

Document Identifier: DSP-IS0501	2
Date: 2015-07-19	3
Version: 1.0.0	4

Software Defined Data Center (SDDC) Definition A White Paper from the OSDDC Incubator

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF or all of its members. Because this document is a Work in Progress, it may still change, perhaps profoundly. This document is available for public review and comment.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback

- 7 Supersedes: None
- 8 Document Class: Informative
- 9 Document Status: Work in Progress
- 10 Document Language: en-US
- 11

1

12 Copyright Notice

13 Copyright © 2015 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF specifications and documents, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

18 Implementation of certain elements of this standard or proposed standard may be subject to third party

19 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

26 party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

27 owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

29 implementing the standard from any and all claims of infringement by a patent owner for such

30 implementations.

31 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

32 such patent may relate to or impact implementations of DMTF standards, visit

33 <u>http://www.dmtf.org/about/policies/disclosures.php</u>.

34 This document's normative language is English. Translation into other languages is permitted.

35

CONTENTS

36	Fore	eword		5		
37	1	Exec	utive summary	6		
38		1.1 Introduction				
39		1.2 SDDC definition				
40	2	Use cases				
41		2.1	Infrastructure as a Service (IaaS)	7		
42		2.2 Software as a Service (SaaS)				
43	3	SDD	C technology and functionality			
44	•	3.1	SDDC, virtualization and cloud relationships			
45	4	SDDO	Carchitectures			
46	•	4.1	Server virtualization			
47		4.2	Software Defined Network			
48		4.3	Software Defined Storage			
49		-	4.3.1 Necessary SDS functionality			
50		4.4	Data center Abstraction Layer			
51	5	Appli	able standards activity			
52	•	5.1	DMTF			
53			Open SDDC Incubator			
54			Cloud Management Initiative			
55			Network Management Initiative	14		
56			Virtualization Management Initiative	14		
57			5.1.1 Cloud Infrastructure Management Interface (CIMI)			
58			5.1.2 Open Virtualization Format (OVF)	14		
59			5.1.3 Web-Based Enterprise Management (WBEM)			
60			5.1.4 Common Information Model (CIM)			
61			5.1.5 Configuration Management Database Federation (CMDBf)			
62			5.1.6 Systems Management Architecture for Server Hardware (SMASH)			
63			5.1.7 Redfish API			
64		5.2	OASIS			
65			5.2.1 Cloud Application Management for Platforms (CAMP)			
66		5.0	5.2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)			
67		5.3	SNIA			
68 69			5.3.1 Cloud Data Management Interface (CDMI)5.3.2 Storage Management Initiative			
09 70		5.4	Other SDOs			
70		5.4	5.4.1 ETSI/ISG – Network Function Virtualization (NFV)			
72			5.4.2 IETF/IRTF			
73			5.4.3 Open Networking Foundation (ONF)			
74			5.4.4 Open DayLight (ODL)			
75			5.4.5 Open Data Center Alliance (ODCA)	18		
76	6	Conc	usion			
	-					
77	7		ences			
78	8					
79	AN	NEX A	(informative) Change log	23		
80						

81 Figures

82	Figure 1 - IaaS use case for SDDC	. 8
83	Figure 2 - SaaS use case for SDDC	. 9
	Figure 3 - SDDC architecture	
85	Figure 4 - Data center Abstraction Layer	13
86		

87 **Tables**

88	Table 1 – Glossary of terms	19
89		

90

Foreword

- 91 The *Software Defined Data Center (SDDC) Definition* (DSP-IS0501) was prepared by the Open Software 92 Defined Data Center (OSDDC) Incubator.
- 93 The goal of the OSDDC Incubator is to develop SDDC use cases, reference architectures, and
- requirements based on real world customer requirements. Based on these inputs, the Incubator will
- 95 develop a set of white papers and set of recommendations for industry standardization for the SDDC.
- 96 The work coming out of this incubator will result in:
- 97 1. Clear definition and scope of the SDDC concept.
- 98 2. New work items to existing chartered working groups.
- 99 3. Expanded scope to existing chartered groups
- 100 4. Creation of new working groups, if needed.

101 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 102 management and interoperability. For information about the DMTF, see <u>http://www.dmtf.org</u>.

103 Acknowledgments

- 104 The DMTF acknowledges the following individuals for their contributions to this document:
- 105 Ali, Ghazanfar ZTE Corporation
- 106 Black, David EMC
- Bumpus, Winston VMWare, Inc.
- 108 Carlson, Mark DMTF Fellow
- 109 Dolin, Rob Microsoft Corporation
- Khasnabish, Bhumip ZTE
- Leung, John Intel
- McDonald, Alex NetApp
- 113 Ronco, Enrico Telecom Italia
- Snelling, David Fujitsu
- Shah, Hemal Broadcom
- Wells, Eric Hitachi, Ltd.
- Wheeler, Jeff Huawei
- Zhdankin, Alex Cisco

119 Software Defined Data Center (SDDC) Definition

120 **1** Executive summary

121 **1.1 Introduction**

The Software Defined Data Center (SDDC) is an evolutionary result of virtualization and <u>cloud</u> computing technologies. To date, the SDDC has been defined in many ways. The following examples are a few of the more prevalent (and realistic) definitions gleaned from a large number of resources used for this paper:

"A Software Defined Data Center (SDDC) is a data storage facility in which all elements of the
infrastructure – networking, storage, CPU and security – are virtualized and delivered as a service.
Deployment, provisioning, configuration and the operation, monitoring and automation of the entire
infrastructure is abstracted from hardware and implemented in software." (Forrester)

