Scenario-based Distributed Virtualization Management Architecture for Multi-Host Environments

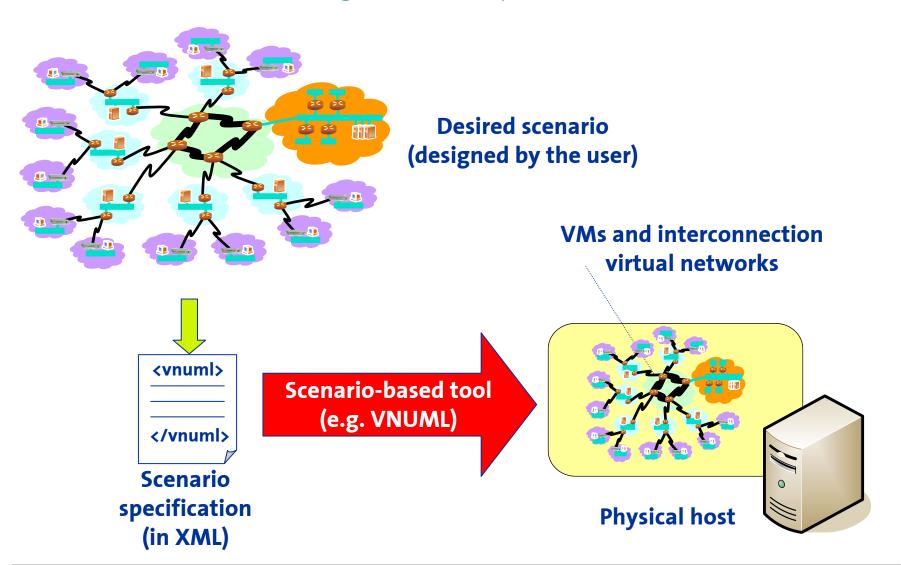
F. Galán (Telefónica I+D), D. Fernández (UPM), M. Ferrer (UPM), Fco. J. Martín (UPM)

DMTF 2nd Workshop on Systems and Virtualization Management (SVM 2008) Munich, 21-22 October 2008

- 01 Introduction
- O2 Design
 - General architecture
 - Deployment controller
 - Operation
- **O3** Practical Results
- **O4** Alignment with DMTF's Standards
- 05 Summary

O1 Introduction (1/3)

Scenario-based virtualization management principles


- Scenario-based virtualization management tools
 - Aimed at processing scenario specifications in order to be deployed in physical infrastructure (hosts) and provide further management (e.g. monitoring, execute command sequences, undeploy, etc.).
 - Scenario specification can be defined as a format representation (e.g., XML) of a set of virtual machines along with their interconnections in a given topology.
- Some tools nowadays are scenario-based, focused on experimentation environments, such as research and educational testbeds
 - VNUML, NetKit, MLN
- Conventional virtualization management tools (e.g. VMware VirtualCenter) for production environments use not to be scenariobased (out of our scope)

O1 Introduction (2/3)

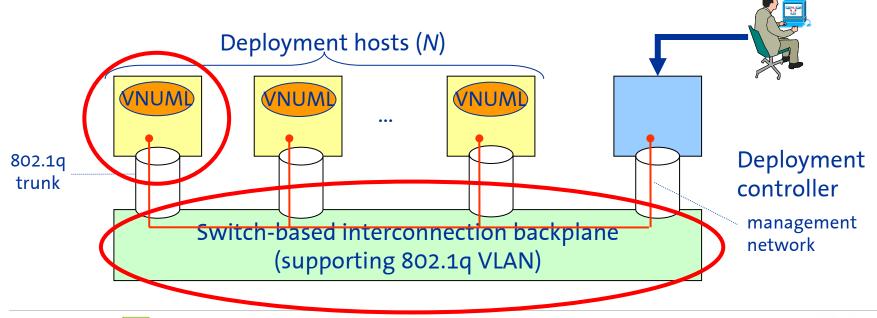
Scenario-based management example: VNUML

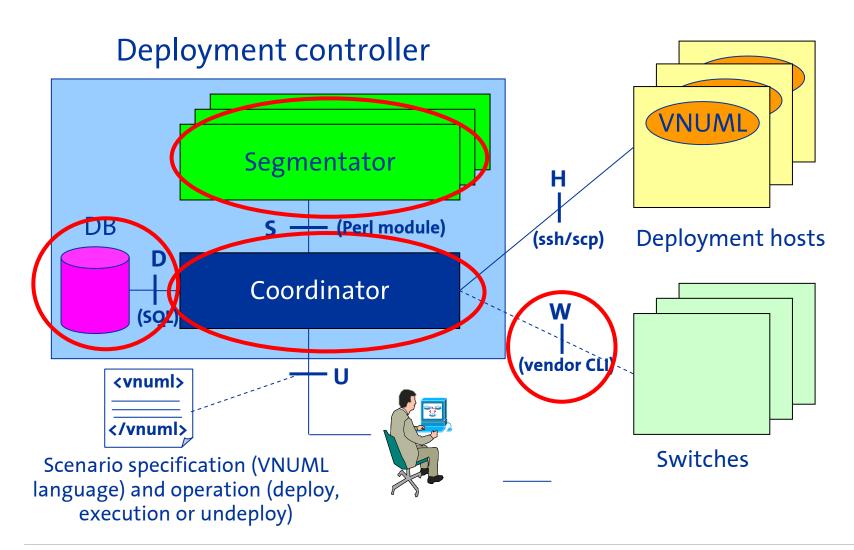
O1 Introduction (3/3)

