(6) <s:Header> 3238
(7) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To> 3239
(8) <wsa:Action> 3240
(9) http://schemas.dmtf.org/wbem/wsman/1/wsman/Events 3241
(10) </wsa:Action> 3242
(11) ... 3243
(12) </s:Header> 3244
(13) <s:Body> 3245
(14) <wsman:Events> 3246
(15) <wsman:Event 3247
(16) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 3248
(17) <DiskChange 3249
(18) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 3250
(19) <Drive> C: </Drive> 3251
(20) <FreeSpace> 802012911 </FreeSpace> 3252
(21) </DiskChange> 3253
(22) </wsman:Event> 3254
(23) <wsman:Event 3255
(24) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 3256
(25) <DiskChange 3257
(26) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange"> 3258
(27) <Drive> D: </Drive> 3259
(28) <FreeSpace> 1402012913 </FreeSpace> 3260
(29) </DiskChange> 3261
(30) </wsman:Event> 3262
(31) </wsman:Events> 3263
(32) </s:Body> 3264

3265

3266
3267
3268

(33) </s:Envelope>

The Action URI in line 9 specifies that this is a batch that contains distinct events. The individual event
bodies are at lines 15–22 and lines 23–30. The actual Action attribute for the individual events is an
attribute of the wsman:Event wrapper.

72 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

10.2.9.5 Pull Delivery Mode 3269

3270
3271
3272

3273
3274
3275
3276
3277

3278

In some circumstances, polling for events is an effective way of controlling data flow and balancing
timeliness against processing ability. Also, in some cases, network restrictions prevent "push" modes
from being used; that is, the service cannot initiate a connection to the subscriber.

WS-Management defines a custom event delivery mode, "pull mode," which allows an event source to
maintain a logical queue of event messages received by enumeration. This delivery mode borrows the
wsen:Pull message to retrieve events from the logical queue. Non-delivery subscription processing
continues to use messages from WS-Eventing. (For example, wse:Unsubscribe, rather than
wsen:Release, is used to cancel a subscription.)

For this delivery mode, the wse:Delivery element has the following format:

(1) <wse:Delivery Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull"> 3279
(2) ... 3280

3281

3282

3283

3284
3285
3286

3287
3288
3289

3290
3291

3292

3293
3294
3295

3296

(3) </wse:Delivery>

wse:Delivery/@Mode shall be

http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull

RR1100..22..99..55--11: A service may support the http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull
delivery mode. If pull mode is requested but not supported, the service shall return a fault of
wse:DeliveryModeRequestedUnavailable.

wsman:MaxElements, wsman:MaxEnvelopeSize, and wsman:MaxTime do not apply in the wse:Subscribe
message when using this delivery mode because the wsen:Pull message contains all of the necessary
functionality for controlling the batching and timing of the responses.

RR1100..22..99..55--22: If a subscription incorrectly specifies parameters that are not compatible with pull mode,
the service should issue a wsman:UnsupportedFeature fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FormatMismatch

RR1100..22..99..55--33: If pull mode is requested in a Subscribe message and the event source accepts the
subscription request, the SubscribeResponse element in the REPLY message shall contain a
wsen:EnumerationContext element suitable for use in a subsequent wsen:Pull operation.

EXAMPLE:
(1) <s:Body ...> 3297
(2) <wse:SubscribeResponse ...> 3298
(3) <wse:SubscriptionManager> 3299
(4) wsa:EndpointReferenceType 3300
(5) </wse:SubscriptionManager> 3301
(6) <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires> 3302
(7) <wsen:EnumerationContext>...</wsen:EnumerationContext> 3303
(8) ... 3304
(9) </wse:SubscribeResponse> 3305

3306

3307

3308
3309
3310
3311

3312
3313

(10) </s:Body>

The subscriber extracts the wsen:EnumerationContext and uses it thereafter in wsen:Pull requests.

RR1100..22..99..55--44: If pull mode is active, wsen:Pull messages shall use the EPR of the subscription
manager obtained from the wse:SubscribeResponse message. The EPR reference parameters are of
a service-specific addressing model, but may use the WS-Management default addressing model if it
is suitable.

RR1100..22..99..55--55: If pull mode is active and a wsen:Pull request returns no events (because none have
occurred since the last "pull"), the service should return a wsman:TimedOut fault. The

Version 1.0.0 73

Web Services for Management (WS-Management) Specification DSP0226

3314
3315
3316

3317
3318
3319
3320

3321
3322

3323
3324

3325
3326
3327

3328
3329

3330
3331

3332

3333

3334
3335

3336
3337

3338

3339

3340
3341
3342
3343

3344
3345

3346
3347

3348
3349

3350

3351
3352

wsen:EnumerationContext is still considered active, and the subscriber may continue to issue
wsen:Pull requests with the most recent wsen:EnumerationContext for which event deliveries actually
occurred.

RR1100..22..99..55--66: If pull mode is active and a wsen:Pull request returns events, the service may return an
updated wsen:EnumerationContext as specified for wsen:Pull, and the subscriber is expected to use
the update, if any, in the subsequent wsen:Pull, as specified for WS-Enumeration. Bookmarks, if
active, may also be returned in the header and shall also be updated by the service.

In practice, the service might not actually change the EnumerationContext, but the client cannot depend
on it remaining constant. It is updated conceptually, if not actually.

In pull mode, the wsen:Pull request controls the batching. If no defaults are specified, the batch size is 1
and the maximum envelope size and timeouts are service-defined.

RR1100..22..99..55--77: If pull mode is active, the service shall not return a wsen:EndOfSequence element in
the event stream because no concept of a "last event" exists in this mode. Rather, the enumeration
context should become invalid if the subscription expires or is canceled for any reason.

RR1100..22..99..55--88: If pull mode is used, the service shall accept the wsman:MaxEnvelopeSize used in the
wsen:Pull as the limitation on the event size that can be delivered.

The batching properties used in batched mode do not apply to pull mode. The client controls the
maximum event size using the normal mechanisms in wsen:Pull.

10.3 GetStatus

The GetStatus message is optional for WS-Management.

RR1100..33--11: A conformant service may implement the GetStatus message or its response; however, it is
not recommended that services implement this for future compatibility.

If implemented, WS-Management adds no new information to the request or response beyond that
defined in WS-Eventing. Heartbeat support can be implemented rather than GetStatus.

10.4 Unsubscribe

The wse:Unsubscribe message cancels a subscription.

RR1100..44--11: If a service supports wse:Subscribe, it shall implement the wse:Unsubscribe message and
ensure that event delivery will be terminated if the message is accepted as valid. Delivery of events
may occur after responding to the wse:Unsubscribe message as long as the event traffic stops at
some point.

RR1100..44--22: A service may unilaterally cancel a subscription for any reason, including internal timeouts,
reconfiguration, or unreliable connectivity.

Clients need to be prepared to receive any events already in transit even though they have issued a
wse:Unsubscribe message. Clients can fault any such deliveries or accept them, at their option.

The EPR to use for this message is received from the wse:SubscribeResponse element in the
wse:SubscriptionManager element.

10.5 Renew

According to WS-Eventing, processing the wse:Renew message is required, but it is not required to
succeed.

74 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR1100..55--11: Although a conformant service shall accept the wse:Renew message as a valid action, the
service may always fault the request with a wse:UnableToRenew fault, forcing the client to subscribe
from scratch.

3353
3354
3355

3356
3357

3358
3359

3360

3361
3362
3363

3364
3365

3366
3367

3368
3369

3370
3371

3372
3373
3374

3375
3376
3377

3378

3379
3380
3381

3382
3383
3384
3385
3386

3387
3388

3389

3390

3391
3392
3393
3394

wse:Renew has no effect on deliveries in progress, bookmarks, heartbeats, or other ongoing activity. It
simply extends the lifetime of the subscription.

The EPR to use for this message is received from the wse:SubscribeResponse element in the
wse:SubscriptionManager element.

10.6 SubscriptionEnd

This SubscriptionEnd message is optional for WS-Management. In effect, it is the "last event" for a
subscription. Because its primary purpose is to warn a subscriber that a subscription has ended, it is not
suitable for use with pull-mode delivery.

RR1100..66--11: A conformant service may implement the SubscriptionEnd message. If it is implemented,
the service may fail to accept a subscription with any address differing from the NotifyTo address.

RR1100..66--22: A conformant service shall not implement the SubscriptionEnd message when event
delivery is done using pull mode as defined in 10.2.9.4.

RR1100..66--33: If SubscriptionEnd is supported, the message shall contain any reference parameters
specified by the subscriber in the EndTo address in the original subscription.

RR1100..66--44: If SubscriptionEnd is supported, it is recommended that it be sent to the subscriber prior to
sending the UnsubscribeResponse.

If the service delivers events over the same connection as the wse:Subscribe operation, the client
typically knows that a subscription has been terminated because the connection itself will close or
terminate.

When the delivery connection is distinct from the subscribe connection, a SubscriptionEnd message is
highly recommended; otherwise, the client has no immediate way of knowing that a subscription is no
longer active.

10.7 Acknowledgement of Delivery

To ensure that delivery is acknowledged at the application level, the original subscriber can request that
the event sink physically acknowledge event deliveries, rather than relying entirely on transport-level
guarantees.

In other words, the transport might have accepted delivery of the events but not forwarded them to the
actual event sink process, and the service would move on to the next set of events. System failures might
result in dropped events. Therefore, a mechanism is needed in which a message-level acknowledgement
can occur. This allows acknowledgement to be pushed up to the application level, increasing the reliability
of event deliveries.

The client selects acknowledged delivery by selecting a delivery mode in which each event has a
response. In this specification, the two acknowledged delivery modes are

• http://schemas.dmtf.org/wbem/wsman/1/wsman/PushWithAck

• http://schemas.dmtf.org/wbem/wsman/1/wsman/Events

RR1100..77--11: A conformant service may support the PushWithAck or Events delivery mode. However, if
either of these delivery modes is requested, to maintain an ordered queue of events, the service shall
wait for the acknowledgement from the client before delivering the next event or events that match
the subscription.

Version 1.0.0 75

Web Services for Management (WS-Management) Specification DSP0226

RR1100..77--22: If an acknowledged delivery mode is selected for the subscription, the service shall include
the following SOAP headers in each event delivery:

3395
3396

(1) <s:Header> 3397
(2) <wsa:ReplyTo> where to send the acknowledgement </wsa:ReplyTo> 3398
(3) <wsman:AckRequested/> 3399
(4) ... 3400

3401

3402

3403
3404
3405
3406
3407

3408
3409

3410

3411
3412
3413

3414
3415
3416

(5) </s:Header>

The following definitions provide additional, normative constraints on the preceding outline:

wsa:ReplyTo
address that shall always be present in the event delivery as a consequence of the presence of
wsman:AckRequested
The client extracts this address and sends the acknowledgement to the specified EPR as required by
WS-Addressing.

wsman:AckRequested
no content; requires that the subscriber acknowledge all deliveries as described below

The client then replies to the delivery with an acknowledgement or a fault.

RR1100..77--33: A service may request receipt acknowledgement by using the wsman:AckRequested block
and subsequently expect an http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack message. If this
message is not received as a reply, the service may terminate the subscription.

The acknowledgement message format returned by the event sink (receiver) to the event source is
identical for all delivery modes. As shown in the following outline, it contains a unique wsa:Action, and the
wsa:RelatesTo field is set to the MessageID of the event delivery to which it applies:

(1) <s:Envelope ...> 3417
(2) <s:Header> 3418
(3) ... 3419
(4) <wsa:To> endpoint reference from the event ReplyTo field </wsa:To> 3420
(5) <wsa:Action> http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack 3421

 </wsa:Action> 3422
(6) <wsa:RelatesTo> message ID of original event delivery </wsa:RelatesTo> 3423
(7) ... 3424
(8) </s:Header> 3425
(9) <s:Body/> 3426

3427

3428

3429
3430

3431

3432
3433
3434
3435

3436
3437
3438

(10) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

s:Envelope/s:Header/wsa:Action
URI that shall be defined as

http://schemas.dmtf.org/wbem/wsman/1/wsman/Ack

s:Envelope/s:Header/wsa:RelatesTo
element that shall contain the wsa:MessageID of the event delivery to which it refers
wsa:RelatesTo is the critical item that ensures that the correct delivery is being acknowledged, and
thus it shall not be omitted.

s:Envelope/s:Header/wsa:To
EPR address extracted from the ReplyTo field in the event delivery
All reference parameters shall be extracted and added to the SOAP header as well.

76 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3439
3440
3441

3442
3443

3444

3445
3446

3447

3448

3449
3450
3451

3452
3453

3454
3455
3456

3457
3458

3459

3460
3461
3462
3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473
3474
3475
3476
3477

In spite of the request to acknowledge, the event sink can refuse delivery with a fault or fail to respond
with the acknowledgement. In this case, the event source can terminate the subscription and send any
applicable SubscriptionEnd messages.

If the event sink does not support acknowledgement, it can respond with a wsman:UnsupportedFeature
fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Ack

However, this action is just as difficult as acknowledging the delivery, so most clients can scan for the
wsman:AckRequested field and be prepared to acknowledge delivery or fault it.

Note that simple push mode has no way for the client to fault a delivery or acknowledge it.

10.8 Refusal of Delivery

With all acknowledged delivery modes as described in 10.7, an event sink can refuse to take delivery of
events, either for security reasons or a policy change. It then responds with a fault rather than an
acknowledgement.

In this case, the event source needs to be prepared to end the subscription even though a
wse:Unsubscribe message is not issued by the subscriber.

RR1100..88--11: During event delivery, if the receiver faults the delivery with a wsman:DeliveryRefused fault,
the service shall immediately cancel the subscription and may also issue a wse:SubscriptionEnd
message to the wse:EndTo endpoint in the original subscription, if supported.

Thus, the receiver can issue the fault as a way to cancel the subscription when it does not have the
wse:SubscriptionManager information.

10.9 Dropped Events

Events that cannot be delivered are not to be silently dropped from the event stream, or the subscriber
gets a false picture of the event history. WS-Management defines three behaviors for events that cannot
be delivered with push modes or that are too large to fit within the delivery constraints requested by the
subscriber:

• Terminate the subscription.

• Silently skip such events.

• Send a special event in place of the dropped events.

These options are discussed in 10.2.9.2 and 10.2.9.3.

During delivery, the service might have to drop events for the following reasons:

• The events exceed the maximum size requested by the subscriber.

• The client cannot keep up with the event flow, and there is a backlog.

• The service might have been reconfigured or restarted and the events permanently lost.

In these cases, a service can inform the client that events have been dropped.

RR1100..99--11: If a service drops events, it should issue an
http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event, which indicates this drop to
the client. Any reference parameters specified in the wse:NotifyTo address in the subscription shall
also be copied into this message. This event is normal and implicitly considered part of any
subscription.

Version 1.0.0 77

Web Services for Management (WS-Management) Specification DSP0226

RR1100..99--22: If an http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event is issued, it
shall take the ordinal position of the original dropped event in the delivery stream. The
DroppedEvents event is considered the same as any other event with regard to its location and other
behavior (bookmarks, acknowledged delivery, location in batch, and so on). It simply takes the place
of the event that was dropped.