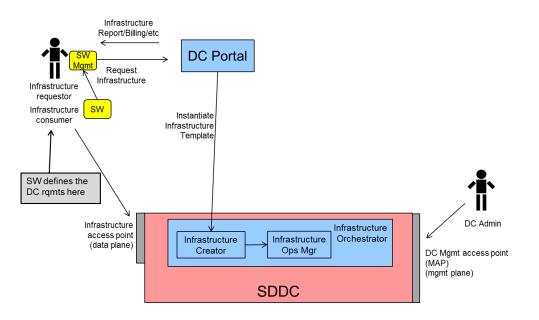
- 130 Another:
- "SDDC is the phrase used to refer to a data center where the entire infrastructure is virtualized and
 delivered as a service." (VMware)
- 133 It is clear that the move to the SDDC is a major technology shift. While other definitions have beenproposed by various vendors, they all have similar intent.
- 135 The goal of this paper is to outline use cases, and definitions, and identify existing standards gaps, and 136 possible architectures for the various implementations of SDDC.

137 1.2 SDDC definition

Software Defined Data Center (SDDC): a programmatic abstraction of logical compute, network, storage,
 and other resources, represented as software. These resources are dynamically discovered, provisioned,
 and configured based on workload requirements. Thus, the SDDC enables policy-driven orchestration of
 workloads, as well as measurement and management of resources consumed.

- 142 The SDDC comprises a set of features that include:
- Logical compute, network, storage, and other resources
- Discovery of resource capabilities
- Automated provisioning of logical resources based on workload requirements
- Measurement and management of resources consumed
- Policy-driven orchestration of resources to meet service requirements of the workloads

148 **2 Use cases**


This section describes use cases for various services that can be provided by an SDDC, including
 Infrastructure as a Service (<u>laaS</u>) and Software as a Service (<u>SaaS</u>).

151 **2.1 Infrastructure as a Service (laaS)**

152 In IaaS, the customer uses the data center to host the infrastructure. After the infrastructure is available, 153 the customer installs the necessary software and data content and uses the services that are enabled.

Figure 1 shows the interactions in an IaaS environment using a software-defined data center. There are two actors: the customer and the IaaS data center (DC) administrator. The customer has two aspects: the infrastructure requestor and the infrastructure consumer.

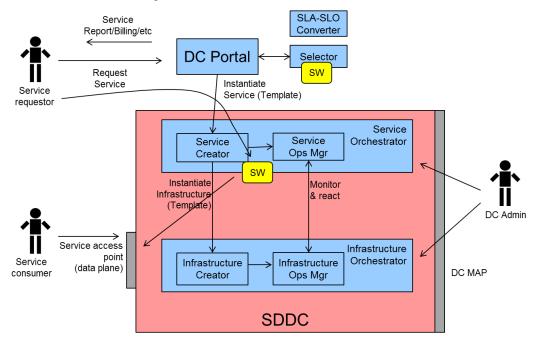
- 157 The infrastructure requestor performs the following tasks:
- Instantiates a service and maps the service to a workload on a compute/storage topology
- Requests an infrastructure with specific service requirements
- Verifies infrastructure (including firmware/BIOS)
- 161 Requests that infrastructure be increased or decreased
- Receives usage reports and billing
- 163 The infrastructure consumer performs the following tasks:
- Installs the OS, and applications and delivers content
- Starts the service
- 166 The laaS DC administrator performs the following tasks:
- Monitors power and cooling in the data center
- Adds (or replaces) platforms/resources to the data center
- Receives notification of resource depletion (or surplus?)
- Takes inventory (accounting, SW licenses, etc.)
- Performs security audit (or sec. contractor)
- Receives notification of potential brown-outs
- Updates platform firmware (security, etc.)
- The software that defines the infrastructure is known to the infrastructure requestor. The infrastructure requestor inspects the software and determines the infrastructure to request.
- 176 In the diagram, the flow proceeds as follows:
- The infrastructure requestor inspects the workload (WL) and determines the infrastructure to request.
- The infrastructure requestor requests an infrastructure with specific service requirements from the service portal.
- 181
 3. The service portal makes a request to the infrastructure orchestrator to instantiate the infrastructure.
- 183 4. The infrastructure orchestrator instantiates the infrastructure.
- The infrastructure starts the infrastructure. At this point, the infrastructure moves to the operational phase and are managed by the infrastructure operation manager.
- 186 6. Once running, the infrastructure is available to the infrastructure consumer.

187

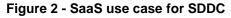
188

Figure 1 - laaS use case for SDDC

189 **2.2 Software as a Service (SaaS)**


In SaaS, the customer uses the data center to host a service for the customer. The service is consumedby a service consumer which may distinct from the SaaS customer.

- Figure 2 shows the interactions in a SaaS data center that is a software-defined data center. There are
 three actors: the service requestor, the service consumer, and the SaaS DC administrator.
- 194 The service requestor wants to instantiate a service and performs the follow tasks:
- 195 Requests a service with specific service requirements
- 196 Monitors the service
- 197 Changes the service requirements of an operational service
- 198 Requests that the service increases or decreases
- Requests migration of the service to another cloud service provider (CSP)
- Requests the service be terminated
- 201 The service consumer performs the following task:
- Uses the service
- 203 The SaaS DC administrator performs the following tasks:
- Monitors the service
- Monitors power and cooling in the data center
- Adds (or replaces) platforms/resources in the data center
- Receives notification of resource depletion (or surplus?)
- Takes inventory (accounting, SW licenses, etc.)
- Performs security audits (or sec. contractor)


- Receives notification of potential brown-outs
- Stages/tests new services
- Updates platform firmware (security, etc.)