Problem Statement

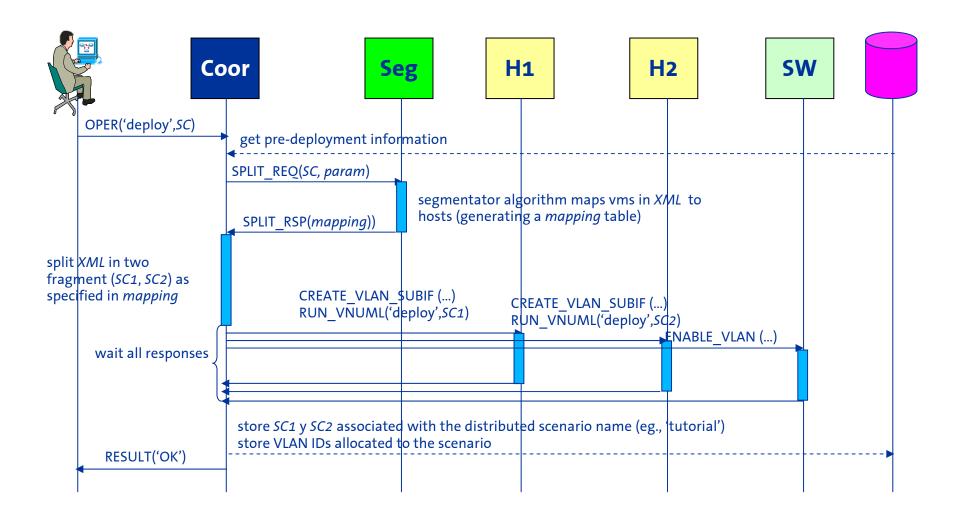
- Scenario-based virtualization tools use to consider just one physical host deployment
 - Scalability problems (e.g. a 1000 VM scenario)
- We have designed and implemented a distributed virtualization management tool named EDIV which purpose is to deploy scenarios in a cluster of N physical hosts.
 - Based on VNUML (in other words, VNUML scenarios can be used in EDIV without modifications)
 - Modular and extensible partition algorithm
 - A partnership project between Telefónica I+D and Universidad Politécnica de Madrid (Spain) which prototype results are publicly available (GPL).

TELEFÓNICA I+D


- 01 Introduction
- O2 Design
 - General architecture
 - Deployment controller
 - Operation
- **O3** Practical Results
- O4 Alignment with DMTF's Standards
- 05 Summary

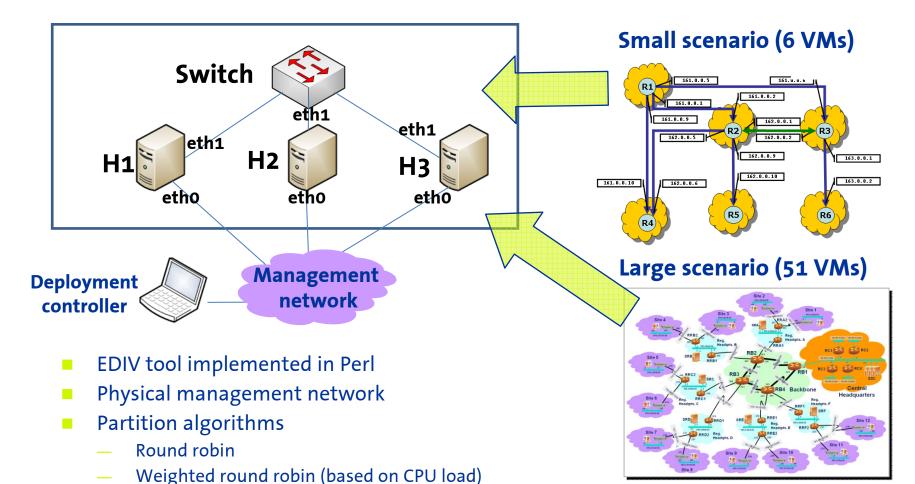

O2 General Architecture

- Deployment hosts
 - GNU/Linux systems with VNUML installed along with other utilities (vconfig, sshd, etc.)
 - VNUML provide three operations: deploy, execution and undeploy
- Switch-based interconnection backplane
 - One or serveral Ethernet switches providing end-to-end 802.1q trunks
 - A management network (physical of VLAN) must be implemented


O2 Deployment Controller

O2 Operation

Deployment


- 01 Introduction
- O2 Design
 - General architecture
 - Deployment controller
 - Operation
- **O3** Practical Results
- **04** Alignment with DMTF's Standards
- 05 Summary