3478
3479
3480
3481
3482

3483 EXAMPLE:
(1) <s:Envelope ...> 3484
(2) <s:Header> 3485
(3) ...subscriber endpoint-reference... 3486
(4) 3487
(5) <wsa:Action> 3488
(6) http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents 3489
(7) </wsa:Action> 3490
(8) </s:Header> 3491
(9) <s:Body> 3492
(10) <wsman:DroppedEvents Action="wsa:Action URI of dropped event"> 3493
(11) xs:int 3494
(12) </wsman:DroppedEvents> 3495
(13) ... 3496
(14) </s:Body> 3497

3498

3499

3500
3501

3502

3503
3504

3505
3506
3507

3508
3509

3510
3511

(15) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

s:Envelope/s:Header/wsa:Action
URI that shall be defined as

http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents

s:Body/wsman:DroppedEvents/@Action
the Action URI of the event that was dropped

s:Body/wsman:DroppedEvents
a positive integer that represents the total number of dropped events since the subscription was
created

wse:Renew has no effect on the running total of dropped events. Dropped events are like any other
events and can require acknowledgement, affect the bookmark location, and so on.

EXAMPLE: Following is an example of how a dropped event would appear in the middle of a batched event
delivery:
(1) <wsman:Events> 3512
(2) <wsman:Event Action="https://foo.com/someEvent"> 3513
(3) …event body 3514
(4) </wsman:Event> 3515
(5) <wsman:Event 3516
(6) Action="http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents"> 3517
(7) <wsman:DroppedEvents Action="https://foo.com/someEvent"> 3518
(8) 1 3519
(9) </wsman:DroppedEvents> 3520
(10) </wsman:Event> 3521
(11) <wsman:Event Action="https://foo.com/someEvent"> 3522
(12) ...event body... 3523
(13) </wsman:Event> 3524

3525

3526

(14) <wsman:Events>

Note that the DroppedEvent is an event in itself.

78 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR1100..99--33: If a service cannot deliver an event and does not support the
http://schemas.dmtf.org/wbem/wsman/1/wsman/DroppedEvents event, it should terminate the
subscription rather than silently skipping events.

3527
3528
3529

3530
3531
3532

3533

3534
3535

3536
3537
3538
3539
3540
3541

3542
3543
3544
3545
3546
3547

3548

Because this requirement cannot be enforced, and some dropped events are irrelevant when replaced by
a subsequent event (running totals, for example), it is not a firm requirement that dropped events are
signaled or that they result in a termination of the subscription.

11 Metadata and Discovery
The WS-Management protocol is compatible with many techniques for discovery of resources available
through a service.

In addition, this specification defines a simple request-response operation to facilitate the process of
establishing communications with a WS-Management service implementation in a variety of network
environments without prior knowledge of the protocol version or versions supported by the
implementation. This operation is used to discover the presence of a service that is compatible with
WS-Management, assuming that a transport address over which the message can be delivered is known.
Typically, a simple HTTP address would be used.

To ensure forward compatibility, the message content of this operation is defined in an XML namespace
that is separate from the core protocol namespace and that will not change as the protocol evolves.
Further, this operation does not depend on any SOAP envelope header or body content other than the
types explicitly defined for this operation. In this way, WS-Management clients are assured of the ability to
use this operation against all implementations and versions to confirm the presence of WS-Management
services without knowing the supported protocol versions or features in advance.

The request message is defined as follows:

(1) <s:Envelope 3549
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 3550
(3) xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/ 3551

 wsmanidentity.xsd" 3552
(4) <s:Header> 3553
(5) ... 3554
(6) </s:Header> 3555
(7) <s:Body> 3556
(8) <wsmid:Identify> 3557
(9) ... 3558
(10) </wsmid:Identify> 3559
(11) </s:Body> 3560

3561

3562

3563
3564
3565
3566

3567

(12) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

wsmid:Identify
the body of the Identify request operation, which may contain additional vendor-specific extension
content, but is otherwise empty
The presence of this body element constitutes the request.

Note the absence of any WS-Addressing namespace, WS-Management namespace, or other version-
specific concepts. This message is compatible only with the basic SOAP specification, and the presence
of the wsmid:Identify block in the s:Body is the embodiment of the request operation.

3568
3569

Version 1.0.0 79

Web Services for Management (WS-Management) Specification DSP0226

The response message is defined as follows: 3570

(13) <s:Envelope 3571
(14) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 3572
(15) xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/ 3573

 wsmanidentity.xsd"> 3574
(16) <s:Header> 3575
(17) ... 3576
(18) </s:Header> 3577
(19) <s:Body> 3578
(20) <wsmid:IdentifyResponse> 3579
(21) <wsmid:ProtocolVersion> xs:anyURI </wsmid:ProtocolVersion> + 3580
(22) <wsmid:ProductVendor> xs:string </wsmid:ProductVendor> ? 3581
(23) <wsmid:ProductVersion> xs:string </wsmid:ProductVersion> ? 3582
(24) ... 3583
(25) </wsmid:IdentifyResponse> 3584
(26) </s:Body> 3585

3586

3587

3588
3589

3590
3591
3592
3593
3594
3595
3596

3597
3598
3599
3600
3601

3602
3603
3604

3605

3606
3607
3608
3609

3610
3611
3612
3613

3614
3615
3616
3617

(27) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

wsmid:IdentifyResponse
the body of the response, which packages metadata about the WS-Management implementation

wsmid:IdentifyResponse/wsmid:ProtocolVersion
a required element or elements, each of which is a URI whose value shall be equal to the core XML
namespace that identifies a supported version of the WS-Management specification
One element shall be provided for each supported version of the protocol. Services should also
include the XML namespace URI for supported dependent specifications such as WS-Addressing,
WS-Transfer, and so on. For example, if a future version of WS-Management supports multiple
versions of WS-Addressing, the IdentifyResponse can indicate which of the versions are supported.

wsmid:IdentifyResponse/wsmid:ProductVendor
an optional element that identifies the vendor of the WS-Management service implementation by
using a widely recognized name or token, such as the official corporate name of the vendor or its
stock symbol
Alternatively, a DNS name, e-mail address, or Web URL may be used.

wsmid:IdentifyResponse/wsmid:ProductVersion
an optional version string for the WS-Management implementation
This specification places no constraints on the format or content of this element.

In addition, vendor-specific content can follow these standardized elements.

RR1111--11: A WS-Management service should support the wsmid:Identify operation. A service
implementation that supports the operation shall do so irrespective of the versions of
WS-Management supported by that service. The operation shall be accessible at the same transport-
level address at which the resource instances are made accessible.

It is recommended that client applications not include any SOAP header content in the wsmid:Identify
operation delivered to the transport address against which the inquiry is being made. If SOAP header
elements are present, the s:mustUnderstand attribute on all such elements can be set to "false". Doing
otherwise reduces the likelihood of a successful, version-independent response from the service.

RR1111--22: A service that supports the wsmid:Identify operation shall not require the presence of any
SOAP header elements in order to dispatch execution of the request. If a service receives a
wsmid:Identify operation that contains unexpected or unsupported header content with the
s:mustUnderstand attribute set to "false", the service shall not fault the request and shall process the

80 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3618

3619
3620

3621
3622

3623
3624

3625
3626

3627
3628
3629
3630

3631
3632
3633
3634
3635

3636
3637

3638

3639
3640
3641
3642
3643

3644

3645
3646
3647
3648

3649
3650

3651
3652
3653

3654
3655

3656
3657

body of the request as though the header elements were not present.

RR1111--33: A service that is processing the wsmid:Identify request should not request the presence of
any WS-Addressing header values, including the wsa:Action URI.

The entire purpose of this mechanism is to be able to identify the presence of specific versions of
WS-Management (and the corresponding dependent protocols) in a version-independent manner.

Because WS-Addressing is not used, the address to which this message is delivered is defined entirely at
the transport level and not present in the SOAP content.

If a client does not have any prior knowledge about a service including credentials, it is desirable to allow
a service to process an Identify message without requiring authentication.

RR1111--44: A service that supports the wsmid:Identify operation may expose this operation without
requiring client or server authentication in order to process the message. In the absence of other
requirements, it is recommended that the network address be suffixed by the token sequence
/wsman-anon/identify.

Services that support unauthenticated wsmid:Identify requests might choose not to reveal descriptive
information about protocol, vendor, or other versioning information that could potentially represent or
contribute to a vulnerability. To accommodate this scenario, this specification defines a URI that services
can use in place of a valid WS-Management protocol version URI. This value can be returned as a value
for the wsmid:ProtocolVersion element of the wsmid:IdentifyResponse message.

RR1111--55: A service supporting an unauthenticated wsmid:Identify message may respond using the
following URI for the value of the wsmid:ProtocolVersion element:

http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity/NoAnonymousDisclosure

RR1111--66: A service that provides unauthenticated access to the wsmid:Identify operation but does not
respond to such requests with the WS-Management protocol versions that are supported by the
service shall support authenticated access to the wsmid:Identify operation. Such services shall
respond to authenticated requests with the WS-Management protocol version identifiers for each
version of the WS-Management protocol supported by the service.

12 Security
In general, management operations and responses need to be protected against attacks such as
snooping, interception, replay, and modification during transmission. Authenticating the user who has
sent a request is also generally necessary so that access control rules can be applied to determine
whether to process a request.

This specification establishes the minimum interoperation standards and predefined profiles using
transport-level security.

This approach provides the best balance between simple implementations (HTTP and HTTPS stacks are
readily available, even for hardware) and the security mechanisms that sit in front of any SOAP message
processing, limiting the attack surface.

It is expected that more sophisticated transport and SOAP-level profiles will be defined and used,
published separately from this specification.

Implementations that expect to interoperate can adopt one or more of the transport and security models
defined in this clause and are free to define any additional profiles under different URI-based designators.

Version 1.0.0 81

Web Services for Management (WS-Management) Specification DSP0226

12.1 Security Profiles 3658

3659
3660
3661
3662

3663
3664

3665
3666

3667
3668
3669
3670
3671

3672
3673
3674

3675

3676
3677

3678
3679
3680
3681

3682
3683
3684
3685
3686
3687
3688

For this specification, a profile is any arbitrary mix of transport or SOAP behavior that describes a
common security need. In some cases, the profile is defined for documentation and metadata purposes,
but might not be part of the actual message exchange. Rather, it describes the message exchange
involved.

Metadata retrieval can be employed to discover which profiles the service supports, and that is beyond
the scope of this particular specification.

For all predefined profiles, the transport is responsible for all message integrity, protection, authentication,
and security.

The authentication profiles do not appear in the SOAP traffic, with the exception of the wse:Subscribe
message when using any delivery mode that causes a new connection to be created from the event
source to the event sink (push and batched modes, for example). When a subscription is created, the
authentication technique for event-delivery needs to be specified by the subscriber, because the event
sink will have to authenticate the event source (acting as publisher) at event delivery-time.

In this specification, security profiles are identified by a URI. As profiles are defined, they can be assigned
a URI and published. WS-Management defines a set of standardized security profiles for the common
transports HTTP and HTTPS as described in C.3.1.

12.2 Security Considerations for Event Subscriptions

When specifying the wse:NotifyTo address in subscriptions, it is often important to hint to the service
about which authentication model to use when delivering the event.

If no hints are present, the service can simply infer from the wsa:To address what needs to be done.
However, if the service can support multiple modes and has a certificate or password store, it might not
know which authentication model to choose or which credentials to use without being told in the
subscription.

WS-Management provides a default mechanism to communicate the desired authentication mode and
credentials. However, more sophisticated mechanisms are beyond the scope of this version of
WS-Management. For example, the event sink service could export metadata that describes the available
options, allowing the publisher to negotiate an appropriate option. Extension profiles can define other
mechanisms enabled through a SOAP header with mustUnderstand=”true”. WS-Management defines an
additional field in the wse:Delivery block that can communicate authentication information, as shown in
the following outline:

(1) <s:Body> 3689
(2) <wse:Subscribe> 3690
(3) <wse:Delivery> 3691
(4) <wse:NotifyTo> Delivery EPR </wse:NotifyTo> 3692
(5) <wsman:Auth Profile="authentication-profile-URI"/> 3693
(6) </wse:Delivery> 3694
(7) </wse:Subscribe> 3695

3696

3697

3698
3699
3700

3701
3702

(8) </s:Body>

The following definitions provide additional, normative constraints on the preceding outline:

wsman:Auth
block that contains authentication information to be used by the service (acting as publisher) when
authenticating to the event sink at event delivery time

wsman:Auth/@Profile
a URI that indicates which security profile to use when making the connection to deliver events

82 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3703
3704
3705
3706

3707
3708

If the wsman:Auth block is not present, by default the service infers what to do by using the wse:NotifyTo
address and any preconfigured policy or settings it has available. If the wsman:Auth block is present and
no security-related tokens are communicated, the service needs to know which credentials to use by its
own internal configuration.

If the service is already configured to use a specific certificate when delivering events, the subscriber can
request standard mutual authentication, as shown in the following outline:

(1) <s:Body> 3709
(2) <wse:Subscribe> 3710
(3) <wse:Delivery> 3711
(4) <wse:NotifyTo> HTTPS address </wse:NotifyTo> 3712
(5) <wsman:Auth 3713
(6) Profile="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/ 3714

 mutual"/> 3715
(7) </wse:Delivery> 3716
(8) </wse:Subscribe> 3717

3718

3719
3720

(9) </s:Body>

If the service knows how to retrieve a proper user name and password for event delivery, simple HTTP
Basic or Digest authentication can be used, as shown in the following outline:

(1) <s:Body> 3721
(2) <wse:Subscribe> 3722
(3) <wse:Delivery> 3723
(4) <wse:NotifyTo> HTTP address </wse:NotifyTo> 3724
(5) <wsman:Auth 3725
(6) Profile="http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/ 3726

 digest"/> 3727
(7) </wse:Delivery> 3728
(8) </wse:Subscribe> 3729

3730

3731
3732
3733

3734

3735
3736
3737
3738
3739
3740

3741
3742
3743

3744

(9) </s:Body>

Services are not required to support any specific profile. The rest of this clause defines special-case
profiles for event delivery in which the service needs additional information to select the proper
credentials to use when delivering events.

12.3 Including Credentials with a Subscription

In addition to specifying the authentication profile using the wsman:Auth block, the subscriber might want
to send additional tokens to the service to indicate which credentials to use when making the connection
to deliver events. As stated in 12.2, if no tokens are specified, by default the service needs to be
preconfigured to know which credentials to use. However, the service can require that the client supply
partial or full credentials with the subscription to use later when making the connection to deliver the
events.

The communication of credentials is independent of the authentication mode communicated in the
wsman:Auth block. The same user name, password, or certificate identity could be used with a variety of
transports.

By default, standard communication of credentials is done using a WS-Trust wst:IssuedTokens header
block as defined in section 6.4 of the WS-Trust specification. Use of WS-Trust for this purpose helps to
assure interoperation of secured event delivery.