The software that defines the service infrastructure is known to the DC service portal. In the diagram, the flow proceeds as follows:

- The service requestor requests a service with specific service requirements from the service portal.
- 217
 2. If multiple service templates are possible, the service portal or the service requestor may select 218 the specific service template.
- 3. The service portal makes a request to the service orchestrator to instantiate the service.
- 4. The service creator makes a request to the infrastructure orchestrator to instantiate the infrastructure.
- 5. After the infrastructure is instantiated, the service creator installs the OS, applications, and the content and configures accordingly.
- 6. Finally, the service creator starts the service. At this point, both the infrastructure and service move to the operational phase and are managed by their respective operation managers.
- 226 7. After the service is running, it is available to the service consumer.

227

3 SDDC technology and functionality

229 An SDDC incorporates and is heavily dependent upon the use of topologies that abstract, optionally pool,

and automate the use of the virtualized resources. Virtualization technologies can be thought of as

common resources when integrated and used by the SDDC. The focus on industry standardized

232 management models and application programming interfaces (<u>APIs</u>) provide this level of abstraction.

233 Various vendors and <u>SDO</u>s are championing their respective offerings into the new SDDC community.

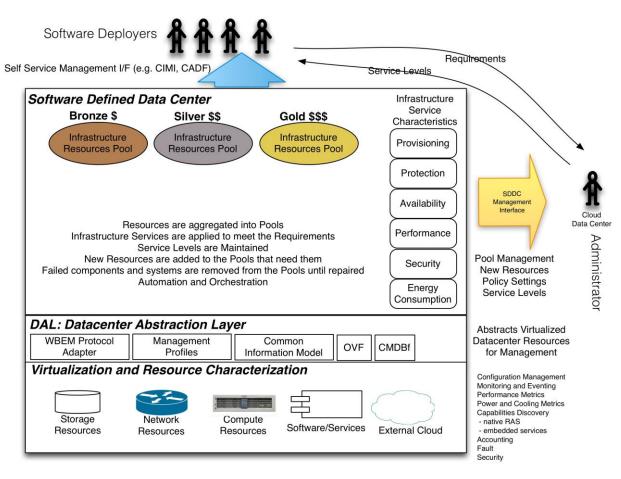
- The SDDC comprises a set of features that include:
- 235 1. Logical compute, network, storage and other resources
- 236 2. Discovery of resource capabilities
- 237 3. Automated provisioning of logical resources based on workload requirements
- 238 4. Measurement and management of resources consumed
- 5. Policy-driven orchestration of resources to meet service requirements of the workloads
- 240 Additional SDDC features and functionalities include:
- Topology automation
- Security, <u>AAA</u> (authentication, authorization, auditing), intrusion detection system (<u>IDS</u>), intrusion prevention system (IPS), <u>firewall</u>
- 244 The SDDC should be:
- Standardized API and functional model
- Holistic system wide abstractions
- Adaptive elasticity driven by the workload
- Automated provisioning, configuration, and run-time management

249 **3.1** SDDC, virtualization and cloud relationships

Virtualization is central to the SDDC and is necessary but not sufficient. The three major building blocks
 that virtualization delivers are: compute, storage, and network:

- Compute Virtualization Abstraction of compute resources that can be realized with underlying
 collection of physical server resources. This concept includes abstraction of the number, type,
 and identity of physical servers, processors, and memory.
- Storage Virtualization Abstraction of storage resources that can be realized with underlying physical and logical storage resources. This concept includes abstraction of the number, type, and identity of physical disks.
- Network Virtualization Abstraction of network resources that can be realized using underlying
 physical and logical resources. This concept includes abstraction of the number, type, and
 identity of physical media, connectivity, and protocol.

261 **4 SDDC architectures**


262 Building on virtualization technology through standard APIs allows the SDDC automation to provision 263 exactly those resources required for the new software that will be deployed on those resources. This is 264 shown in lowest two layers of Figure 3 as the Data center Abstraction Layer (DAL) and the Virtualization 265 and Resource Characterization. This automation is envisioned to interpret the requirements for the 266 deployed software and configure the resources appropriately to meet those requirements. The 267 requirements may be conveyed to the administrator out of band, as is typical today, and in this case the 268 administrator must interpret these requirements. However the requirements may also be conveyed through an API, the implementation of which performs the requirements interpretation and automates 269 270 what the administrator would otherwise need to do manually. This is shown in Figure 3 with the thin black 271 arrows representing the manual requirements conveyed to the administrator and the results of the 272 administrators interpretation conveyed manually out of band back as service levels. The administrator 273 responds by providing resources that will meet certain service levels required by the new software. The 274 blue arrow represents a self-service management interface that incorporates interface elements with the

DSP-IS0501

- 275 ability to convey the Compute, Storage and Networking requirements in-band such that the manual,
- 276 out-of-band requirements path is no longer needed. This has been identified as a gap for such interfaces
- 277 as DMTF CIMI. The requirements need to be abstracted and added to the interface as metadata for the
- various loads that need resources. 278

279 Short term, the Infrastructure Service Characteristics shown in the top box as Provisioning, Protection, 280 Availability, Performance, Security, and Energy Consumption are typically implemented for 281 coarse-grained virtual and in some cases physical resources. Thus while the resources themselves may 282 be virtualized and provisioned with fine-grained control (provisioned at the granularity of individual 283 workloads), the services that provide these characteristics may not. To accommodate this, the top box 284 contains pools of resources configured and provisioned at this coarse granularity with the coarse-grained 285 services. Resource pooling is a technique used for various reasons and includes similarly configured 286 resources both unused and already provisioned. We use some example pool names for clarity, but there 287 may be many differently configured pools from which to draw. This way the administrator, if he is 288 manually interpreting the requirements, can simply pick the pool with the best match of resource 289 configurations for those requirements. If there is similar automation software receiving the requirements 290 via the self-service interface, that software can do the interpretation and select the correct pool with an 291 algorithm. We see this resource pooling technique as a temporary approach that should be obviated after 292 the infrastructure services are able to act at a finer grained level.