O3 Practical Results

Experiment Setup

physical host")

Deployment constraints ("VM A and B in the same

O3 Practical Results

Virtual machine distribution

	Deployment host loads			Round-Robin			Weighted Round Robin		
	L1	L2	L3	H1	H2	H3	HI	H2	H3
Small scenario (6 VMs)	L	L	L	2	2	2	2	2	2
	M	M	M	2	2	2	2	2	2
	Н	L	L	2	2	2	1	3	2
	Н	M	M	2	2	2	2	2	2
Large scenario (51 VMs)	L	L	L	17	17	17	17	17	17
	M	M	M	17	17	17	17	17	17
	Н	L	L	17	17	17	7	22	22
	Н	M	M	17	17	1/1	13	19	19

L (*low*) ⇒ 0% load

 $M (medium) \Rightarrow 50\% load$

 $H(high) \Rightarrow 100\% load$

03 Practical Results

Time comparison

- How much does it take to deploy each scenario?
 - With VNUML

Small scenario 42 s

Large scenario 282 s

With EDIV (low mean load)

Small scenario 17 s

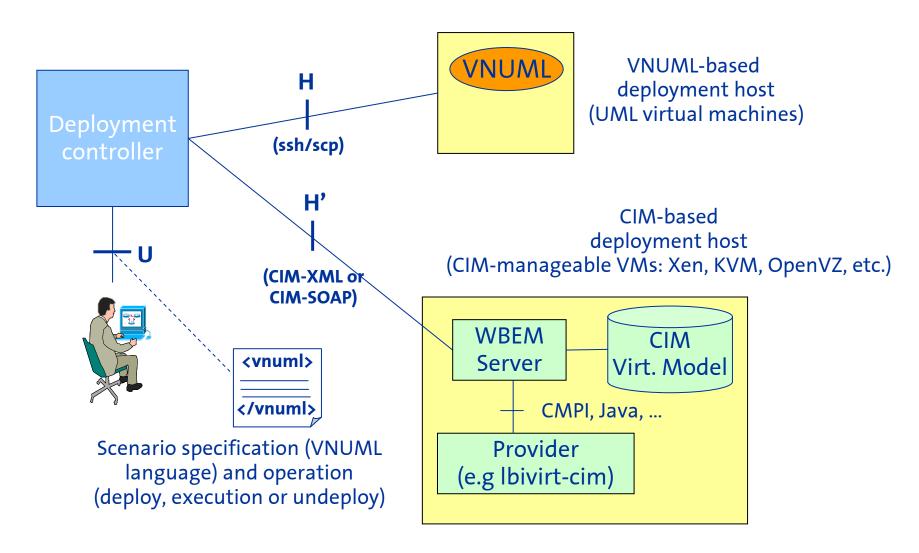
Large scenario 130 s

With EDIV (high mean load)

Small scenario: 43 s

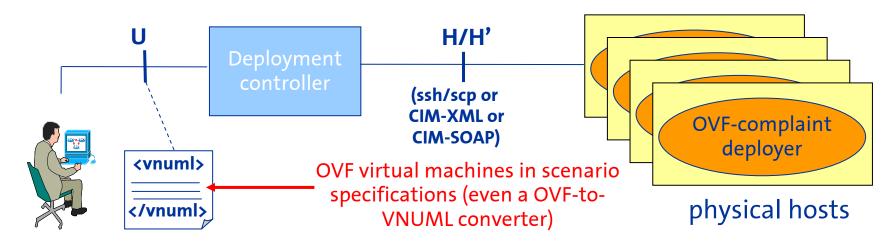
Large scenario: 135 s

EDIV can achieve a **50-60%** saving regarding the monohost case with VNUML


- 01 Introduction
- O2 Design
 - General architecture
 - Deployment controller
 - Operation
- **O3** Practical Results
- O4 Alignment with DMTF's Standards
- 05 Summary

O4 DMTF's Standards Alignment

CIM-based virtual machine management



O4 DMTF's Standards Alignment

OVF based virtual machines in EDIV scenarios

- Open Virtualization Format (OVF)
 - Recently published DSP0243 1.0.0d (September 2008)
- Why introduce OVF in EDIV?
 - To use virtual appliances highly optimized for specific purposes in EDIV scenarios (e.g., firewalls, dynamic routing stacks, etc.)
 - To smooth the migration from development/pre-production environments to production
- How to do it?

05 Summary

Main conclusions

- EDIV architecture solves the problem of scenario-based virtualization management in distributed multi-host environment (as checked by ours experiments)
 - Scalability
 - Dramatic reduction (50-60% saving) in deployment time
- Simple and open API to develop new partition algorithms
- Transparency to VNUML users (the specification language is the same)

Work in progress

- Wide-area deployment environment (instead of a local cluster)
 - This is being working out in PASITO (a distributed experimentation platform within RedIris, the Spanish National Research and Education Network)

Future working lines

- Alignment with DMTF's standards
- Virtual machine filesystem management

Telefonica

EDIV tool and documentation is freely available at http://www.dit.upm.es/vnuml