
A Network Management Platform adaptable to CIM Model evolution

Nathalie Rico, Omar Cherkaoui and Elmi Hassan
Univerisité de Montréal, University of Quebec in Montreal

rico@info.uqam.ca, cherkaoui.omar@uqam.ca

Abstract

Network Management application developers are
facing the challenge of the constant evolution of the
information model used by the applications and the
escalation of the functionalities the applications need to
fulfill. The main problem is to introduce the new
functionalities or new services on the platform in an
efficient, cost-effective, and flexible manner. The difficulty
is to minimize the impact on the already developed core
software and applications. This paper proposes a
framework allowing the evolution of the network
management platform to adapt to the changes occuring
during the Platform life cycle. The proposed platform
framework is based on the CIM information model and its
PCIM extension. The framework allows to extend the
platform capability and enables an automatic validation
while elimating the need to write adaptation code. We
present the platform framework in the case of the policy
manager. We illustrate how the platform can easily
evolve to incorporate the new classes corresponding to
the new services using the example of the Virtual Private
Network (VPN) policy management.

1. Introduction

Networks are evolving at a dramatic paste, both in size
and in complexity and need management solutions that
can adapt to those transformations and cope with the
increased complexity. One problem that the industry is
facing is the constant and parallel changes occurring in
the information models used to build those network
management applications and store persistent data. Such
changes in the information model usually mean that new
services and data need to be addressed. The application
that used the information model needs to be enhanced to
support these new services and data. This paper proposes
a solution to this platform evolution problem. We
developed a Framework architecture that allows the
evolution of the management applications to changes in
the information model or to services. We present the
platform framework in the case of the policy manager.

This work was triggered by our own experience in

developing a policy management platform at UQAM. The

platform was subject to multiple iterations. Changes were
required to comply with the new policy information model
standard versions. New applications based on the policy
platform were developed: a policy application for a
virtualclassroom [1] and a policy management for Optical
Virtual Private Networks (VPNs) [2] [3]. For each new
application introduced on the policy platform, developers
had to rewrite a large portion of the platform code to adapt
the platform to the new model needed by the application.
The developer’s difficulty in adapting the platform led to
the proposed framework that recreates the platform core.

Various approaches have been proposed to solve the

problem of platform evolution or new service introduction.
Historically, the first approach proposed used APIs. This
approach quickly led to scalability issues. The limitations
of the API approach resulted in the use of middleware
(such as a message bus or CORBA) [4][5]. However those
middleware approaches force the applications to use
adapters for interfacing with the message bus. Writing
adapters can be time consuming and adapters are subjet to
changes when new services are introduced. Another
serious problem with this approach is that the process
flow is embedded in the application or adapter logic. Other
approaches are being proposed using a component-based
architecture [6][7]. Those approaches allow plug-and play
operation, dynamic discovery and dynamic invocation.
The dynamicity is achieved by using an external process
engine that defines the process flow. The process
definition is exported into some standard format and
loaded into the runtime environment of the process
engine. This approach also requires a bus of middleware
to exchange the information. The developer needs to know
the bus API to add the new required services. Also, as
more services are introduced, APIs need to evolve to
allow information sharing.

This article presents a different approach that facilitates

the model changes or the introduction of new services
occurring in different time-scale of the Framework life
cycle. The proposed Framework architecture allows the
network management platform to expand in order to
support new requirements with minimal code changes. The
framework also allows to extend the platform capability
while eliminating the need to write adaptation code. The

Framework data core is composed of generic classes that
are adaptable to any data and are capable of linking
themselves together. An XML (eXtended Markup
Language) Schema hierarchy defines both the data
structure and their possible associations. The information
model description in the XML file can then be changed
without hardly any modification to the Framework data
core. The framework enables an automatic validation with
a validation tool linked to the XML schemas.

The second section of this article presents the platform

framework. The platform framework is illustrated for the
case of the policy manager. The third section details the
platform core. The policy model is based on the Policy
Common Information Model (PCIM). The fourth section
presents the mapping between the information model to
XML and XML to the LDAP repository. We illustrate how
the platform can recreate the new classes corresponding
to new service addition using the example of Virtual
Private Network (VPN) policy services. Finally, we draw
concluding remarks and present an outlook of future work.