- 293 SDDC builds upon virtualization technology by expanding the scope from individually virtualized 294 components to the entire data center, and envisions a unified control and management solution.

295

Figure 3 - SDDC architecture

Figure 3 shows all the elements of an SDDC. The SDDC architecture defines data center resources that include software-based services. The DAL layer provides abstraction of compute, network, and storage resources, which are then virtualized and configured according to the requirements of the workload.

299 The DAL is a unifying and consistent abstraction for the underlying resources and provides a

300 standardized interface and common model that may be used by the SDDC management automation 301 software.

302 **4.1 Server virtualization**

Server virtualization releases CPU and memory from the limitations of the underlying physical hardware.
 As a standard infrastructure technology, server virtualization is the basis of the SDDC, which extends the
 same principles to all infrastructure services.

306 **4.2 Software Defined Network**

In a Software Defined Network (<u>SDN</u>), the network control plane is moved from the switch to the software
 running on a server. This improves programmability, efficiency, and extensibility. SDN is to date the most
 developed and understood software-defined technology. Therefore this paper does not delve into the
 details of this software-defined component.

311 4.3 Software Defined Storage

Software Defined Storage (SDS) is an emerging ecosystem of products and requires further discussion here. This software should make visible all physical and virtual resources and enables programmability and automated provisioning based on consumption or need. SDS separates the control plane from the data plane and dynamically leverages heterogeneity of storage to respond to changing workload demands. The SDS enables the publishing of storage service catalogs and enables resources to be

- 317 provisioned on-demand and consumed according to policy.
- 318 In many respects, SDS is more about packaging and how IT users think about and design data centers. 319 Storage has been largely software defined for more than a decade: the vast majority of storage features
- have been designed and delivered as software components within a specific, storage-optimized
 environment.
- The Storage Networking Industry Association (SNIA) definition of SDS allows for both proprietary and heterogeneous platforms. To satisfy the SNIA definition, the platform must offer a self-service interface for provisioning and managing virtual instances of itself.

325 **4.3.1 Necessary SDS functionality**

- Because many storage offerings today have already been abstracted and virtualized, what capabilities should be offered to claim the title of Software Defined Storage?
- 328 Software Defined Storage should include:
- Automation Simplified management that reduces the cost of maintaining the storage infrastructure.
- Standard Interfaces APIs for the management, provisioning, and maintenance of storage devices and services.
- **Virtualized Data Path** Block, File, and Object interfaces that support applications written to these interfaces.
- Scalability Seamless ability to scale the storage infrastructure without disruption to availability or performance.

DSP-IS0501

Software Defined Data Center (SDDC) Definition

337 Ideally, SDS offerings allow applications and data producers to manage the treatment of their data by the

338 storage infrastructure without the need for intervention from storage administrators, without explicit 339 provisioning operations, and with automatic service level management. In addition, data services should

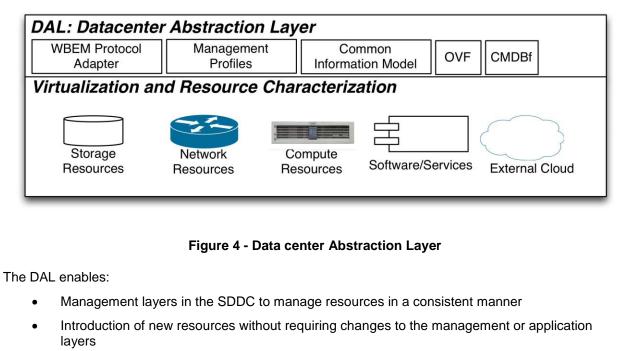
340 be able to be deployed dynamically and policies should be used to maintain service levels and match the

341 requirements with capabilities. Metadata should be used to:

- Express requirements
- Control the data services
- Express service level capabilities

345 **4.4 Data center Abstraction Layer**

The Data center Abstraction Layer (DAL) is a unifying and consistent abstraction for the virtual and
 physical resources within the data center. It extends the concept of a Hardware Abstraction Layer (HAL)
 to the entire data center.


349 Prior to the development of the HAL, operating systems and applications were dependent on specific

350 features provided by the hardware of the PC architecture. By adopting standard protocols, the HAL

provided an abstract interface that allowed these variations to be isolated from the operating systems and applications.

353 In a similar manner the DAL abstracts variations in data center compute, network, storage, and software

resources, presenting them as standardized resources within the SDDC.

- Improved efficiency and utilization of resources by the SDDC
- Applicable standards activity

355

356

357

358

359

360

5 Applicable standards activity

While the DMTF is currently the only SDO specifically focusing on developing models for the SDDC, many other organizations have work that is relevant. Work in other SDOs is mainly focused on SDN and SDS, but it is important to look at emerging standards and how they may be relevant to SDDC.