3745
3746

Version 1.0.0 83

Web Services for Management (WS-Management) Specification DSP0226

EXAMPLE: In the following example, the user name token is conveyed in the headers to the wse:Subscribe
message in a wst:IssuedTokens block (lines 10–29):

3747
3748

(1) <s:Envelope ... 3749
(2) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 3750
(3) xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"> 3751
(4) 3752
(5) <s:Header ...> 3753
(6) <wsa:Action> 3754
(7) http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe 3755
(8) </wsa:Action> 3756
(9) ... 3757
(10) <wst:IssuedTokens mustUnderstand="true"> 3758
(11) <wst:RequestSecurityTokenResponse> 3759
(12) <wst:TokenType> 3760
(13) http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username- 3761
(14) token-profile-1.0#UsernameToken 3762
(15) </wst:TokenType> 3763
(16) 3764
(17) <wst:RequestedSecurityToken> 3765
(18) <wsse:UsernameToken> 3766
(19) <wsse:Username>JoeUser</wsse:Username> 3767
(20) </wsse:UsernameToken> 3768
(21) </wst:RequestedSecurityToken> 3769
(22) 3770
(23) <wsp:AppliesTo> 3771
(24) <wsa:EndpointReference><!-- NotifyTo EPR --> 3772
(25) <wsa:Address><!-- address of event sink --></wsa:Address> 3773
(26) </wsa:EndpointReference> 3774
(27) </wsp:AppliesTo> 3775
(28) </wst:RequestSecurityTokenResponse> 3776
(29) </wst:IssuedTokens> 3777
(30) 3778
(31) </s:Header> 3779
(32) <s:Body ...> 3780
(33) <wse:Subscribe ...> 3781
(34) <wse:Delivery> 3782
(35) <wse:NotifyTo> ... </wse:NotifyTo> 3783
(36) ... 3784
(37) </wse:Delivery> 3785
(38) ... 3786
(39) </wse:Subscribe> 3787
(40) </s:Body> 3788
(41) </s:Envelope> 3789

3790

3791

3792

3793

3794

3795
3796

Note that the wst:IssuedTokens block needs to have a SOAP mustUnderstand attribute. 3797

This wst:IssuedTokens block is divided into three sections:

• the type of token or credential being passed: the wst:TokenType wrapper (lines 12–15)

This can refer to user names, X.509 certificates, or other token types.

• the actual security token in a wst:RequestedSecurityToken wrapper (lines 17–21)

• what the tokens apply to: the wsp:AppliesTo block from WS-Policy (lines 23–27)

In this case, the tokens apply to the wse:NotifyTo address in the subscription. The wse:NotifyTo
EPR and the wsp:AppliesTo shall be identical.

84 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

3798
3799
3800

3801
3802

3803

3804

3805
3806

3807
3808

3809

3810
3811
3812

3813
3814

The communication of tokens to the service for later use in event delivery connections is independent of
the security profile in use. Typically, the subscriber passes one of the following tokens to the service
using WS-Trust:

• a user name reference (the service knows the password or other related credentials and only
uses the user name as a hint to know which credential to use)

• an X.509 certificate identifier (thumbprint or "hash")

The service has more than one certificate and needs to know which one to use.

• a user name and password combination, which is directly used to make the connection in the
other direction at event-time

This token type has security implications and is not to be delivered to the service over an
unencrypted network transport.

• some combination of the preceding token types (such as a user name and a cookie)

These tokens are all intended for use at the transport level when making the connection and do not
appear in the SOAP messages. Other token types can be communicated as well, but they are beyond the
scope of this specification.

RR1122..33--11: Whenever a user name is communicated to the service, the following WS-Trust usage
should be observed. The wst:TokenType shall be the following URI:

(1) <wst:TokenType> 3815
(2) http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token- 3816

 profile-1.0#UsernameToken 3817
(3) <wst:/TokenType> 3818

3819
3820

Additionally, the wst:RequestedSecurityToken shall be a wsse:UsernameToken that contains the
user name:

(4) <wst:RequestedSecurityToken> 3821
(5) <wsse:UsernameToken> 3822
(6) <wsse:Username>user-name/wsse:Username> 3823
(7) </wsse:UsernameToken> 3824

3825 (8) </wst:RequestedSecurityToken>

3826
3827
3828
3829

The wsse:UsernameToken is defined in WS-Security Username Token Profile 1.0 (WS-Security Token).
WS-Management does not require the use or presence of the other fields in wsse:UsernameToken
element, although the implementation can return appropriate errors if other submitted fields are not
supported, such as wsse:Nonce.

The password can be optionally supplied in clear text as specified in WS-Security Token, but it is best
delivered over an encrypted transport:

3830
3831

(1) <wst:RequestedSecurityToken> 3832
(2) <wsse:UsernameToken> 3833
(3) <wsse:Username>user-name/wsse:Username> 3834
(4) <wsse:Password>password</wsse:Password> 3835
(5) </wsse:UsernameToken> 3836

3837

3838
3839

(6) </wst:RequestedSecurityToken>

RR1122..33--22: Whenever an X.509 certificate identity is communicated to the service, the following WS-
Trust usage should be observed. The wst:TokenType shall be the following URI:

(7) <wst:TokenType> 3840
(8) http://schemas.dmtf.org/wbem/wsman/1/wsman/token/certificateThumbprint 3841
(9) <wst:/TokenType> 3842

Version 1.0.0 85

Web Services for Management (WS-Management) Specification DSP0226

The wst:RequestedSecurityToken shall be a wsman:CertificateThumbprint that identifies the exact
certificate to be used as the client certificate in mutual authentication:

3843
3844

(10) <wst:RequestedSecurityToken> 3845
(11) <wsman:CertificateThumbprint> 3846
(12) 8e5255328d03543a6aa6ea9cf7977ec9b4d7fdb3 3847

3848

3849
3850

(13) </wsman:CertificateThumbprint></wst:RequestedSecurityToken>

This token type contains the SHA-1 hash of the certificate as a hexadecimal string (referred to as the
“thumbprint”).

3851
3852

3853

3854
3855
3856

3857

NOTE: Although the WS-Trust and the standard WS-Security Token profiles referenced in this clause provide other
options and mechanisms, their use is optional and beyond the scope of this version of WS-Management.

12.4 Correlation of Events with Subscription

In many cases, the subscriber will want to ensure that the event delivery corresponds to a valid
subscription issued by an authorized party. In this case, it is recommended that reference parameters be
introduced into the wse:NotifyTo definition.

EXAMPLE: At subscription time, a UUID could be supplied as a correlation token:
(1) <s:Body> 3858
(2) <wse:Subscribe> 3859
(3) <wse:Delivery> 3860
(4) <wse:NotifyTo> 3861
(5) <wsa:Address> address <wsa:Address> 3862
(6) <wsa:ReferenceParameters> 3863
(7) <MyNamespace:uuid> 3864
(8) uuid:b0f685ec-e5c9-41b5-b91c-7f580419093e 3865
(9) </MyNamespace:uuid> 3866
(10) </wsa:ReferenceParameters> 3867
(11) </wse:NotifyTo> 3868
(12) ... 3869
(13) </wse:Delivery> 3870
(14) ... 3871
(15) </wse:Subscribe> 3872

3873

3874
3875
3876

3877
3878
3879

3880
3881

3882
3883

3884
3885

(16) </s:Body>

This definition requires that the service include the MyNamespace:uuid value as a SOAP header with
each event delivery (see 5.1). The service can use this value to correlate the event with any subscription
that it issued and to validate its origin.

This is not a transport-level or SOAP-level authentication mechanism as such, but it does help to maintain
and synchronize valid lists of subscriptions and to determine whether the event delivery is authorized,
even though the connection itself could have been authenticated.

This mechanism still can require the presence of the wsman:Auth block to specify which security
mechanism to use to actually authenticate the connection at event-time.

Each new subscription can receive at least one unique reference parameter that is never reused, such as
the illustrated UUID, for this mechanism to be of value.

Other reference parameters can be present to help route and correlate the event delivery as required by
the subscriber.

86 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

12.5 Transport-Level Authentication Failure 3886

3887
3888
3889
3890

3891

3892
3893

Because transports typically go through their own authentication mechanisms prior to any SOAP traffic
occurring, the first attempt to connect might result in a transport-level authentication failure. In such
cases, SOAP faults will not occur, and the means of communicating the denial to the client is
implementation- and transport-specific.

12.6 Security Implications of Third-Party Subscriptions

Without proper authentication and authorization, WS-Management implementations can be vulnerable to
distributed denial-of-service attacks through third-party subscriptions to events. This vulnerability is
discussed in section 6.2 ("Access Control") of the WS-Eventing specification. 3894

3895

3896

3897

3898

13 Transports and Message Encoding
This clause describes encoding rules that apply to all transports.

13.1 SOAP

WS-Management qualifies the use of SOAP as indicated in this clause.

RR1133..11--11: A service shall at least receive and send SOAP 1.2 SOAP Envelopes. 3899

3900

3901
3902

3903

3904
3905
3906

3907
3908
3909

3910

3911
3912

3913
3914

3915

RR1133..11--22: A service may reject a SOAP Envelope with more than 32,767 octets.

RR1133..11--33: A service should not send a SOAP Envelope with more than 32,767 octets unless the client
has specified a wsman:MaxEnvelopeSize header that overrides this limit.

Large SOAP Envelopes are expected to be serialized using attachments.

RR1133..11--44: Any Request Message may be encoded using either Unicode 3.0 (UTF-16) or UTF-8
encoding. A service shall accept the UTF-8 encoding type for all operations and should accept UTF-
16 as well.

RR1133..11--55: A service shall emit Responses using the same encoding as the original request. If the
service does not support the requested encoding or cannot determine the encoding, it should use
UTF-8 encoding to return a wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/CharacterSet

RR1133..11--66: For UTF-8 encodings, the service may fail to process any message that begins with the
UTF-8 BOM (0xEF 0xBB 0xBF), and shall send UTF-8 responses without the BOM.

The presence of BOM in 8-bit character encodings reduces interoperation. Where extended characters
are a requirement, UTF-16 can be used.

RR1133..11--77: If UTF-16 is the encoding, the service shall support either byte-order mark (BOM) U+FEFF
(big-endian) or U+FFFE (little-endian) as defined in the Unicode 3.0 specification as the first character
in the message (see the

3916
Unicode BOM FAQ). 3917

3918
3919
3920

3921
3922
3923
3924

RR1133..11--88: If a request includes contradictory encoding information in the BOM and HTTP charset
header or if the information does not fully specify the encoding, the service shall fault with an HTTP
status of "bad request message" (400).

Repeated headers with the same QName but different values that imply contradictory behavior are
considered a defect originating on the client side of the conversation. Returning a fault helps identify
faulty clients. However, an implementation might be resource-constrained and unable to detect duplicate
headers, so the repeated headers can be ignored. Repeated headers with the same QName that

Version 1.0.0 87

Web Services for Management (WS-Management) Specification DSP0226

3925
3926

3927
3928
3929

contains informational or non-contradictory instructions are possible, but none are defined by this
specification or its dependencies.

RR1133..11--99: If a request contains multiple SOAP headers with the same QName from
WS-Management, WS-Addressing, or WS-Eventing, the service should not process them and should
issue a wsa:InvalidMessageInformationHeaders fault if they are detected. (No SOAP headers are
defined by the WS-Transfer and WS-Enumeration specifications.) 3930

3931
3932
3933
3934
3935
3936

3937

3938
3939

RR1133..11--1100: By default, a compliant service should not fault requests with leading and trailing
whitespace in XML element values and should trim such whitespace by default as if the whitespace
had not occurred. Services should not emit messages containing leading or trailing whitespace within
element values unless the whitespace values are properly part of the value. If the service cannot
accept whitespace usage within a message because the XML schema establishes other whitespace
usage, the service should emit a wsman:EncodingLimit fault with the following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Whitespace

Clients can send messages with leading or trailing whitespace in the values, and services are permitted
to eliminate unneeded "cosmetic" whitespace on both sides of the element value without faulting. (See
XML Schema Part 2: Datatypes.) 3940

3941
3942
3943

3944

3945
3946

3947
3948
3949
3950
3951
3952

3953
3954

3955
3956

3957

3958

3959
3960
3961

3962

3963
3964
3965

RR1133..11--1111: Services should not fault messages that contain XML comments, as this is part of the XML
standard. Services may emit messages that contain comments that relate to the origin and
processing of the message or add comments for debugging purposes.

13.2 Lack of Response

If an operation succeeds but a response cannot be computed or actually delivered because of run-time
difficulties or transport problems, no response is sent and the connection is terminated.

This behavior is preferable to attempting a complex model for sending responses in a delayed fashion.
Implementations can generally keep a log of all requests and their results, and allow the client to
reconnect later to enumerate the operation log (using wsen:Enumerate) if it failed to get a response. The
format and behavior of such a log is beyond the scope of this specification. In any case, the client needs
to be coded to take into account a lack of response; all abnormal message conditions can safely revert to
this scenario.

RR1133..22--11: If correct responses or faults cannot be computed or generated due to internal service
failure, a response should not be sent.

Regardless, the client has to deal with cases of no response, so the service can simply force the client
into that mode rather than send a response or fault that is not defined in this specification.

13.3 Replay of Messages

A service is not to resend messages that have not been acknowledged at the transport level.

RR1133..33--11: A service shall not resend unacknowledged messages unless they are part of a higher,
general-purpose, reliable messaging or transactional protocol layer, in which case the retransmission
follows the rules for that protocol.

13.4 Encoding Limits

Most of the following limits are in characters. However, the maximum overall SOAP envelope size is
defined in octets. Implementations are free to exceed these limits. A service is considered conformant if it
observes these limits. Any limit violation results in a wsman:EncodingLimit fault.

88 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RR1133..44--11: A service may fail to process any URI with more than 2048 characters and should return a
wsman:EncodingLimit fault with the following detail code:

3966
3967

3968

3969

3970

3971

3972
3973

3974
3975
3976

3977
3978

3979
3980
3981

3982

3983
3984
3985

3986

3987

3988
3989

3990

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/URILimitExceeded

RR1133..44--22: A service should not generate a URI with more than 2048 characters.

RR1133..44--33: A service may fail to process an Option Name of more than 2048 characters.

RR1133..44--44: A service may fail to process an Option value of more than 4096 characters.

RR1133..44--55: A service may fault any operation that would require a single reply exceeding 32,767
octets.

RR1133..44--66: A service may always emit faults that are 4096 octets or less in length, regardless of any
requests by the client to limit the response size. Clients need to be prepared for this minimum in case
of an error.

RR1133..44--77: When the default addressing model is in use, a service may fail to process a Selector
Name of more than 2048 characters.

RR1133..44--88: A service may have a maximum number of selectors that it can process. If the request
contains more selectors than this limit, the service should return a wsman:EncodingLimit fault with the
following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/SelectorLimit

RR1133..44--99: A service may have a maximum number of options that it can process. If the request
contains more options than this limit, the service should return a wsman:EncodingLimit fault with the
following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OptionLimit

13.5 Binary Attachments

SOAP Message Transmission Optimization Mechanism (MTOM) is used to support binary attachments to
WS-Management. If a service supports attachments, the following rules apply:

RR1133..55--11: A conformant service may optionally support binary attachments to any operation using the
SOAP MTOM proposal. 3991

3992
3993

3994
3995

3996

3997

3998
3999
4000
4001

4002

RR1133..55--22: If a service supports attachments, the service shall support the Abstract Transmission
Optimization Feature.

RR1133..55--33: If a service supports attachments, the service shall support the Optimized MIME Multipart
Serialization Feature.

Other attachment types are not prohibited. Specific transports can impose additional encoding rules.

13.6 Case-Sensitivity

While XML and SOAP are intrinsically case-sensitive with regard to schematic elements,
WS-Management can be used with many underlying systems that are not intrinsically case-sensitive. This
support primarily applies to values, but can also apply to schemas that are automatically and dynamically
generated from other sources.

A service can observe any case usage required by the underlying execution environment.