2. Platform framework

The platform life cycle is presented and a conceptual
view of the platform is shown.

2.1. Platform life cycle

In analyzing the life cycle of a network management
platform, we came to the realization that the platform
undergoes various types of changes required to support
new network elements, new services or to evolve the
fundamental static portion of the platform.

Figure 1 illustrates the framework changes occurring in

different time-scales of the platform life cycle. The first
time-scale relates to the most static portion of the
information model and is subject to major changes every
three or four years. It implies substantial code updates and
the release of a new Framework version. The second time-
scale ranges from four to six months and corresponds to
the introduction of new applications using the platform
Framework. For example, in the case of the policy platform,
it corresponds to the introduction of VPN MPLS and
VLAN Services [1][2][3]. In that case, the updates to the
information model do not affect directly the Framework.
The last and shortest time-scale represents the release on
the market of new equipment, a frequent event that can
happen every month or two. Finally, configuration or
topology changes can impact the platform.

Information Model

Information Model

Information ModelInformation Model

Policy
Manager v1

VLAN
Services

SD

Professio nal Workst ation 6 000

PRO

Time

Framework

Services

Equipement and

VPN MPLS
Services

Acces list
Services

Network
Elementspecific

configuration

Information Model

Policy
Manager v2

Network
Element

SD

SD

1100 CAT 5MOD ULA RJACK

PANE L

L ucent

1 2 3 4

25 26 2 7 28

5 6

29 3 0

7 8 9 10

3 13 2 33 34

11 1 2

35 3 6

13 14 15 16

37 38 39 40

1 7 18

4 1 42

19 20 2 1 22

43 44 4 5 46

23 2 4

47 4 8

Network
Element

Year 1 Year 2
SD

Pro fessional W orkst ation 6000

PRO

SD

Figure 1. Platform Life Cycle

2.2 Conceptual View of the Platform

Figure 2 illustrates the conceptual view of network
management platform consisting of a presentation layer, a
business layer and a persistent layer.

Figure 2. Conceptual View of a Network Management
Platform

The Business Layer is composed of two levels, the

Manager Framework and the Application Components
that are “plugged” to the Framework. These Components
are made of two types of classes, classes that extend some
of the Framework classes and newly created ones that
belong to the Application domain. The Framework is
composed of core classes that can be extended by the
application in order to use the management services it
provides.

In the case of the policy manager, the policy manager

framework is based on CIM and its policy extension PCIM.

Business Layer of
the Application

Application
Components

Persistent
 Layer

Presentation
Layer

Management
Framework

The LDAP repository is used to store the management
information.
3. Case of Policy Manager: platform
framework

This section presents the case of the policy
management platform and details the platform framework.

3.1 Platform Framework overview

In the case of the policy manager, the model used is the

CIM and its extension PCIM.

Illustrated below in figure 3 is the proposed Framework

architecture. The architecture is composed of four levels
of classes in order to support the different time-scale
change requirements. The first level is the Generic or meta
classes (e.g. CIM_Class and CIM_Association). The
second level corresponds to the Static classes modeling
the Framework behavior. Generic and Framework classes
model the most static portion of the information model that
changes less frequently. Impacted on a more frequent
basis, the Application level classes are specific to the
application (e.g. Vendor Policy Condition) or model
network equipments. Finally the fourth level corresponds
to the Virtual classes that change on the most frequent
basic.

 Generic Class

Static Class

Application
Class

Virutal Class

Figure 3. Overview of the Framework Architecture

3.2 Framework Classes

The Framework itself is built on two kinds of classes;

Generic and Static (see Figure 4). The Generic classes use
CIM Meta Schema elements and are implemented as
defined in the CIM Specification. The Generic classes in

the Policy Manager Framework are hence composed of the
following four basic classes: CIM_Class,
CIM_Association, CIM_Property and CIM_Reference.

Figure 4. CIM Meta Schema Classes and their relations

The CIM and PCIM schemas define the Static classes

in the Framework.. The Static classes of the Framework
are specialization of the Generic classes and they
incorporate the business behavior. The services offered
to application developer give them the opportunity to
extend CIM and to combine new services to the ones
provided by the Framework. The extended classes are
called Application Classes in the Franework. The
validating rules of the Static classes are defined in the
Framework and by the application developer for the new
or extended classes. The validation process is described in
section 4.