367 **5.1 DMTF**

368 DMTF standards enable effective management of IT environments through well-defined interfaces that

- 369 collectively deliver complete management capabilities. DMTF standard interfaces are critical to enabling
 370 interoperability among multivendor IT infrastructures, and systems and network management including
- 371 cloud computing, virtualization, desktop, network, servers, and storage.
- 372 Some of the key DMTF standards and initiatives under development that will enable the new SDDC 373 paradigm are described below.

374 Open SDDC Incubator

- The DMTF is the only SDO currently that is focusing on developing initial management models for the
- 376 SDDC marketplace. The DMTF recently launched its 'SDDC Incubator' with the charter of directing all 377 future work in the DMTF for SDDC.
- 378 Cloud Management Initiative
- The DMTF's Cloud Management Initiative is focused to promote interoperable cloud infrastructure management between cloud service providers and their consumers and developers. Working groups
- 381 within the initiative develop open standards with the aim of achieving this interoperability.

382 Network Management Initiative

- 383 DMTF's Network Management Initiative (NETMAN) is an integrated set of standards for management of 384 physical, virtual, application-centric, and software-defined networks. The NETMAN initiative aims at 385 unifying network management across traditional data centers, cloud infrastructures, <u>NFV</u> environments,
- and SDDC ecosystems.

387 Virtualization Management Initiative

388 DMTF's Virtualization Management (VMAN) initiative includes a set of specifications and profiles that 389 address the management life cycle of a heterogeneous virtualized environment.

390 **5.1.1 Cloud Infrastructure Management Interface (CIMI)**

- CIMI is a high-level, self-service, interface for infrastructure clouds that greatly simplifies cloud systems
 management, allowing users to dynamically provision, configure, and administer their cloud usage. The
 specification standardizes interactions between cloud environments, using JSON and XML, to achieve
 interoperable cloud infrastructure management.
- CIMI was adopted as an International Standard by the Joint Technical Committee 1 (JTC 1) of the
 International Organization for Standardization (ISO) and the International Electrotechnical Commission
 (IEC) in March 2015.
- 398 Version 2 of the CIMI specification, which is currently under development, extends the previous work with 399 an enhanced network model and modelling of multicloud and intercloud scenarios.

400 **5.1.2 Open Virtualization Format (OVF)**

- 401 The <u>OVF</u> specification provides a standard format for packaging and describing virtual machines and
- 402 applications for deployment across heterogeneous virtualization platforms. OVF was adopted by the
- 403 American National Standards Institute (ANSI) in August 2010 and as an International Standard in August
- 2011 by the Joint Technical Committee 1 (JTC 1) of the International Organization for Standardization

DSP-IS0501

- 405 (ISO), and the International Electrotechnical Commission (IEC). In January 2013, DMTF released the
- 406 second version of the standard, OVF 2.0, which applies to emerging cloud use cases and provides 407 important developments from OVF 1.0 including improved network configuration support and package
- 407 Important developments from OVP 1.0 including improved network configuration support 408 encryption capabilities for safe delivery.
 - 400 encryption capabilities for sale delivery.

409 5.1.3 Web-Based Enterprise Management (WBEM)

Web-Based Enterprise Management (WBEM) is a set of specifications that define how resources can be
 discovered, accessed, and manipulated, facilitating the exchange of data across otherwise disparate
 technologies and platforms.

- 413 <u>WBEM</u> defines protocols for the interaction between systems management infrastructure components
- 414 implementing the Common Information Model (CIM), and is a major component of the DAL.

415 5.1.4 Common Information Model (CIM)

416 The CIM Schema is a <u>conceptual schema</u> that defines how managed elements in an IT environment are

417 represented as a common set of objects and relationships. CIM is extensible in order to allow product

418 specific extensions to the common definition of these managed elements. CIM uses a model based upon

419 <u>UML</u> to define the CIM Schema and is the basis for most other DMTF standards.

420 **5.1.5 Configuration Management Database Federation (CMDBf)**

421 <u>CMDBf</u> facilitates the sharing of information between configuration management databases (CMDBs) and

422 other management data repositories (MDRs). The CMDBf standard enables organizations to federate and

423 access information from complex, multivendor infrastructures, simplifying the process of managing related

424 configuration data stored in multiple CMDBs and MDRs.

425 **5.1.6 Systems Management Architecture for Server Hardware (SMASH)**

426 DMTF's SMASH standards are a suite of specifications that deliver architectural semantics, industry

- 427 standard protocols and profiles to unify the management of the data center. The SMASH Server
- 428 Management (SM) Command Line Protocol (CLP) specification enables simple and intuitive management
- 429 of heterogeneous servers in the data center. SMASH takes full advantage of the DMTF's Web Services
- 430 for Management (WS-Management) specification delivering standards-based Web services
- management for server environments. Both provide server management independent of machine state,
 operating system state, server system topology, or access method, facilitating local and remote
- 433 management of server hardware. SMASH also includes the SM Managed Element Addressing
- 434 Specification, SM CLP-to-CIM Mapping Specification, SM CLP Discovery Specification, SM Profiles, as
- 435 well as a SM CLP Architecture White Paper.

436 **5.1.7 Redfish API**

- 437 Scalability in today's data center is increasingly achieved with horizontal, scale-out solutions, which often
 438 include large numbers of simple servers. The usage model of scale-out hardware is drastically different
 439 from that of traditional enterprise platforms, and requires a new approach to management.
- 440 The DMTF's Redfish API is an open industry standard specification and schema designed to meet the
- 441 expectations of end users for simple, modern, and secure management of scalable platform hardware.
- 442 The Redfish API specifies a RESTful interface and utilizes JSON and OData to help customers integrate 443 solutions within their existing tool chains.