Version 1.0.0 89

Web Services for Management (WS-Management) Specification DSP0226

4003
4004
4005

4006
4007

4008
4009
4010

4011

4012
4013

4014

4015
4016
4017

The only requirement is that messages are able to pass validation tests against any schema definitions.
At any time, a validation engine could be interposed between the client and server in the form of a proxy,
so schematically valid messages are a practical requirement.

Otherwise, this specification makes no requirements as to case usage. A service is free to interpret
values in a case-sensitive or case-insensitive manner.

It is recommended that case usage not be altered in transit by any part of the WS-Management
processing chain. The case usage established by the sender of the message is to be retained throughout
the lifetime of that message.

14 Faults
Many of the operations outlined in WS-Management can generate faults. This clause outlines how these
faults should be formatted into SOAP messages.

14.1 Introduction

Faults are returned when the SOAP message is successfully delivered by the transport and processed by
the service, but the message cannot be processed properly. If the transport cannot successfully deliver
the message to the SOAP processor, a transport error occurs.

RR1144..11--11: A service should support only SOAP 1.2 (or later) faults. 4018

4019
4020
4021

4022

4023

4024
4025

Generally, faults are not to be issued unless they are expected as part of a request-response pattern. For
example, it would not be valid for a client to issue a wxf:Get message, receive the wxf:GetResponse
message, and then fault that response.

14.2 Fault Encoding

This clause discusses XML fault encoding.

RR1144..22--11: A conformant service shall use the following fault encoding format and normative
constraints for faults in the WS-Management space or any of its dependent specifications:

(1) <s:Envelope> 4026
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope" 4027
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 4028
(4) <s:Header> 4029
(5) <wsa:Action> 4030
(6) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault 4031
(7) <wsa:Action> 4032
(8) <wsa:MessageID> 4033
(9) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 4034
(10) </wsa:MessageID> 4035
(11) <wsa:RelatesTo> 4036
(12) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85 4037
(13) </wsa:RelatesTo> 4038
(14) </s:Header> 4039
(15) 4040
(16) <s:Body> 4041
(17) <s:Fault> 4042
(18) <s:Code> 4043
(19) <s:Value> [Code] </s:Value> 4044
(20) <s:Subcode> 4045
(21) <s:Value> [Subcode] </s:Value> 4046
(22) </s:Subcode> 4047

90 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

(23) </s:Code> 4048
(24) <s:Reason> 4049
(25) <s:Text xml:lang="en"> [Reason] </s:Text> 4050
(26) </s:Reason> 4051
(27) <s:Detail> 4052
(28) [Detail] 4053
(29) </s:Detail> 4054
(30) </s:Fault> 4055
(31) </s:Body> 4056

4057

4058

4059
4060

4061
4062

4063
4064
4065

4066
4067

4068
4069
4070
4071

4072
4073
4074
4075
4076

4077
4078

4079
4080

4081
4082

4083
4084
4085

4086

4087
4088

(32) </s:Envelope>

The following definitions provide additional, normative constraints on the preceding outline:

s:Envelope/s:Header/wsa:Action
a valid fault Action URI from the relevant specification that defined the fault

s:Envelope/s:Header/wsa:MessageId
element that shall be present for the fault, like any non-fault message

s:Envelope/s:Header/wsa:RelatesTo
element that shall, like any other reply, contain the MessageID of the original request that caused the
fault

s:Body/s:Fault/s:Value
element that shall be either s:Sender or s:Receiver, as specified in 14.6 in the "Code" field

s:Body/s:Fault/s:Subcode/s:Value
for WS-Management-related messages, shall be one of the subcode QNames defined in 14.6
If the service exposes custom methods or other messaging, this value may be another QName not in
the Master Faults described in 14.6.

s:Body/s:Fault/s:Reason
optional element that should contain localized text that explains the fault in more detail
Typically, this text is extracted from the "Reason" field in the Master Fault tables (14.6). However, the
text may be adjusted to reflect a specific circumstance. This element may be repeated for multiple
languages. Note that the xml:lang attribute shall be present on the s:Text element.

s:Body/s:Fault/s:Detail
optional element that should reflect the recommended content from the Master Fault tables (14.6)

The preceding fault template is populated by examining entries from the Master Fault tables in 14.6,
which includes all relevant faults from WS-Management and its underlying specifications.

s:Reason and s:Detail are always optional, but they are recommended. In addition, s:Reason/s:Text
contains an xml:lang attribute to indicate the language used in the descriptive text.

RR1144..22--22: Fault wsa:Action URI values vary from fault to fault. The service shall issue a fault using the
correct URI, based on the specification that defined the fault. Faults defined in this specification shall
have the following URI value:

http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

The Master Fault tables in 14.6 contain the relevant wsa:Action URIs. The URI values are directly implied
by the QName for the fault.

Version 1.0.0 91

Web Services for Management (WS-Management) Specification DSP0226

14.3 NotUnderstood Faults 4089

4090 There is a special case for faults relating to mustUnderstand attributes on SOAP headers. SOAP
specifications define the fault differently than the encoding in 14.2 (see 5.4.8 in SOAP 1.2). In practice,
the fault varies only in indicating the SOAP header that was not understood, the QName, and the
namespace (line 5 in the following outline).

4091
4092
4093

(1) <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" 4094
(2) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 4095
(3) 4096
(4) <s:Header> 4097
(5) <s:NotUnderstood qname="QName of header" xmlns:ns="XML namespace of 4098

 header"/> 4099
(6) <wsa:Action> 4100
(7) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault 4101
(8) </wsa:Action> 4102
(9) <wsa:MessageID> 4103
(10) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87 4104
(11) </wsa:MessageID> 4105
(12) <wsa:RelatesTo> 4106
(13) urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85 4107
(14) </wsa:RelatesTo> 4108
(15) </s:Header> 4109
(16) 4110
(17) <s:Body> 4111
(18) <s:Fault> 4112
(19) <s:Code> 4113
(20) <s:Value>s:MustUnderstand</s:Value> 4114
(21) </s:Code> 4115
(22) <s:Reason> 4116
(23) <s:Text xml:lang="en-US">Header not understood</s:Text> 4117
(24) </s:Reason> 4118
(25) </s:Fault> 4119
(26) </s:Body> 4120
(27) 4121

4122

4123
4124
4125

4126
4127
4128

4129
4130
4131

4132

4133
4134
4135

4136
4137
4138

(28) </s:Envelope>

The preceding fault template can be used in all cases of failure to process mustUnderstand attributes.
Lines 5–8 show the important content, indicating which header was not understood and including a
generic wsa:Action that specifies that the current message is a fault.

The wsa:RelatesTo element is included so that the client can correlate the fault with the original request.
Over transports other than HTTP in which requests might be interlaced, this might be the only way to
respond to the correct sender.

If the original wsa:MessageID itself is faulty and the connection is request-response oriented, the service
can attempt to send back a fault without the wsa:RelatesTo field, or can simply fail to respond, as
discussed in 14.4.

14.4 Degenerate Faults

In rare cases, the SOAP message might not contain enough information to properly generate a fault. For
example, if the wsa:MessageID is garbled, the service will have difficulty returning a fault that references
the original message. Some transports might not be able to reference the sender to return the fault.

If the transport guarantees a simple request-response pattern, the service can send back a fault with no
wsa:RelatesTo field. However, in some cases, there is no guarantee that the sender can be reached (for
example, if the wsa:FaultTo contains an invalid address, so there is no way to deliver the fault).

92 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

4139
4140

4141

4142
4143
4144
4145
4146

In all cases, the service can revert to the rules of 13.3, in which no response is sent. The service can
attempt to log the requests in some way to help identify the defective client.

14.5 Fault Extensibility

A service can include additional fault information beyond what is defined in this specification. The
appropriate extension element is the s:Detail element, and the service-specific XML can appear at any
location within this element, provided that it is properly mapped to an XML namespace that defines the
schema for that content. WS-Management makes use of this extension technique for the
wsman:FaultDetail URI values, as shown in the following outline:

(1) <s:Detail> 4147
(2) <wsman:FaultDetail>... </wsman:FaultDetail> 4148
(3) <ExtensionData xmlns="vendor-specific-namespace">...</ExtensionData> 4149
(4) ... 4150

4151

4152
4153

4154

4155
4156

4157
4158
4159

4160
4161
4162

4163

4164

(5) </s:Detail>

The extension data elements can appear before or after any WS-Management-specific extensions
mandated by this specification. More than one extension element is permitted.

14.6 Master Faults

This clause includes all faults from this specification and all underlying specifications. This list is the
normative fault list for WS-Management.

RR1144..66--11: A service shall return faults from the following list when the operation that caused them was
a message in this specification for which faults are specified. A conformant service may return other
faults for messages that are not part of WS-Management.

It is critical to client interoperation that the same fault be used in identical error cases. If each service
returns a distinct fault for "Not Found", for example, constructing interoperable clients would be
impossible. In Table 2 through Table 40, the source specification of a fault is based on its QName.

The list is alphabetized on the primary subcode name, regardless of the namespace prefix.

Table 2 – wsman:AccessDenied

Fault Subcode wsman:AccessDenied

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The sender was not authorized to access the resource.

Detail None

Comments This fault is returned generically for all access denials that relate to authentication or
authorization failures. This fault does not indicate locking or concurrency conflicts or other
types of denials unrelated to security by itself.

Applicability Any message

Remedy The client acquires the correct credentials and retries the operation.

Version 1.0.0 93

Web Services for Management (WS-Management) Specification DSP0226

Table 3 – wsa:ActionNotSupported 4165

Fault Subcode wsa:ActionNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason The action is not supported by the service.

Detail <s:Detail>
 <wsa:Action> Incorrect Action URI </wsa:Action>
</s:Detail>
<!-- The unsupported Action URI is returned, if possible -->

Comments This fault means that the requested action is not supported by the implementation.
As an example, read-only implementations (supporting only wxf:Get and wsen:Enumerate)
will return this fault for any operations other than these two.
If the implementation never supports the action, the fault can be generated as shown above.
However, if the implementation supports the action in a general sense, but it is not an
appropriate match for the resource, an additional detail code can be added to the fault, as
follows:
 <s:Detail>
 <wsa:Action> The offending Action URI </wsa:Action>
 <wsman:FaultDetail>
 http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ActionMismatch
 </wsman:FaultDetail>
 </s:Detail>
This situation can occur when the implementation supports wxf:Put, for example, but the
client attempts to update a read-only resource.

Applicability All messages

Remedy The client consults metadata provided by the service to determine which operations are
supported.

Table 4 – wsman:AlreadyExists 4166

Fault Subcode wsman:AlreadyExists

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The sender attempted to create a resource that already exists.

Detail None

Comments This fault is returned in cases where the user attempted to create a resource that already
exists.

Applicability wxf:Create

Remedy The client uses wxf:Put or creates a resource with a different identity.

94 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 5 – wsen:CannotProcessFilter 4167

Fault Subcode wsen:CannotProcessFilter

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filter could not be processed.

Detail <s:Detail>

 <wsman:SupportedSelectorName> Valid selector name for use in filter expression
</wsman:SupportedSelectorName> *

</s:Detail>

Comments This fault is returned for syntax errors or other semantic problems with the filter.

For use with the SelectorFilter dialect (see ANNEX E), the service can include one or more
SupportedSelectorName elements to provide a list of supported selector names in the event
that the client has requested filtering on one or more unsupported selector names.

If the filter is valid, but the service cannot execute the filter due to misconfiguration, lack of
resources, or other service-related problems, more specific faults can be returned, such as
wsman:QuotaLimit or wsman:InternalError.

Applicability wsen:Enumerate

Remedy The client fixes the filter problem and tries again.

Table 6 – wsman:CannotProcessFilter 4168

Fault Subcode wsman:CannotProcessFilter

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The requested filter could not be processed.

Detail <s:Detail>

 <wsman:SupportedSelectorName> Valid selector name for use in filter expression
</wsman:SupportedSelectorName> *

</s:Detail>

Comments This fault is returned for syntax errors or other semantic problems with the filter such as
exceeding the subset supported by the service.

For use with the SelectorFilter dialect (see ANNEX E), the service can include one or more
SupportedSelectorName elements to provide a list of supported selector names in the event
that the client has requested filtering on one or more unsupported selector names.

If the filter is valid, but the service cannot execute the filter due to misconfiguration, lack of
resources, or other service-related problems, more specific faults can be returned, such as
wsman:QuotaLimit, wsman:InternalError, or wse:EventSourceUnableToProcess.

Applicability wse:Subscribe, fragment-level WS-Transfer operations

Remedy The client fixes the filter problem and tries again.

Version 1.0.0 95

Web Services for Management (WS-Management) Specification DSP0226

Table 7 – wsman:Concurrency 4169

Fault Subcode wsman:Concurrency

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The action could not be completed due to concurrency or locking problems.

Detail None

Comments This fault means that the requested action could not be carried out either due to internal
concurrency or locking problems or because another user is accessing the resource.
This fault can occur if a resource is being enumerated using wsen:Enumerate and another
client attempts operations such as wxf:Delete, which would affect the result of the
enumeration in progress.

Applicability All messages

Remedy The client waits and tries again.

Table 8 – wse:DeliveryModeRequestedUnavailable 4170

Fault Subcode wse:DeliveryModeRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested delivery mode is not supported.

Detail <s:Detail>
 <wse:SupportedDeliveryMode>... </wse:SupportedDeliveryMode>
 <wse:SupportedDeliveryMode>...</wse:SupportedDeliveryMode>
 ...
</s:Detail>
<!-- This is a simple, optional list of one or more supported delivery mode URIs. It may be
left empty. -->

Comments This fault is returned for unsupported delivery modes for the specified resource.
If the stack supports the delivery mode in general, but not for the specific resource, this fault
is still returned.
Other resources might support the delivery mode. The fault does not imply that the delivery
mode is not supported by the implementation.

Applicability wse:Subscribe

Remedy The client selects one of the supported delivery modes.

96 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 9 – wsman:DeliveryRefused 4171

Fault Subcode wsman:DeliveryRefused

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The receiver refuses to accept delivery of events and requests that the subscription be
canceled.

Detail None

Comments This fault is returned by event receivers to force a cancellation of a subscription.

This fault can happen when the client tried to Unsubscribe, but failed, or when the client lost
knowledge of active subscriptions and does not want to keep receiving events that it no
longer owns. This fault can help clean up spurious or leftover subscriptions when clients are
reconfigured or reinstalled and their previous subscriptions are still active.

Applicability Any event delivery message in any mode

Remedy The service stops delivering events for the subscription and cancels the subscription,
sending any applicable wse:SubscriptionEnd messages.

Table 10 – wsa:DestinationUnreachable 4172

Fault Subcode wsa:DestinationUnreachable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason No route can be determined to reach the destination role defined by the WS-Addressing To
header.

Detail <s:Detail>

 <wsman:FaultDetail>
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI
</wsman:FaultDetail> ?

</s:Detail>

When the default addressing model is in use, the wsman:FaultDetail field may contain
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidResourceURI

Comments This fault is returned as the general "Not Found" case for a resource, in which the resource
EPR cannot be mapped to the real-world resource.

This fault is not used merely to indicate that the resource is temporarily offline, which is
indicated by wsa:EndpointUnavailable.

Applicability All request messages

Remedy The client attempts to diagnose the version of the service, query any metadata, and perform
other diagnostic operations to determine why the request cannot be routed.

Version 1.0.0 97

Web Services for Management (WS-Management) Specification DSP0226

Table 11 – wsman:EncodingLimit 4173

Fault Subcode wsman:EncodingLimit

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason An internal encoding limit was exceeded in a request or would be violated if the message
was processed.

Detail <s:Detail>
 <wsman:FaultDetail>
 Optional; one of the following enumeration values
 </wsman:FaultDetail>
 ...any service-specific additional XML content...
</s:Detail>
Possible enumeration values in the <wsman:FaultDetail> element are as follows:

Unsupported character set:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/CharacterSet

Unsupported MTOM or other encoding types:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EncodingType

Requested maximum was too large:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

Requested maximum envelope size was too small:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MinimumEnvelopeLimit

Too many options:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OptionLimit

Used when the default addressing model is in use and indicates that too many selectors
were used for the corresponding ResourceURI:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/SelectorLimit
Service reached its own internal limit when computing response:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ServiceEnvelopeLimit
Operation succeeded and cannot be reversed, but result is too large to send:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnreportableSuccess
Request contained a character outside of the range that is supported by the service:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnsupportedCharacter
URI was too long:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/URILimitExceeded
Client-side whitespace usage is not supported:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Whitespace

Comments This fault is returned when a system limit is exceeded, whether a published limit or a
service-specific limit.

Applicability All request messages

Remedy The client sends messages that fit the encoding limits of the service.

98 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 12 – wsa:EndpointUnavailable 4174

Fault Subcode wsa:EndpointUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Receiver

Reason The specified endpoint is currently unavailable.

Detail <s:Detail>
 <wsa:RetryAfter> xs:duration </wsa:RetryAfter> <!-- optional -->
 ...optional service-specific XML content
 <wsman:FaultDetail> A detail URI value </wsman:FaultDetail>
</s:Detail>
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ResourceOffline
Used when the resource is known, but temporarily unavailable

Comments This fault is returned if the message was correct and the EPR was valid, but the specified
resource is offline.
In practice, it is difficult for a service to distinguish between "Not Found" cases and "Offline"
cases. In general, wsa:DestinationUnreachable is preferable.

Applicability All request messages

Remedy The client can retry later, after the resource is again online.

Table 13 – wsman:EventDeliverToUnusable 4175

Fault Subcode wsman:EventDeliverToUnusable

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The event source cannot process the subscription because it cannot connect to the event
delivery endpoint as requested in the wse:Delivery element.

Detail <s:Detail>
 ...any service-specific content to identify the error...
</s:Detail>

Comments This fault is limited to cases of connectivity issues in contacting the “deliver to” address.
These issues include:
• The wse:NotifyTo address is not usable because it is incorrect (system or device not

reachable, badly formed address, and so on).
• Permissions cannot be acquired for event delivery (for example, the wsman:Auth

element does not refer to a supported security profile, and so on).
• The credentials associated with the wse:NotifyTo are not valid (for example, the account

does not exist, the certificate thumbprint is not a hex string, and so on).
The service can include extra information that describes the connectivity error to help in
troubleshooting the connectivity problem.

Applicability wse:Subscribe

Remedy The client ensures connectivity from the service computer back to the event sink including
firewalls and authentication/authorization configuration.

Version 1.0.0 99

Web Services for Management (WS-Management) Specification DSP0226

Table 14 – wse:EventSourceUnableToProcess 4176

Fault Subcode wse:EventSourceUnableToProcess

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Receiver

Reason The event source cannot process the subscription.

Detail None

Comments This event source is not capable of fulfilling a Subscribe request for local reasons unrelated
to the specific request.

Applicability wse:Subscribe

Remedy The client retries the subscription later.

Table 15 – wsen:FilterDialectRequestedUnavailable 4177

Fault Subcode wsen:FilterDialectRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filtering dialect is not supported.

Detail <s:Detail>
 <wsen:SupportedDialect> </wsen:SupportedDialect> +
</s:Detail>

Comments This fault is returned when the client requests a filter type or query language not supported
by the service.

The filter dialect can vary from resource to resource or can apply to the entire service.

Applicability wsen:Enumerate

Remedy The client switches to a supported dialect or performs a simple enumeration with no filter.

Table 16 – wse:FilteringNotSupported 4178

Fault Subcode wse:FilteringNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason Filtering over the event source is not supported.

Detail None

Comments This fault is returned when the service does not support filtered subscriptions for the
specified event source, but supports only simple delivery of all events for the resource.

Note that the service might support filtering over a different event resource or might not
support filtering for any resource. The same fault applies.

Applicability wse:Subscribe

Remedy The client subscribes using unfiltered delivery.

100 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 17 – wsen:FilteringNotSupported 4179

Fault Subcode wsen:FilteringNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason Filtered enumeration is not supported.

Detail None

Comments This fault is returned when the service does not support filtering of enumerations at all, but
supports only simple enumeration. If enumeration as a whole is not supported, the correct
fault is wsa:ActionNotSupported.

Note that the service might support filtering over a different enumerable resource or might
not support filtering for any resource. The same fault applies.

Applicability wsen:Enumerate

Remedy The client switches to a simple enumeration.

Table 18 – wse:FilteringRequestedUnavailable 4180

Fault Subcode wse:FilteringRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested filter dialect is not supported.

Detail <s:Detail>
 <wse:SupportedDialect>.. </wse:SupportedDialect> +
 <wsman:FaultDetail> ..the following URI, if applicable </wsman:FaultDetail>
</s:Detail>
Possible URI value:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired

Comments This fault is returned when the client requests a filter dialect not supported by the service.
In some cases, a subscription requires a filter because the result of an unfiltered
subscription may be infinite or extremely large. In these cases, the URI
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired needs to be
included in the s:Detail element.

Applicability wse:Subscribe

Remedy The client switches to a supported filter dialect or uses no filtering.

Version 1.0.0 101

Web Services for Management (WS-Management) Specification DSP0226

Table 19 – wsman:FragmentDialectNotSupported 4181

Fault Subcode wsman:FragmentDialectNotSupported

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The requested fragment filtering dialect or language is not supported.

Detail <s:Detail>
 <wsman:FragmentDialect> xs:anyURI </wsman:FragmentDialect>
 <wsman:FragmentDialect> xs:anyURI </wsman:FragmentDialect>

</s:Detail>
The preceding optional URI values indicate supported dialects.

Comments This fault is returned when the service does not support the requested fragment-level
filtering dialect.
If the implementation supports the fragment dialect in general, but not for the specific
resource, this fault is still returned.
Other resources might support the fragment dialect. This fault does not imply that the
fragment dialect is not supported by the implementation.

Applicability wsen:Enumerate, wxf:Get, wxf:Create, wxf:Put, wxf:Delete

Remedy The client uses a supported filtering dialect or no filtering.

Table 20 – wsman:InternalError 4182

Fault Subcode wsman:InternalError

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The service cannot comply with the request due to internal processing errors.

Detail <s:Detail>
 ...service-specific extension XML elements....
<s:Detail>

Comments This fault is a generic error for capturing internal processing errors within the service. For
example, this is the correct fault if the service cannot load necessary executable images, its
configuration is corrupted, hardware is not operating properly, or any unknown or
unexpected internal errors occur.

It is expected that the service needs to be reconfigured, restarted, or reinstalled, so merely
asking the client to retry will not succeed.

Applicability All messages

Remedy The client repairs the service out-of-band to WS-Management.

102 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 21 – wsman:InvalidBookmark 4183

Fault Subcode wsman:InvalidBookmark

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The bookmark supplied with the subscription is not valid.

Detail <s:Detail>
 <wsman:FaultDetail>
 If possible, one of the following URI values
 </wsman:FaultDetail>
</s:Detail>
Possible URI values:

The service is not able to back up and replay from that point:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired
The service is not able to decode the bookmark:
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFormat

Comments This fault is returned if a bookmark has expired, is corrupt, or is otherwise unknown.

Applicability wsen:Subscribe

Remedy The client issues a new subscription without any bookmarks or locates the correct
bookmark.

Table 22 – wsen:InvalidEnumerationContext 4184

Fault Subcode wsen:InvalidEnumerationContext

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The supplied enumeration context is invalid.

Detail None

Comments An invalid enumeration context was supplied with the message. Typically, this fault will
happen with wsen:Pull.

The enumeration context may be invalid due to expiration, an invalid format, or reuse of an
old context no longer being tracked by the service.

The service also can return this fault for any case where the enumerator has been
terminated unilaterally on the service side, although one of the more descriptive faults is
preferable, because this usually happens on out-of-memory errors (wsman:QuotaLimit),
authorization failures (wsman:AccessDenied), or internal errors (wsman:InternalError).

Applicability wsen:Pull, wsen:Release (whether a pull-mode subscription, or a normal enumeration)

Remedy The client abandons the enumeration and lets the service time it out, as wsen:Release will
fail as well.

Version 1.0.0 103

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Expired

Web Services for Management (WS-Management) Specification DSP0226

Table 23 – wse:InvalidExpirationTime 4185

Fault Subcode wse:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The expiration time is not valid.

Detail None

Comments The expiration time is not valid at all or within the limits of the service.

This fault is used for outright errors (expirations in the past, for example) or expirations too
far into the future.

If the service does not support expiration times at all, a wsman:UnsupportedFeature fault
can be returned with the correct detail code.

Applicability wse:Subscribe

Remedy The client issues a new subscription with a supported expiration time.

Table 24 – wsen:InvalidExpirationTime 4186

Fault Subcode wsen:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The expiration time is not valid.

Detail None

Comments Because WS-Management recommends against implementing the wsen:Expiration feature,
this fault might not occur with most implementations.

Consult the WS-Enumeration specification for more information.

Applicability wsen:Enumerate

Remedy Not applicable

104 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 25 – wse:InvalidMessage 4187

Fault Subcode wse:InvalidMessage

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The request message has unknown or invalid content and cannot be processed.

Detail None

Comments This fault is generally not used in WS-Management, although it can be used for cases not
covered by other faults.

If the content violates the schema, a wsman:SchemaValidationError fault can be sent. If
specific errors occur in the subscription body, one of the more descriptive faults can be
used.

This fault is not to be used to indicate unsupported features, only unexpected or unknown
content in violation of this specification.

Applicability WS-Eventing request messages

Remedy The client issues valid messages that comply with this specification.

Table 26 – wsa:InvalidMessageInformationHeader 4188

Fault Subcode wsa:InvalidMessageInformationHeader

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A message information header is not valid and the message cannot be processed.

Detail <s:Detail>
 ...the invalid header...
</s:Detail>

Comments This fault can occur with any type of SOAP header error. The header might be invalid in
terms of schema or value, or it might constitute a semantic error.

This fault is not to be used to indicate an invalid resource address (a "not found" condition
for the resource), but to indicate actual structural violations of the SOAP header rules in this
specification.

Examples are repeated MessageIDs, missing RelatesTo on a response, badly formed
addresses, or any other missing header content.

Applicability All messages

Remedy The client reformats message using the correct format, values, and number of message
information headers.

Version 1.0.0 105

Web Services for Management (WS-Management) Specification DSP0226

Table 27 – wsman:InvalidOptions 4189

Fault Subcode wsman:InvalidOptions

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason One or more options are not valid.

Detail <s:Detail>
 <wsman:FaultDetail>
 If possible, one of the following URI values
 </wsman:FaultDetail>
</s:Detail>
Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/NotSupported
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue

Comments This fault generically covers all cases where the option names or values are not valid, or
they are used in incorrect combinations.

Applicability All request messages

Remedy The client discovers supported option names and valid values by consulting metadata or
other mechanisms. Such metadata is beyond the scope of this specification.

Table 28 – wsman:InvalidParameter 4190

Fault Subcode wsman:InvalidParameter

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason An operation parameter is not valid.

Detail <s:Detail>
 <wsman:FaultDetail>
 If possible, one of the following URI values
 </wsman:FaultDetail>
</s:Detail>
Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidName

Comments This fault is returned when a parameter to a custom action is not valid.
This fault is a default for new implementations that need to have a generic fault for this case.
The method can also return any specific fault of its own.

Applicability All messages with custom actions

Remedy The client consults the WSDL for the operation and determines how to supply the correct
parameter.

106 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 29 – wxf:InvalidRepresentation 4191

Fault Subcode wxf:InvalidRepresentation

Action URI http://schemas.xmlsoap.org/ws/2004/09/transfer/fault

Code s:Sender

Reason The XML content is not valid.

Detail <s:Detail>
 <wsman:FaultDetail>
 If possible, one of the following URI values
 </wsman:FaultDetail>
</s:Detail>
Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValues
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MissingValues
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidFragment

Comments This fault may be returned when the input XML is not valid semantically or uses the wrong
schema for the resource.
However, a wsman:SchemaValidationError fault can be returned if the error is related to
XML schema violations as such, as opposed to invalid semantic values.
Note the anomalous case in which a schema violation does not occur, but the namespace is
simply the wrong one; in this case,
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidNamespace is returned.

Applicability wxf:Put, wxf:Create

Remedy The client corrects the request XML.

Table 30 – wsman:InvalidSelectors 4192

Fault Subcode wsman:InvalidSelectors

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The selectors for the resource are not valid.

Detail <s:Detail>
 <wsman:FaultDetail>
 If possible, one of the following URI values
 </wsman:FaultDetail>
</s:Detail>
Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsufficientSelectors
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/UnexpectedSelectors
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/TypeMismatch
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InvalidValue
http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DuplicateSelectors

Comments This fault covers all cases where the specified selectors were incorrect or unknown for the
specified resource.

Applicability All request messages

Remedy The client retrieves documentation or metadata and corrects the selectors.

Version 1.0.0 107

Web Services for Management (WS-Management) Specification DSP0226

Table 31 – wsa:MessageInformationHeaderRequired 4193

Fault Subcode wsa:MessageInformationHeaderRequired

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A required header is missing.

Detail <s:Detail>

 The XML QName of the missing header

</s:Detail>

Comments A required message information header (To, MessageID, or Action) is not present.

Applicability All messages

Remedy The client adds the missing message information header.

Table 32 – wsman:NoAck 4194

Fault Subcode wsman:NoAck

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The receiver did not acknowledge the event delivery.

Detail None

Comments This fault is returned when the client (subscriber) receives an event with a
wsman:AckRequested header and does not (or cannot) acknowledge the receipt. The
service stops sending events and terminates the subscription.

Applicability Any event delivery action (including heartbeats, dropped events, and so on) in any delivery
mode

Remedy For subscribers, the subscription is resubmitted without the acknowledgement option.

For services delivering events, the service cancels the subscription immediately.

Table 33 – wsman:QuotaLimit 4195

Fault Subcode wsman:QuotaLimit

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The service is busy servicing other requests.

Detail None

Comments This fault is returned when the SOAP message is otherwise correct, but the service has
reached a resource or quota limit.

Applicability All messages

Remedy The client can retry later.

108 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 34 – wsman:SchemaValidationError 4196

Fault Subcode wsman:SchemaValidationError

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The supplied SOAP violates the corresponding XML schema definition.

Detail None

Comments This fault is used for any XML parsing failure or schema violations.
Note that full validation of the SOAP against schemas is not expected in real-time, but
processors might in fact notice schema violations, such as type mismatches. In all of these
cases, this fault applies.
In debugging modes where validation is occurring, this fault can be returned for all errors
noted by the validating parser.

Applicability All messages

Remedy The client corrects the message.