444 **5.2 OASIS**

- 445 OASIS (Organization for the Advancement of Structured Information Standards) is a nonprofit,
- international consortium whose goal is to promote the adoption of product-independent standards forinformation formats.

448 **5.2.1** Cloud Application Management for Platforms (CAMP)

449 OASIS CAMP advances an interoperable protocol that cloud implementers can use to package and

deploy their applications. CAMP defines interfaces for self-service provisioning, monitoring, and control.
 Based on <u>REST</u>, CAMP is expected to foster an ecosystem of common tools, plug-ins, libraries, and

- 452 frameworks, which will allow vendors to offer greater value-add.
- 453 Common CAMP use cases include:
- Moving on-premises applications to the cloud (private or public)
- Redeploying applications across cloud platforms from multiple vendors

456 **5.2.2** Topology and Orchestration Specification for Cloud Applications (TOSCA)

The TOSCA TC substantially enhances the portability of cloud applications and the IT services that comprise them running on complex software and hardware infrastructure. The IT application and service level of abstraction in TOSCA will also provide essential support to the continued evolution of cloud computing. For example, TOSCA would enable essential application and service life cycle management support, e.g., deployment, scaling, patching, etc., in Software Defined Environments (SDE), such as Software Defined Data Centers (SDDC) and Software Defined Networks (SDN).

463 TOSCA facilitates this goal by enabling the interoperable description of application and infrastructure 464 cloud services, the relationships between parts of the service, and the operational behavior of these 465 services (e.g., deploy, patch, shutdown) independent of the supplier creating the service, and any 466 particular cloud provider or hosting technology. TOSCA enables the association of that higher-level 467 operational behavior with cloud infrastructure management.

TOSCA models integrate the collective knowledge of application and infrastructure experts, and enable
 the expression of application requirements independently from IaaS- and <u>PaaS</u>-style platform capabilities.

- Thus, TOSCA enables an ecosystem where cloud service providers can compete and differentiate to addvalue to applications in a software defined environment.
- These capabilities greatly facilitate much higher levels of cloud service/solution portability, the continuous
 delivery of applications (DevOps) across their life cycle without lock-in, including:
- Portable deployment to any compliant cloud
- Easier migration of existing applications to the cloud
- Flexible selection and movement of applications between different cloud providers and cloud
 platform technologies
- Dynamic, multicloud provider applications

479 **5.3 SNIA**

The Storage Networking Industry Association (SNIA) mission is to "Lead the storage industry worldwide in
 developing and promoting standards, technologies, and educational services to empower organizations in
 the management of information".

483 Working towards this goal, SNIA has produced a number of specifications, of which the following have 484 particular relevance to the SDDC.

485 **5.3.1 Cloud Data Management Interface (CDMI)**

The SNIA Cloud Data Management Interface (CDMI) is an ISO/IEC standard that enables cloud solution vendors to meet the growing need of interoperability for data stored in the cloud. The CDMI standard is applicable to all types of clouds – private, public, and hybrid. There are currently more than 20 products that meet the CDMI specification.

490 CDMI provides end users with the ability to control the destiny of their data and ensure hassle-free data 491 access, data protection, and data migration from one cloud service to another.

492 Metadata in CDMI

493 The Cloud Data Management Interface (CDMI) uses many different types of metadata, including HTTP

494 metadata, data system metadata, user metadata, and storage system metadata. To address the

requirements of enterprise applications and the data managed by them, this use of metadata allows

496 CDMI to deliver simplicity through a standard interface. CDMI leverages previous SNIA standards, such

497 as the eXtensible Access Method (XAM), for metadata on each data element. In particular, XAM has

498 metadata that drives retention data services useful in compliance and eDiscovery.

499 CDMI's use of metadata extends from individual data elements and can apply to containers of data, as 500 well. Thus, any data placed into a container essentially inherits the data system metadata of the container 501 into which it was placed. When creating a new container within an existing container, the new container 502 would similarly inherit the metadata settings of its parent container. Of course, the data system metadata 503 can be overridden at the container or individual data element level, as desired.

504 The extension of metadata to managing containers, not just data, enables a reduction in the number of 505 paradigms for managing the components of storage – a significant cost savings. By supporting metadata 506 in a cloud storage interface standard and proscribing how the storage and data system metadata is 507 interpreted to meet the requirements of the data, the simplicity required by the cloud storage paradigm is

508 maintained, while still addressing the requirements of enterprise applications and their data.

509 **5.3.2 Storage Management Initiative**

510 The SNIA's Storage Management Initiative (SMI) gathers and prioritizes industry requirements that guide

511 the Technical Work Groups to cooperatively develop the Storage Management Initiative Specification

512 (SMI-S), an international standard implemented in over 500 products.

513 SMI-S Technical Specification

514 SMI-S standardizes and streamlines storage management functions and features into a common set of

515 tools that address the day-to-day tasks of the IT environment. Initially providing a foundation for

516 identifying the attributes and properties of storage devices, SMI-S now also delivers services such as

517 discovery, security, virtualization, performance, and fault reporting.

518 SMI-S defines a method for the interoperable management of a heterogeneous Storage Area Network

519 (SAN), and describes the information available to a WBEM Client from an SMI-S compliant CIM Server

and an object-oriented, XML-based, messaging-based interface designed to support the specific

521 requirements of managing devices in and through SANs. The latest publicly released version of SMI-S is 522 the SMI-S V1.6.1 SNIA Technical Position.