Table 35 – wsen:TimedOut 4197

Fault Subcode wsen:TimedOut

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The enumerator has timed out and is no longer valid.

Detail None

Comments This fault is not to be used in WS-Management due to overlap with wsman:TimedOut, which
covers all the other messages.

Applicability wsen:Pull

Remedy The client can retry the wsen:Pull request.

Table 36 – wsman:TimedOut 4198

Fault Subcode wsman:TimedOut

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Receiver

Reason The operation has timed out.

Detail None

Comments The operation could not be completed within the wsman:OperationTimeout value, or an
internal override timeout was reached by the service while trying to process the request.

This fault is also returned in all enumerations when no content is available for the current
wsen:Pull request. Clients can simply retry the wsen:Pull request again until a different fault
is returned.

Applicability All requests

Remedy The client can retry the operation.
If the operation was a write (delete, create, or custom operation), the client can consult the
system operation log before blindly attempting a retry, or attempt a wxf:Get or other read
operation to try to discover the result of the previous operation.

Version 1.0.0 109

Web Services for Management (WS-Management) Specification DSP0226

Table 37 – wse:UnableToRenew 4199

Fault Subcode wse:UnableToRenew

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The subscription could not be renewed.

Detail None

Comments This fault is returned in all cases where the subscription cannot be renewed but is otherwise
valid.

Applicability wse:Renew

Remedy The client issues a new subscription.

Table 38 – wse:UnsupportedExpirationType 4200

Fault Subcode wse:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The specified expiration type is not supported.

Detail None

Comments A specific time for expiration (as opposed to duration) is not supported.
This fault is not to be used if the value itself is incorrect; it is only to be used if the type is not
supported.

Applicability wse:Subscribe

Remedy The client corrects the expiration to use a duration time.

Table 39 – wsen:UnsupportedExpirationType 4201

Fault Subcode wsen:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The specified expiration type is not supported.

Detail None
Comments The specified expiration type is not supported. For example, a specific time-based expiration

type might not be supported (as opposed to a duration-based expiration type).
This fault is not to be used if the value itself is incorrect; it is only to be used if the type is not
supported.

Applicability wsen:Enumerate

Remedy The client corrects the expiration time or omits it and retries.

110 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table 40 – wsman:UnsupportedFeature 4202

Fault Subcode wsman:UnsupportedFeature

Action URI http://schemas.dmtf.org/wbem/wsman/1/wsman/fault

Code s:Sender

Reason The specified feature is not supported.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

Possible URI values:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Ack

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AddressingMode

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/AsynchronousRequest

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Bookmarks

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/DeliveryRetries

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EnumerationMode

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/ExpirationTime

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FilteringRequired

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FormatMismatch

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/FragmentLevelAccess

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Heartbeats

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/InsecureAddress

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/Locale

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxElements

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopePolicy

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxEnvelopeSize

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/MaxTime

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/OperationTimeout

Comments This fault indicates that an unsupported feature was attempted.

Applicability Any message

Remedy The client corrects or removes the unsupported feature request and retries.

 4203

Version 1.0.0 111

Web Services for Management (WS-Management) Specification DSP0226

ANNEX A
(informative)

Notational Conventions

4204
4205
4206
4207
4208

4209

4210

4211

4212

4213

4214

4215

4216

4217
4218

4219
4220
4221
4222

4223

4224
4225
4226

4227

4228
4229

This annex specifies the notations and namespaces used in this specification.

This specification uses the following syntax to define normative outlines for messages:

• The syntax appears as an XML instance, but values in italics indicate data types instead of values.

• Characters are appended to elements and attributes to indicate cardinality:

– "?" (0 or 1)

– "*" (0 or more)

– "+" (1 or more)

• The character "|" indicates a choice between alternatives.

• The characters "[" and "]" indicate that enclosed items are to be treated as a group with respect to
cardinality or choice.

• An ellipsis ("...") indicates a point of extensibility that allows other child or attribute content. Additional
children and attributes may be added at the indicated extension points but must not contradict the
semantics of the parent or owner, respectively. If a receiver does not recognize an extension, the
receiver should not process the message and may fault.

• XML namespace prefixes (see Table A-1) indicate the namespace of the element being defined.

Throughout the document, whitespace within XML element values is used for readability. In practice, a
service can accept and strip leading and trailing whitespace within element values as if whitespace had
not been used.

A.1 XML Namespaces

Table A-1 lists XML namespaces used in this specification. The choice of any namespace prefix is
arbitrary and not semantically significant.

112 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table A-1 – Prefixes and XML Namespaces Used in This Specification 4230

Prefix XML Namespace Specification

wsman http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd This specification

wsmid http://schemas.dmtf.org/wbem/wsman/identity/1/
wsmanidentity.xsd

This specification – discovery of
supported protocol versions

s http://www.w3.org/2003/05/soap-envelope SOAP 1.2

xs http://www.w3.org/2001/XMLSchema XML Schema 1, XML Schema 2

wsdl http://schemas.xmlsoap.org/wsdl WSDL/1.1

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing WS-Addressing

wse http://schemas.xmlsoap.org/ws/2004/08/eventing WS-Eventing

wsen http://schemas.xmlsoap.org/ws/2004/09/enumeration WS-Enumeration

wxf http://schemas.xmlsoap.org/ws/2004/09/transfer WS-Transfer

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy

wst http://schemas.xmlsoap.org/ws/2005/02/trust WS-Trust

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd

WS-Security

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

WS-Security

 4231

Version 1.0.0 113

Web Services for Management (WS-Management) Specification DSP0226

ANNEX B
(normative)

Conformance

4232
4233
4234
4235

4236

4237
4238
4239

4240

4241

4242
4243
4244
4245

4246
4247

This annex specifies the conformance rules used in this specification.

An implementation is not conformant with this specification if it fails to satisfy one or more of the “shall” or
“required” level requirements defined in the conformance rules for each section, as indicated by the
following format:

RRnnnnnnnn: Rule text

General conformance rules are defined as follows:

RRBB--11:: To be conformant, the service shall comply with all the rules defined in this specification.
Items marked with shall are required, and items marked with should are highly advised to maximize
interoperation. Items marked with may indicate the preferred implementation for expected features,
but interoperation is not affected if they are ignored.

RRBB--22:: Conformant services of this specification shall use this XML namespace Universal
Resource Identifier:

4248

4249
4250

4251
4252
4253
4254

4255

(1) http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

RRBB--33:: A SOAP node shall not use the XML namespace identifier for this specification unless it
complies with the conformance rules in this specification.

This specification does not mandate that all messages and operations need to be supported. It only
requires that any supported message or operation obey the conformance rules for that message or
operation. It is important that services not use the XML namespace identifier for WS-Management in
SOAP operations in a manner that is inconsistent with the rules defined in this specification.

114 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

ANNEX C
(normative)

HTTP(S) Transport and Security Profile

4256
4257
4258
4259

4260

4261
4262
4263
4264

4265
4266

4267
4268
4269
4270

4271
4272

C.1 General

Although WS-Management is a SOAP protocol and not tied to a specific network transport, interoperation
requires some common standards to be established. This clause centers on establishing common usage
over HTTP 1.1 and HTTPS. In addition to HTTP and HTTPS, this specification allows any SOAP-enabled
transport to be used as a carrier for WS-Management messages.

For identification and referencing, each transport is identified by a URI, and each authentication
mechanism defined in this specification is also identified by a URI.

As new transports are standardized, they can also acquire a URI for referencing purposes, and any new
authentication mechanisms that they expose can also be assigned URIs for publication and identification
purposes in XML documents. As new transports are standardized for WS-Management, the associated
transport-specific requirements can be defined and published to ensure interoperability.

For interoperability, the standard transports are HTTP 1.1 (RFC 2616) and HTTPS (using TLS 1.0)
(RFC 2818).

The SOAP HTTP binding described in section 7 of SOAP Version 1.2 Part 2: Adjuncts is used for
WS-Management encoding over HTTP and HTTPS.

4273
4274

4275

4276

4277
4278

4279
4280

4281

4282
4283

4284

4285

4286
4287
4288

4289
4290

4291
4292

C.2 HTTP(S) Binding

This clause clarifies how SOAP messages are bound to HTTP(S).

RRCC..22--11:: A service that supports the SOAP HTTP(S) binding shall at least support it using
HTTP 1.1.

RRCC..22--22: A service shall at least implement the Responding SOAP Node of the SOAP Request-
Response Message Exchange Pattern:

http://www.w3.org/2003/05/soap/mep/request-response/

RRCC..22--33: A service may choose not to implement the Responding SOAP Node of the SOAP
Response Message Exchange Pattern:

http://www.w3.org/2003/05/soap/mep/soap-response/

RRCC..22--44: A service may choose not to support the SOAP Web Method Feature.

RRCC..22--55: A service shall at least implement the Responding SOAP Node of an HTTP one-way
Message Exchange Pattern where the SOAP Envelope is carried in the HTTP Request and the HTTP
Response has a Status Code of 202 Accepted and an empty Entity Body (no SOAP Envelope).

The message exchange pattern described in RB.2-5 is used to carry SOAP messages that require no
response.

RRCC..22--66: A service shall at least support Request Message SOAP Envelopes and one-way SOAP
Envelopes delivered using HTTP Post.

Version 1.0.0 115

Web Services for Management (WS-Management) Specification DSP0226

RRCC..22--77: In cases where the service cannot respond with a SOAP message, the HTTP error code
500 (Internal Server Error) should be returned and the client side should close the connection.

4293
4294

4295
4296
4297

4298
4299

4300
4301
4302
4303
4304
4305
4306

4307
4308
4309
4310
4311

4312
4313
4314

4315
4316
4317
4318
4319

4320
4321

4322
4323
4324

4325
4326
4327

4328

4329

4330
4331
4332
4333

4334
4335

RRCC..22--88: For services that support HTTPS (TLS 1.0), the service shall at least implement
TLS_RSA_WITH_RC4_128_SHA. It is recommended that the service also support
TLS_RSA_WITH_AES_128_CBC_SHA.

RRCC..22--99: When delivering faults, an HTTP status code of 500 should be used in the response for
s:Receiver faults, and a code of 400 should be used for s:Sender faults.

RRCC..22--1100: The URL used with the HTTP-Post operation to deliver the SOAP message is not
required to have the same content as the wsa:To URI used in the SOAP address. Often, the HTTP
URL will have the same content as the wsa:To URI in the message, but may additionally contain
other message routing fields suffixed to the network address using a service-defined separator token
sequence. It is recommended that services require only the wsa:To network address URL to promote
uniform client-side processing and behavior, and to include service-level routing in other parts of the
address.

RRCC..22--1111: In the absence of other requirements, it is recommended that the path portion of the URL
used with the HTTP-POST operation be /wsman for resources that require authentication and
/wsman-anon for resources that do not require authentication. If these paths are used,
unauthenticated requests should not be supported for /wsman and authentication must not be
required for /wsman-anon.

RRCC..22--1122: If the SOAPAction header is present in an HTTP/HTTPS-based request that carries a
SOAP message, it must match the wsa:Action URI present in the SOAP message. The SOAPAction
header is optional, and a service must not fault a request if this header is missing.

Because WS-Management is based on SOAP 1.2, the optional SOAPAction header is merely used
as an optimization. If present, it shall match the wsa:Action URI used in the SOAP message. The
service is permitted to fault the request by simply examining the SOAPAction header, if the action is
not valid, without examining the SOAP content. However, the service may not fault the request if the
SOAPAction header is omitted.

RRCC..22--1133: If a service supports attachments, the service shall support the HTTP Transmission
Optimization Feature.

RRCC..22--1144: If a service cannot process a message with an attachment or unsupported encoding type,
and the transport is HTTP or HTTPS, it shall return HTTP error 415 as its response (unsupported
media).

RRCC..22--1155: If a service cannot process a message with an attachment or unsupported encoding type
using transports other than HTTP/HTTPS, it should return a wsman:EncodingLimit fault with the
following detail code:

http://schemas.dmtf.org/wbem/wsman/1/wsman/faultDetail/EncodingType

C.3 HTTP(S) Security Profiles

This specification defines a set of security profiles for use with HTTP and HTTPS. Conformant services
need not support HTTP or HTTPS, but if supported these predefined profiles provide the client with at
least one way to access the service. Other specifications can define additional profiles for use with HTTP
or HTTPS.

RRCC..33--11: A conformant service that supports HTTP shall support one of the predefined HTTP-
based profiles.

116 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

RRCC..33--22: A conformant service that supports HTTPS shall support one of the predefined HTTPS-
based profiles.

4336
4337

4338
4339
4340

4341
4342

4343
4344

4345

4346

4347

4348

RRCC..33--33: A conformant service should not expose WS-Management over a completely
unauthenticated HTTP channel except for situations such as Identify (see clause 11), debugging, or
as determined by the service.

The service is not required to export only a single HTTP or HTTPS address. The service can export
multiple addresses, each of which supports a specific security profile or multiple profiles.

If clients support all predefined profiles, they are assured of some form of secure access to a
WS-Management implementation that supports HTTP, HTTPS, or both.

C.3.1 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/basic

This profile is essentially the "standard" profile, but it is limited to Basic authentication.

The typical sequence is shown in Table C-1.

Table C-1 – Basic Authentication Sequence

 Client Service

1 Client connects with no authorization
header.

 Service sees no header.

2 Service sends 401 return code, listing Basic as
the authorization mode.

3 Client provides Basic authorization header. Service authenticates the client.

4349
4350

4351
4352
4353

4354

This behavior is normal for HTTP. If the client connects with a Basic authorization header initially and if it
is valid, the request immediately succeeds.

Basic authentication is not recommended for unsecured transports. If used with HTTP alone, for example,
the transmission of the password constitutes a security risk. However, if the HTTP transport is secured
with IPSec, for example, the risk is substantially reduced.

Similarly, Basic authentication is suitable when performing testing, prototyping, or diagnosis.

Version 1.0.0 117

Web Services for Management (WS-Management) Specification DSP0226

C.3.2 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/digest 4355

4356
4357

4358

4359

This profile is essentially the same as the "standard" profile, but it is limited to the use of Digest
authentication.

The typical sequence is shown in Table C-2.

Table C-2 – Digest Authentication Sequence

 Client Service

1 Client connects with no authorization
header.

 Service sees no header.

2 Service sends 401 return code, listing Digest as
the authorization mode.

3 Client provides Digest authorization header.
4 Service begins authorization sequence of

secure token exchange.
5 Client continues authorization sequence. Service authenticates client.

4360
4361

4362

4363
4364

4365

4366

This behavior is normal for HTTP. If the client connects with a Digest authorization header initially and if it
is valid, the token exchange sequence begins.

C.3.3 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/basic

This profile establishes the use of Basic authentication over HTTPS. This profile is used when only a
server-side certificate encrypts the connection, but the service still needs to authenticate the client.

The typical sequence is shown in Table C-3.

Table C-3 – Basic Authentication over HTTPS Sequence

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

2 Service sends 401 return code, listing Basic as
the authorization mode.

3 Client provides Basic authorization header. Service authenticates the client.

If the client connects with a Basic authorization header initially and if it is valid, the request immediately
succeeds.

4367
4368

118 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

C.3.4 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/digest 4369

4370
4371

4372

4373

This profile establishes the use of Digest authentication over HTTPS. This profile is used when only a
server-side certificate encrypts the connection, but the service still needs to authenticate the client.

The typical sequence is shown in Table C-4.

Table C-4 – Digest Authentication over HTTPS Sequence

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

2 Service sends 401 return code, listing Digest as
the auth mode.

3 Client provides Digest authorization header.
4 Service begins authorization sequence of

secure token exchange.
5 Client continues authorization sequence. Service authenticates client.

4374
4375

4376

4377
4378

4379

4380

4381
4382

4383

4384

This behavior is normal for HTTPS. If the client connects with a Digest authorization header initially and if
it is valid, the token exchange sequence begins.

C.3.5 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual

In this security mode, the client supplies an X.509 certificate that is used to authenticate the client. No
HTTP or HTTPS authorization header is required in the HTTP-Post request.

However, as a hint to the service, the following HTTP/HTTPS authorization header may be present.

Authorization: http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual

Because the service can be configured to always look for the certificate, this authorization header is not
required.

This simple sequence is shown in Table C-5.

Table C-5 – HTTPS with Client Certificate Sequence

 Client Service

1 Client connects with no authorization
header but supplies an X.509 certificate.

 Service ignores the authorization header and
retrieves the client-side certificate used in the
TLS 1.0 handshake.

2 Service accepts or denies access with 403.7 or
403.16 return codes.

C.3.6 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/
basic

4385
4386

4387
4388
4389

In this profile, the http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual profile is used
first to authenticate both sides using X.509 certificates. Individual operations are subsequently
authenticated using HTTP Basic authorization headers.

Version 1.0.0 119

Web Services for Management (WS-Management) Specification DSP0226

4390
4391
4392
4393

4394

4395

This profile authenticates both the client and service initially and provides one level of security, typically at
the machine or device level. The second level of authentication typically performs authorization for
specific operations, although it can act as a simple, secondary authentication mechanism with no
authorization semantics.

The typical sequence is shown in Table C-6.

Table C-6 – Basic Authentication over HTTPS with Client Certificate Sequence

 Client Service

1 Client connects with certificate and special
authorization header.

 Service queries for client certificate and
authenticates. If certificate is missing or invalid,
the sequence stops here with 403.7 or 403.16
return codes.

2 After authenticating the certificate, the service
sends 401 return code, listing available Basic
authorization mode as a requirement.

3 Client selects Basic as the authorization
mode to use and includes it in the
Authorization header, as defined for HTTP
1.1.

 Service authenticates the client again before
performing the operation.

4396

4397

4398
4399
4400

4401

4402

4403
4404

4405
4406

4407
4408
4409

4410

4411

4412
4413

4414
4415

4416
4417
4418

In the initial request, the HTTPS authorization header must be as follows:

Authorization: http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic

This indicates to the service that this special mode is in use, and that it can query for the client certificate
to ensure that subsequent requests are properly challenged for Basic authorization if the HTTP
Authorization header is missing from a request.

The Authorization header is treated as normal HTTP basic:

Authorization: Basic ...user/password encoding

This use of Basic authentication is secure (unlike its normal use in HTTP) because the transmission of the
user name and password is performed over a TLS 1.0 encrypted connection.

C.3.7 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/
digest

This profile is the same as http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic,
except that the HTTP Digest authentication model is used after the initial X.509 certificate-based mutual
authentication is completed.

In the initial request, the HTTPS authorization header must be as follows:

Authorization: http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/digest

C.3.8 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
spnego-kerberos

In this profile, the client connects to the server using HTTPS with only server-side certificates to encrypt
the connection.

Authentication is carried out based on RFC 4559, which describes the use of GSSAPI SPNEGO over
HTTP (Table C-7). This mechanism allows HTTP to carry out the negotiation protocol of RFC 2478 to
authenticate the user based on Kerberos Version 5.

120 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

Table C-7 – SPNEGO Authentication over HTTPS Sequence 4419

 Client Service

1 Client connects with no authorization
header using HTTPS.

 Service sees no header, but establishes an
encrypted connection.

2 Service sends 401 return code, listing
Negotiate as an available HTTP authentication
mechanism.

3 Client uses the referenced Internet draft to
start a SPNEGO sequence to negotiate for
Kerberos V5.

 ...

4 ... Service engages in SPNEGO sequence to
authenticate client using Kerberos V5.

5 Client is authenticated. Service authenticates client.

C.3.9 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/
spnego-kerberos

4420
4421

4422
4423
4424

4425

This mode is the same as http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/spnego-
kerberos except that the server and client mutually authenticate one another at the TLS layer prior to
beginning the Kerberos authentication sequence (Table C-8). See RFC 2478 for details.

Table C-8 – SPNEGO Authentication over HTTPS with Cilent Certificate Sequence

 Client Service
1 Client connects with no authorization

header using HTTPS.
 Service queries for client certificate and

authenticates. If certificate is missing or invalid,
the sequence stops here with 403.7 or 403.16
return codes.

2 After the mutual certificate authentication
sequence, service sends 401 return code,
listing Negotiate as an available HTTP
authentication mechanism.

3 Client uses the referenced Internet draft to
start a SPNEGO sequence to negotiate for
Kerberos V5.

 ...

4 ... Service engages in SPNEGO sequence to
authenticate client using Kerberos V5.

5 Client is authenticated. Service authenticates client.

4426
4427

4428
4429

4430
4431

4432
4433
4434

Typically, this is used to mutually authenticate devices or machines, and then subsequently perform user-
or role-based authentication.

C.3.10 http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/spnego-
kerberos

This profile is the same as http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/spnego-
kerberos except that it is performed over an HTTP connection. See RFC 2478 for details.

Although this profile supports secure authentication, because it is not encrypted, it represents security
risks such as information disclosure because the SOAP traffic is in plain text. It is not to be used in
environments that require a high level of security.

Version 1.0.0 121

Web Services for Management (WS-Management) Specification DSP0226

C.4 IPSec and HTTP 4435

4436
4437
4438

4439
4440
4441
4442
4443

4444
4445
4446
4447
4448
4449

4450
4451

HTTP with Basic authentication is weak on an unsecured network. If IPSec is in use, however, this
weakness is no longer an issue. IPSec provides high-quality cryptographic security, data origin
authentication, and anti-replay services.

Because IPSec is intended for machine-level authentication and network traffic protection, it is insufficient
for real-world management in many cases, which can require additional authentication of specific users to
authorize access to resource classes and instances. IPSec needs to be used in conjunction with one of
the profiles in this section for user-level authentication. However, it obviates the need for HTTPS-based
traffic and allows safe use of HTTP-based profiles.

From the network perspective, the use of HTTP Basic authentication when the traffic is carried over a
network secured by IPSec is intrinsically safe and equivalent to using HTTPS with server-side certificates.
For example, the wsman security profile
http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/mutual/basic (using HTTPS) is equivalent
to simple http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/basic (using HTTP) if the traffic
is actually secured by IPSec.

Other specifications can define IPSec security profiles that combine IPSec with appropriate authentication
mechanisms.

122 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

ANNEX D
(informative)

XPath Support

4452
4453
4454
4455
4456

4457

4458

D.1 General

Implementations typically need to support XPath for several purposes, such as Fragment Transfer (7.7),
WS-Enumeration (8), and WS-Eventing filters (10.2.2). Because the full XPath 1.0 specification is large,
subsets are typically required in resource-constrained implementations.

4459
4460

4461
4462
4463
4464
4465

4466
4467
4468

4469
4470
4471

4472
4473

4474
4475
4476

4477
4478

4479
4480

4481
4482
4483

4484

The purpose of this section is to identify the minimum set of syntactic elements that implementations can
provide to promote maximum interoperability. In most cases, implementations will provide large subsets
of full XPath, but need additional definitions to ensure that the subsets meet minimum requirements. The
Level 1 and Level 2 BNF definitions in this annex establish such minimums for use in the
WS-Management space.

This specification defines two subset profiles for XPath: Level 1 with basic node selector support and no
filtering (for supporting Fragment Transfer as described in 7.7), and Level 2 with basic filtering support (for
WS-Enumeration and WS-Eventing). Level 2 is a formal superset of Level 1.

The following BNFs both are formal LL(1) grammars. A parser can be constructed automatically from the
BNF using an appropriate tool, or a recursive-descent parser can be implemented manually by inspection
of the grammar.

Within the grammars, non-terminal tokens are surrounded by angled brackets, and terminal tokens are in
uppercase and not surrounded by angled brackets.

XML namespace support is explicitly absent from these definitions. Processors that meet the syntax
requirements can provide a mode in which the elements are processed without regard to XML
namespaces, but can also provide more powerful, namespace-aware processing.

The default execution context of the XPath is specified explicitly for WS-Enumeration in 8.4 of this
specification, and in WS-Eventing subscription filters in 10.2.2.

For the following dialects, XML namespaces and QNames are not expected to be supported by default
and can be silently ignored by the implementation.

These dialects are for informational purposes only and are not intended as Filter Dialects in actual SOAP
messages. Because they are XPath compliant (albeit subsets), the Filter Dialect in the SOAP messages
is still that of full XPath:

http://www.w3.org/TR/1999/REC-xpath-19991116

Version 1.0.0 123

Web Services for Management (WS-Management) Specification DSP0226

D.2 Level 1 4485

4486
4487

4488

Level 1 contains just the necessary XPath to identify nodes within an XML document or fragment and is
targeted for use with Fragment Transfer (7.7) of this specification.

EXAMPLE:

(1) <path> ::= <root_selector> TOKEN_END_OF_INPUT; 4489
(2) <root_selector> ::= TOKEN_SLASH <element_sequence>; 4490
(3) <root_selector> ::= <attribute>; 4491
(4) <root_selector> ::= <relpath> <element_sequence>; 4492
(5) <root_selector> ::= TOKEN_DOT 4493

(6) <relpath> ::= <>; 4494
(7) <relpath> ::= TOKEN_DOT TOKEN_SLASH; 4495
(8) <relpath> ::= TOKEN_DOT_DOT TOKEN_SLASH; 4496

(9) <element_sequence> ::= <element> <optional_filter_expression> <more>; 4497

(10) <more> ::= TOKEN_SLASH <follower>; 4498
(11) <more> ::= <>; 4499

(12) <follower> ::= <attribute>; 4500
(13) <follower> ::= <text_function>; 4501
(14) <follower> ::= <element_sequence>; 4502

(15) <optional_filter_expression> ::= 4503
(16) TOKEN_OPEN_BRACKET <filter_expression> TOKEN_CLOSE_BRACKET; 4504

(17) <optional_filter_expression> ::= <>; 4505

(18) <attribute> ::= TOKEN_AT_SYMBOL <name>; 4506

(19) <element> ::= <name>; 4507

(20) <text_function> ::= 4508
(21) TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN; 4509

(22) <name> ::= TOKEN_XML_NAME; 4510

(23) <filter_expression> ::= <array_location>; 4511

4512

4513
4514
4515

(24) <array_location> ::= TOKEN_UNSIGNED_POSITIVE_INTEGER;

This dialect allows selecting any XML node based on its name or array position, or any attribute by its
name. Optionally, the text() NodeTest can trail the entire expression to select only the raw value of the
name, excluding the XML element name wrapper.

124 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

4516

4517

Terminals in the grammar are defined as shown in Table D-1.

Table D-1 – XPath Level 1 Terminals

TOKEN_SLASH The character ‘/’
TOKEN_DOT The character ‘.’
TOKEN_DOT_DOT The characters ‘..’
TOKEN_END_OF_INPUT End of input
TOKEN_OPEN_BRACKET The character ‘[’
TOKEN_CLOSE_BRACKET The character ‘]’
TOKEN_AT_SYMBOL The character ‘@’
TOKEN_XML_NAME Equivalent to XML Schema type xs:token
TOKEN_UNSIGNED_POSITIVE_INTEGER Values in the subrange 1..4294967295
TOKEN_TEXT The characters ‘text’
TOKEN_OPEN_PAREN The character ‘(’
TOKEN_CLOSE_PAREN The character ‘)’

4518
4519

4520

Using the following XML fragment, some examples are shown assuming that the element “a” is the
context node (that is, represents the resource or event document).

EXAMPLE 1:
(1) <Envelope> 4521
(2) <Body> 4522
(3) <a> 4523
(4) <b x="y"> 100 4524
(5) <c> 4525
(6) <d> 200 </d> 4526
(7) </c> 4527
(8) <c> 4528
(9) <d> 300 </d> 4529
(10) <d> 400 </d> 4530
(11) </c> 4531
(12) 4532
(13) </Body> 4533

4534

4535

(14) </Envelope>

EXAMPLE 2:
(1) / // Selects <a> and all its content 4536
(2) /a // Selects <a> and all its content 4537
(3) . // Selects <a> and all its content 4538
(4) ../a // Selects <a> and all its content 4539
(5) b // Selects <b x="y"> 100 4540
(6) c // Selects both <c> nodes, one after the other 4541
(7) c[1] // Selects <c><d>200</d></c> 4542
(8) c[2]/d[2] // Selects <d> 400 </d> 4543
(9) c[2]/d[2]/text() // Selects 400 4544
(10) b/text() // Selects 100 4545
(11) b/@x // Selects x="y" 4546

Version 1.0.0 125

Web Services for Management (WS-Management) Specification DSP0226

4547
4548
4549
4550
4551

4552
4553

4554
4555

4556
4557
4558

4559

4560
4561
4562
4563
4564

4565

The only filtering expression capability is an array selection. Note that XPath can return a node set. In 7.7
of this specification, the intent is to select a specific node, not a set of nodes, so if the situation occurs as
illustrated on line (20) above, most implementations simply return a fault stating that it is unclear which
<c> was meant and require the client to actually select one of the two available <c> elements using the
array syntax. Also note that text() cannot be suffixed to attribute selection.

A service that supports Fragment Transfer as described in 7.7 of this specification is encouraged to
support a subset of XPath at least as powerful as that described in Level 1.

Clearly, the service can expose full XPath 1.0 or any other subset that meets or exceeds the
requirements defined here.

A service that supports the Level 1 XPath dialect must ensure that it observes matching of a single node.
If more than one element of the same name is at the same level in the XML, the array notation must be
used to distinguish them.

D.3 Level 2

Level 2 contains everything defined in Level 1, plus general-purpose filtering functionality with the
standard set of relational operators and parenthesized sub-expressions (with AND, OR, NOT, and so on).
This dialect is suitable for filtering in WS-Enumeration and subscription filters using WS-Eventing. This
dialect is a strict superset of Level 1, with the <filter_expression> production being considerably extended
to contain a useful subset of the XPath filtering syntax.