523 SMI-S uses the WBEM and CIM specifications from the DMTF.

524 **5.4 Other SDOs**

525 **5.4.1 ETSI/ISG – Network Function Virtualization (NFV)**

526 The first use case of ETSI/ISG NFV discusses NFV Infrastructure as a Service (NFVIaaS), which may 527 have a lot of similarity with SDDC. The NFVI includes compute, networking, and storage infrastructure in 528 virtualized forms. NFVIaaS calls for combining and interconnecting network as a service (NaaS), and 529 other compute/storage Infrastructure as a Service (IaaS) in order to provide virtual network function (VNF) 530 to the network administrators. The VNFs from different administrative domains can be interconnected and 531 clustered for developing an end-to-end service. The NFV use case document is available at the following 532 URL:

533 <u>http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf</u>.

534 **5.4.2 IETF/IRTF**

- 535 There are a few <u>IETF</u> and <u>IRTF</u> working/research groups (WGs/RGs) and drafts that discuss Virtual Data 536 Center (VDC). The concept of VDC and the service that can be offered by using VDC are very similar to 537 the SDDC concept that we discuss here in this paper.
- 538 The NVO3 (Network Virtualization Overlays/Over-Layer-3) Working Group (WG) focuses on developing 539 interoperable solutions for traffic isolation, address independence, and virtual machine (VM) migration in 540 a Data Center Virtual Private Network (DCVPN).
- 541 DCVPN is defined as a VPN that is viable across a scaling range of a few thousand VMs to several 542 million VMs running on more than 100,000 physical servers. DCVPN supports several million endpoints
- 543 and hundreds of thousands of VPNs within a single administrative domain. Further details about IETF
- 544 NVO3 activities can be found at <u>http://datatracker.ietf.org/wg/nvo3/charter/</u>.
- 545 The SCIM (System for Cross-domain Identity Management) WG is developing the core schema and 546 interfaces based on HTTP and REST for creating, reading, searching, modifying, and deleting user 547 identities and identity-related objects across administrative domains.
- 548 Initial focus areas of the SCIM WG are developing a core schema definition, a set of operations for
- 549 creation, modification, and deletion of users, schema discovery, read and search, bulk operations, and 550 mapping between the inetOrgPerson LDAP object class (RFC 2798) and the SCIM schema. Further
- 551 details about IETF SCIM activities can be found at <u>http://datatracker.ietf.org/wg/scim/charter/</u>.
- 552 The SDN (Software-Defined Networking) Research Group (RG) is currently focusing on developing
- definition and taxonomy for SDN. Future work may include a study of model scalability and applicability,
- 554 multilayer programmability and feedback control system, network description languages, abstractions,
- interfaces and compilers, and security-related aspects of SDN. Further details about IRTF SDN activities
 can be found at https://irtf.org/sdnrg.

557 5.4.3 Open Networking Foundation (ONF)

- 558 <u>ONF</u> has developed a southbound interface (SBI; south of the controller) called OpenFlow[™] to enable remote programming of the flow forwarding.
- 560 Currently ONF is focusing on Software Defined Networking (SDN) related issues especially the concepts, 561 frameworks, and architecture.
- 562 The network segmentation, multipath and multitenancy support, and security-related activities of the 563 Forwarding Abstraction WG, Northbound Interface (NBI) WG, Configuration and Management WG, Layer
- 563 Forwarding Abstraction WG, Northbound Interface (NBI) WG, Configuration and Management WG, I 564 4-7 Services DG, and Security DG may be very helpful for open SDDCs and their interconnections.

565 5.4.4 Open DayLight (ODL)

- 566 <u>ODL</u> focuses on control and programmability of the abstracted network functions and entities. The 567 objective is to develop northbound interfaces (NBIs) for gathering network intelligence including 568 performing analytics, and then use the controller to orchestrate adaptive new rules throughout the 569 network for efficient automated operations. A detailed technical overview of ODL initiatives is available at 570 http://www.opendaylight.org/project/technical-overview.
- 571 ODL supports OpenFlow and other protocols as SBIs, and released Base (Enterprise), Virtualization, and 572 Service Provider editions of the software packages (<u>http://www.opendaylight.org/software</u>).

573 **5.4.5 Open Data Center Alliance (ODCA)**

- 574 ODCA initiatives and activities are focused on developing open, interoperable solutions for secure cloud
- 575 federation, automation of cloud infrastructure, common management, and transparency of cloud service 576 delivery.

577 6 Conclusion

578 To realize an SDDC, data center resources, such as compute, network, and storage, are expressed as 579 software. They also need to have certain characteristics, such as multitenancy; rapid resource 580 provisioning; elastic scaling; policy-driven resource management; shared infrastructure; instrumentation; 581 and self-service, accounting, and auditing. This ultimately entails a programmable infrastructure that 582 enables valuable resources to be automatically cataloged, commissioned, decommissioned, repurposed, 583 and repositioned.

584 **7 References**

- 585 S. Karavettil et al, "Security Framework for Virtualized Data Center Services", IETF discussion draft 586 (<u>http://tools.ietf.org/id/draft-karavettil-vdcs-security-framework-05.txt</u>), June 2013.
- 587 Alan G. Yoder et al, "SNIA 2015 Dictionary", Storage Networking Industry Association, 588 (http://www.snia.org/sites/default/files/SNIADictionaryV2015-1 0.pdf), March 2015.
- 589 SNIA Technical Community: Software Defined Storage (<u>http://www.snia.org/sds</u>).

590 Specifications

- 591 DMTF: DSP0263, Cloud Infrastructure Management Interface (CIMI) Model and RESTful HTTP-based 592 Protocol, version 1.1.0, October 25 2013.
- 593 http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.1.0.pdf
- 594 DMTF: *DSP0243*, *Open Virtualization Format Specification, version 2.1.0*, January 23 2014. 595 <u>http://dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf</u>
- 596 SNIA: *SNIA Technical Position: Cloud Data Management Interface (CDMI), v1.1.1*, March 19, 2015 597 <u>http://www.snia.org/sites/default/files/CDMI_Spec_v1.1.1.pdf</u>
- 598 SNIA: SNIA Technical Position: Storage Management Initiative Specification (SMI-S) v1.6.1 rev 5, 599 December 17, 2014
- 600 <u>http://www.snia.org/sites/default/files/SMI-Sv1.6.1r5.zip</u>

601 8 Glossary

602

Table 1 – Glossary of terms

Acronym or Phrase	Definition	Explanation
ААА	Authentication, Authorization, and Auditing	The three major areas of concern in system security.

Acronym or Phrase	Definition	Explanation
API	Application Programming Interface	An interface used by an application to request services. The term API is usually used to denote interfaces between applications and the software components that compose the operating environment (e.g., operating system, file system, volume manager, device drivers, etc.) Source: http://www.snia.org/education/dictio nary/a
Block storage		Storage organized and allocated in blocks of fixed size.
BYOD	Bring Your Own Device	The policy of permitting employees to bring personally owned mobile devices (laptops, tablets, and smart phones) to their workplace, and to use those devices to access privileged company information and applications Source: http://en.wikipedia.org/wiki/Bring_yo ur_own_device
Cloud	Cloud Computing	Computing facilities based on remote servers accessed via internet protocols, in contrast with facilities local to their usage.
Fiber Channel		A high-speed LAN technology, most commonly used for SANs.
Firewall		A device, often implemented in software, to control data flows between two or more networks. Firewalls typically reject network traffic that does not originate from trusted address and/or ports and thus provides a degree of isolation between networks.
laaS	Infrastructure as a Service	A delivery model for IT infrastructure whereby resources are provided as a service via network protocols. IaaS usually also provides interfaces to provision and mange resources.
IDS	Intrusion Detection System	A system used to detect unauthorized access to resources.
HIDS	Host Intrusion Detection Systems	An IDS specifically designed to protect host systems.

Acronym or Phrase	Definition	Explanation
LAN	Local Area Network	A network with a small, restricted, scope. LAN's may be connected to larger networks, such as the internet.
Load Balancing		A mechanism used to distribute demands for resources amongst those available. Usually used in reference to processing resources but may be applied to any resource.
Metadata		Metadata is "data about data" and there are two types: structural metadata and descriptive metadata. Structural metadata is data about the containers of data. Descriptive metadata concerns the application data content.
NAS	Network Attached Storage	A term used to refer to storage devices that connect to a network and provide file access services to computer systems. These devices generally consist of an engine that implements the file services, and one or more devices, on which data is stored.
		Source: http://www.snia.org/education/dictio nary/n#network_attached_storage
NFV	Network Function Virtualization	The concept of replacing dedicated network appliances, such as routers and firewalls, with software applications running on general purpose servers.
Object storage		Storage organized and allocated as self-contained data.
PaaS	Platform as a Service	A delivery model that encapsulates underlying infrastructure to simplify developing, running, and managing applications via network protocols.
pDC	Physical Data Center	
REST	Representational State Transfer	A software architecture style consisting of guidelines and best practices for creating scalable web services. REST is a coordinated set of constraints applied to the design of components in a distributed hypermedia system that can lead to a more performant and maintainable architecture. Source: https://en.wikipedia.org/wiki/Repres entational_state_transfer

Acronym or Phrase	Definition	Explanation
SaaS	Software as a Service	A delivery model whereby software applications are provided as a service via network protocols.
SAN	Storage Area Network	A network whose primary purpose is the transfer of data between computer systems and storage devices and among storage devices. Source: <u>http://www.snia.org/education/dictio</u> <u>nary/s#storage_area_network</u>
SDDC	Software Defined Data Center	Refer to this document.
SDN	Software Defined Network	The physical separation of the network control plane from the forwarding plane, and where a control plane controls several devices.
		Source: https://www.opennetworking.org/sdn -resources/sdn-definition
SDO	Standards Development Organization	
SDS	Software Defined Storage	Virtualized storage with a service management interface.
		SDS includes pools of storage with data service characteristics that may be applied to meet the requirements specified through the service management interface. Source: <u>http://www.snia.org/education/dictio</u> <u>nary/s#software_defined_storage</u>
Virtual Appliance		A software application preconfigured with (usually minimal) OS facilities required to run on a specific type of virtual machine. Virtual Appliances are typically used to provide services in IaaS and SaaS system architectures.
VLAN	Virtual LAN	A virtualized local area network
WAN	Wide area network	

603ANNEX A604(informative)605606607Change log

Date	Author	Comments
2014-03-07	Hemal Shah	Initial draft
2014-04-03	Winston Bumpus	Added DMTF Standards
2014-06-13	Working Session	Merged updates and comments – Draft 9
2014-06-19	Bhumip Khasnabish	Added requirements and SDO overviews
2014-06-24	Eric Wells	Glossary & formatting
2014-09-29	Working Session	Edits for 1.0.1c
2015-05-29	Mark Carlson	Added explanatory text for the architecture diagram
2015-07-19	Eric Wells	Editorial work for WIP publication

608