EXAMPLE:
(1) <path> ::= <root_selector> TOKEN_END_OF_INPUT; 4566
(2) <root_selector> ::= TOKEN_SLASH <element_sequence>; 4567
(3) <root_selector> ::= <relpath> <element_sequence>; 4568
(4) <root_selector> ::= <attribute>; 4569
(5) <root_selector> ::= TOKEN_DOT; 4570

(6) <relpath> ::= <> ; 4571
(7) <relpath> ::= TOKEN_DOT TOKEN_SLASH; 4572
(8) <relpath> ::= TOKEN_DOT_DOT TOKEN_SLASH; 4573

(9) <element_sequence> ::= <element> <optional_filter_expression> <more>; 4574

(10) <more> ::= TOKEN_SLASH <follower>; 4575
(11) <more> ::= <>; 4576

(12) <follower> ::= <attribute>; 4577
(13) <follower> ::= <text_function>; 4578
(14) <follower> ::= <element_sequence>; 4579

(15) <optional_filter_expression> ::= TOKEN_OPEN_BRACKET <filter_expression> 4580
 TOKEN_CLOSE_BRACKET; 4581

(16) <optional_filter_expression> ::= <>; 4582

(17) <attribute> ::= TOKEN_AT_SYMBOL <name>; 4583

(18) <element> ::= <name>; 4584

(19) <text_function> ::= TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN; 4585

(20) <name> ::= TOKEN_XML_NAME; 4586

(21) <filter_expression> ::= <array_location>; 4587

(22) <array_location> ::= TOKEN_UNSIGNED_POSITIVE_INTEGER; 4588

(23) // Next level, simple OR expression 4589
(24) <or_expression> ::= <and_expression> <or_expression_rest>; 4590
(25) <or_expression_rest> ::= TOKEN_OR <and_expression> <or_expression_rest>; 4591

126 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

(26) <or_expression_rest> ::= <>; 4592

(27) // Next highest level, AND expression 4593
(28) <and_expression> ::= <rel_expression> <and_expression_rest>; 4594
(29) <and_expression_rest> ::= TOKEN_AND <rel_expression> <and_expression_rest>; 4595
(30) <and_expression_rest> ::= <>; 4596

(31) // Next level of precedence >, <, >=, <=, =, != 4597
(32) <rel_expression> ::= <sub_expression> <rel_expression_rest>; 4598
(33) <rel_expression_rest> ::= <name> <rel_op> <const>; 4599
(34) <rel_expression_rest> ::= <>; 4600

(35) // Identifier, literal, or identifier + param_list (function call) 4601
(36) <sub_expression> ::= TOKEN_OPEN_PAREN <filter_expression> TOKEN_CLOSE_PAREN; 4602
(37) <sub_expression> ::= TOKEN_NOT TOKEN_OPEN_PAREN <filter_expression> 4603

 TOKEN_CLOSE_PAREN; 4604

(38) // Relational operators 4605
(39) <rel_op> ::= TOKEN_GT; // > 4606
(40) <rel_op> ::= TOKEN_LT; // < 4607
(41) <rel_op> ::= TOKEN_GE; // >= 4608
(42) <rel_op> ::= TOKEN_LE; // <= 4609
(43) <rel_op> ::= TOKEN_EQ; // = 4610
(44) <rel_op> ::= TOKEN_NE; // != 4611

4612

4613

4614

(45) <const> ::= QUOTE TOKEN_STRING QUOTE;

Terminals in the grammar are defined as shown in Table D-2.

Table D-2 – XPath Level 2 Terminals

TOKEN_SLASH The character ‘/’
TOKEN_DOT The character ‘.’
TOKEN_DOT_DOT The characters ‘..’
TOKEN_END_OF_INPUT End of input
TOKEN_OPEN_BRACKET The character ‘[’
TOKEN_CLOSE_BRACKET The character ‘]’
TOKEN_AT_SYMBOL The character ‘@’
TOKEN_XML_NAME Equivalent to XML Schema type xs:token
TOKEN_UNSIGNED_POSITIVE_INTEGER Values in the subrange 1..4294967295
TOKEN_TEXT The characters ‘text’
TOKEN_OPEN_PAREN The character ‘(’
TOKEN_CLOSE_PAREN The character ‘)’
TOKEN_AND The characters ‘and’
TOKEN_OR The characters ‘or’
TOKEN_NOT The characters ‘not’
TOKEN_STRING Equivalent to XML Schema type xs:string
QUOTE The character ‘”’

Version 1.0.0 127

Web Services for Management (WS-Management) Specification DSP0226

EXAMPLE: This dialect allows the same type of selection syntax as Level 1, but adds filtering, as in the following
generic examples, given the Level 1 example document above:

4615
4616

(1) b[@x="y"] // Select if it has attribute x="y" 4617
(2) b[.="100"] // Select if it is 100 4618
(3) c[d="200"] // Select <c> if <d> is 200 4619
(4) c/d[.="200"] // Select <d> if it is 200 4620

(5) b[.="100" and @x="z"] // Select if it is 100 and has @x="z" 4621
(6) c[d="200" or d="300"] // Select all <c> with d=200 or d=300 4622

(7) c[2][not(.="400" or @x="100")] 4623
(8) // Select second <c> provided that: 4624
(9) // its value is not 400 and it does not have an attribute x set to 100 4625

(10) c/d[.="100" or (@x="400" and .="500")] 4626
(11) // Select <d> provided that: 4627

4628

4629
4630

4631
4632

4633
4634

4635
4636

4637

(12) // its value is 100 or it has an attribute x set to 400 and its value is 500

In essence, this dialect allows selecting any node based on a filter expression with the complete set of
relational operators, logical operators, and parenthesized sub-expressions.

A service that supports XPath-based filtering dialects as described in this specification is encouraged to
support a subset of XPath at least as powerful as that described in Level 2.

Clearly, the service can expose full XPath 1.0 or any other subset that meets or exceeds the
requirements defined here.

In the actual operation, such as wsen:Enumerate or wse:Subscribe, the XPath dialect is identified under
the normal URI for full XPath:

http://www.w3.org/TR/1999/REC-xpath-19991116

128 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

ANNEX E
(normative)

Selector Filter Dialect

4638
4639
4640
4641
4642

4643
4644

4645
4646
4647
4648

4649

4650

4651
4652

4653
4654
4655
4656

4657

The Selector filter dialect is a simple filtering dialect that allows a filtered enumeration or subscription with
no representation change.

Selectors are part of the default addressing model as defined in 5.1. This dialect is intended for
implementations that support the default addressing model because it gives the ability to support filtering
using a similar syntax while avoiding additional processing overhead of supporting more complex
dialects.

This specification defines the following dialect filter URI for the Selector dialect:

http://schemas.dmtf.org/wbem/wsman/1/wsman/SelectorFilter

If a service uses the WS-Management default addressing model, it can support this filter dialect for
Enumerate and Subscribe operations.

The Selector filter dialect can be used to specify name value pairs in the selector syntax to filter the
results from an Enumerate request or to identify the events of interest in a Subscribe request. The
selectors act as a selection mechanism against the resource class space implied by the ResourceURI;
however, there is no implication that the selector values are keys or even part of the returned resource.

The syntax for the filter in a wsen:Enumerate request is as follows:

(1) <s:Header> 4658
(2) <wsa:To> Service transport address </wsa:To> 4659
(3) <wsman:ResourceURI> Resource URI </wsman:ResourceURI> 4660
(4) ... 4661
(5) </s:Header> 4662
(6) <s:Body> 4663
(7) <wsen:Enumerate> 4664
(8) <wsman:Filter 4665
(9) Dialect="http://schemas.dmtf.org/wbem/wsman/1/wsman/SelectorFilter"> 4666
(10) <wsman:SelectorSet> 4667
(11) <wsman:Selector Name=”selector-name”> 4668
(12) selector-value 4669
(13) </wsman:Selector> + 4670
(14) </wsman:SelectorSet> 4671
(15) </wsman:Filter> 4672
(16) ... 4673
(17) </wsen:Enumerate> 4674

4675

4676
4677
4678

4679
4680
4681
4682

(18) </s:Body>

Because the filter syntax does not include resource type information, the Resource URI specified in the
addressing block is used for identifying the resource type. Each of the individual selectors within a
SelectorSet are logically joined by AND for determining the result of the filter.

RREE--11: If the Selector Filter dialect is supported, a service shall accept as selector names the local
(NCName) part of the QNames of any of the top-level elements that represent the resource instance
or event and may accept additional selector names. If the service supports filtering only on a subset
of these QNames and the filter refers to an unsupported QName, the service shall respond with a

Version 1.0.0 129

Web Services for Management (WS-Management) Specification DSP0226

4683
4684

4685
4686
4687

4688
4689
4690
4691

4692
4693
4694
4695
4696

4697
4698

4699
4700

4701

4702
4703
4704
4705
4706

4707
4708
4709

4710
4711
4712

wsen:CannotProcessFilter fault (or wsman:CannotProcessFilter for Subscribe), and should provide in
the fault detail the list of selector names that are supported for filtering by the service.

RREE--22: For each selector name specified in the filter, the result of the operation shall contain only
instances for which that named element has the given value. Elements that are not referenced from
the filter can have any value.

It is possible that some resource or event representations include elements of the same name, but from
different XML Namespaces. In this case, the service can choose to match on any of the elements where
the type matches the provided selector. Clients can be written to anticipate this, such that there might be
additional post-processing necessary to identify the set of desired instances.

RREE--33: If a resource or event representation includes two or more elements with QNames for
which the local part is identical but whose namespace names are different, and all of the following
conditions are present, the service shall not fault the request, and shall process the filter such that it
matches exactly one of the elements for which filtering is supported, using an algorithm of the
service’s choosing:

• A selector filter contains a wsman:Selector element whose Name attribute matches the local
part of each of these elements.

• At least one of the matching elements has a type and value space consistent with the provided
selector type and value.

• The service supports filtering on at least one of the corresponding elements per RREE--11.

RREE--44: If a resource or event representation includes elements of an array type, and a filter
contains a wsman:Selector element whose Name attribute matches the local part of the QName of
these elements and the service supports filtering on the corresponding element per RREE--11, the service
shall process the filter such that the results include all representations for which at least one element
of the array has a value equal to the value provided by the selector.

Processing of the SelectorSet element when used as a filter follows the same processing rules as when
used in EPRs (as described in 5.1.2), with respect to duplicate selector names, type mismatches,
unexpected selectors, size restrictions, and so on.

RREE--55: If the filter expression contains a SelectorSet that is invalid with respect to the rules in
5.1.2, the service should fault with wsen:CannotProcessFilter (or wsman:CannotProcessFilter for
Subscribe) containing the appropriate detail code.

130 Version 1.0.0

DSP0226 Web Services for Management (WS-Management) Specification

ANNEX F
(informative)

WS-Management XSD

4713
4714
4715
4716
4717

A normative copy of the XML schemas (XML Schema 1, XML Schema 2) for this specification can be
retrieved by resolving the XML namespace URIs for this specification (listed in A.1).

4718
4719

Version 1.0.0 131

Web Services for Management (WS-Management) Specification DSP0226

ANNEX G
(informative)

Acknowledgements

4720
4721
4722
4723
4724

4725

4726

4727

4728

4729
4730
4731

4732

4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760

The authors wish to acknowledge the following people.

Chair:

• Josh Cohen – Microsoft

Editors:

• Raymond McCollum – Microsoft
• Bryan Murray – HP
• Brian Reistad – Microsoft

Authors:

• Akhil Arora – Sun Microsystems
• Jim Davis – WBEM Solutions
• Mike Dutch – Symantec
• Zulah Eckert – BEA Systems
• Eugene Golovinsky – BMC Software
• Yasuhiro Hagiwara – NEC
• Jackson He – Intel
• David Hines – Intel
• Reiji Inohara – NEC
• Christane Kämpfe – Fujitsu-Siemens Computers
• Vincent Kowalski – BMC Software
• Vishwa Kumbalimutt – Microsoft
• Richard Landau – Dell
• James Martin – Intel
• Milan Milenkovic – Intel
• Paul Montgomery – AMD
• Alexander Nosov – Microsoft
• Abhay Padlia – Novell
• Roger Reich – Symantec
• Larry Russon – Novell
• Jeffrey Schlimmer – Microsoft
• Dr. Hemal Shah – Broadcom
• Sharon Smith – Intel
• Enoch Suen – Dell
• Vijay Tewari – Intel
• William Vambenepe – HP
• Kirk Wilson – CA, Inc.
• Dr. Jerry Xie – Intel

132 Version 1.0.0

4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782

Contributors:
• Paul C. Allen – Microsoft
• Rodrigo Bomfim – Microsoft
• Don Box – Microsoft
• Jerry Duke – Intel
• David Filani – Intel
• Kirill Gavrylyuk – Microsoft
• Omri Gazitt – Microsoft
• Frank Gorishek – AMD
• Lawson Guthrie – Intel
• Arvind Kumar – Intel
• Brad Lovering – Microsoft
• Pat Maynard – Intel
• Steve Millet – Microsoft
• Matthew Senft – Microsoft
• Barry Shilmover – Microsoft
• Tom Slaight – Intel
• Marvin Theimer – Microsoft
• Dave Tobias – AMD
• John Tollefsrud – Sun
• Anders Vinberg – Microsoft

2 Version 1.0.0

	Foreword
	Scope
	Normative References
	Approved References
	Other References

	Terms and Definitions
	Symbols and Abbreviated Terms
	Addressing
	Endpoint References
	Use of WS-Addressing Endpoint References
	WS�Management Default Addressing Model
	ResourceURI
	Selectors
	Faults for Default Addressing Model

	Service-Specific Endpoint References

	mustUnderstand Usage
	wsa:To
	Other WS-Addressing Headers
	Processing WS-Addressing Headers
	wsa:ReplyTo
	wsa:FaultTo
	wsa:MessageID and wsa:RelatesTo
	wsa:Action
	wsa:From

	WS�Management Control Headers
	wsman:OperationTimeout
	wsman:MaxEnvelopeSize
	wsman:Locale
	wsman:OptionSet
	wsman:RequestEPR

	Resource Access
	WS-Transfer
	Addressing Uniformity
	WS-Transfer:Get
	WS-Transfer:Put
	WS-Transfer:Delete
	WS-Transfer:Create
	Fragment-Level WS-Transfer
	Fragment-Level WS-Transfer:Get
	Fragment-Level WS-Transfer:Put
	Fragment-Level WS-Transfer:Delete
	Fragment-Level WS-Transfer:Create

	WS-Enumeration
	General
	WS-Enumeration:Enumerate
	General
	Enumeration "Count" Option
	Optimization for Enumerations with Small Result Sets

	Filter Interpretation
	WS-Enumeration:Pull
	WS-Enumeration:Release
	Ad-Hoc Queries and Fragment-Level Enumerations
	Enumeration of EPRs

	Custom Actions (Methods)
	Eventing
	General
	Subscribe
	General
	Filtering
	Connection Retries
	wse:SubscribeResponse
	Heartbeats
	Bookmarks
	Delivery Modes
	Event Action URI
	Delivery Sequencing and Acknowledgement
	General
	Push Mode
	PushWithAck Mode
	Batched Delivery Mode
	Pull Delivery Mode

	GetStatus
	Unsubscribe
	Renew
	SubscriptionEnd
	Acknowledgement of Delivery
	Refusal of Delivery
	Dropped Events

	Metadata and Discovery
	Security
	Security Profiles
	Security Considerations for Event Subscriptions
	Including Credentials with a Subscription
	Correlation of Events with Subscription
	Transport-Level Authentication Failure
	Security Implications of Third-Party Subscriptions

	Transports and Message Encoding
	SOAP
	Lack of Response
	Replay of Messages
	Encoding Limits
	Binary Attachments
	Case-Sensitivity

	Faults
	Introduction
	Fault Encoding
	NotUnderstood Faults
	Degenerate Faults
	Fault Extensibility
	Master Faults
	(informative)���Notational Conventions
	(normative)��Conformance
	(normative)��HTTP(S) Transport and Security Profile
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/b
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/d
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/https/
	http://schemas.dmtf.org/wbem/wsman/1/wsman/secprofile/http/s

	(informative)���XPath Support
	(normative)���Selector Filter Dialect
	(informative)���WS-Management XSD
	(informative)���Acknowledgements