The last level of customization proposed enables the

end-user to create new classes of object, Virtual classes.
Virtual classes extend the classes offered by the
applications. Virtual classes can be used in the case of
new network element releases that need to be supported.
For example, a new type of Switch can be created and
stored on the LDAP server with its own set of properties
on top of the already defined Switch’s properties. The
schema is modified and the new object type will then be
recognized.

4. Communication and validation tool

 The Framework uses XML to describe the information
model and to validate the structure. The XML information
is then mapped in the LDAP structure.

4.1 Model mapping

XML Schema can provide metadata through two

documents: a schema document specifies the properties

(metadata) for a class of resources (objects). Each instance
document provides specific values for the properties.
DMTF has proposed a mapping from CIM to XML using
the “Meta Schema Mapping” instead if the “Schema
Mapping” [11]. In a meta-schema mapping, Meta Elements
such as Class and Property will describe the CIM Schema
instead of describing each element separately. That
decision was based on the limited capacities of the DTD
technology to describe the semantics of XML Documents.
Since then, the W3C has approved the XML Schema
Standard that allows more elaborate semantic description.

In our proposed Framework, we use XML Schemas and

builds a Schema Mapping of CIM instead of a Meta
Schema Mapping in order to provide a more powerful
validation tool to the Framework. If the Meta Schema
Mapping is used, only the form and not the content of
XML Documents can be validated. In the following
example showing an XML Document written following the
Meta Schema Mapping, it is not possible to constrain an
instance of “Class” to have an attribute name
“PolicyRuleName”. If the PolicyRule instance does not
contain an element named PolicyRuleName, no error will
be raised directly by the XML Schema since the Meta
Schema Mapping can only determine that a Class instance
must have a “name” attribute.
< Class name=”PolicyRule”>
 < Property
name=”PolicyRuleName”>Policy12</Property>
</Class>

Instead when the Schema Mapping is used, the XML

Document is as follows:
< PolicyRule>
 < PolicyRuleName > Policy12 </ PolicyRuleName >
<PolicyRule>

In this case, the XML Schema clearly states that an

element named PolicyRule must contain a child element
named PolicyRuleName. If the PolicyRule does not contain
a PolicyRuleName element, the XML Schema will raise an
error.

The proposed policy manager framework uses the
LDAP for storing the policy information [12][13]. The
XML schema is mapped to the LDAP schema as per the
standard proposals [14].

4.2 XML and Validation

The framework architecture is based on Generic self-
described classes. The mandatory properties and the
possible relationships between Classes are validated
through the use of XML Schemas. Using such method of

validation allows a one-step verification of instances of all
elements described in the XML Schema. It also allows
changing the information model and the inherent
validation by updating the XML Schema.

A hierarchy of XML Schemas describes the information

model used by the Framework and by the applications.
These XML Schemas each represent a level of the
Framework architecture. At the top of the hierarchy is the
CIM XML Schema that describes the most static part of
the Framework, in this case the policies. All the data,
coming either from the GUI, the Core Components or the
LDAP server then only needs to be transformed into an
XML Document that uses the proper XML Schema in
order to be validated.

Figure 5. Validation with an XML Schema

Figure 5 represents a single level architecture using one
XML Schema to validate data coming from three different
layers in the application. The architecture has multiple
levels: multiple classes of objects and their XML Schemas
form a hierarchy as shown in figure 6.

Application
Component Persistant

Layer

Presentation
Layer

XML
Document1

XML
Document3

XML
Document2

XML Schema

Figure 6. Class Hierarchy and associated XML Schemas

The hierarchy of XML Schema allows an easy
validation. Furthermore if any change occur in the
application the only thing that needs to be changed for
the validation process is the XML Schema.

Moreover, since the schema is self-describing, the
Classes of the Policy Manager Framework and the ones
created for the Application can be used easily. Since the
XML Schema of the Framework is built-in, the developer
of new applications will have to extend the lowest XML
Schema in the hierarchy to add new integrity constraints.
These constraints will then be applied to the newly
created classes or to the Framework extensions, making
the validation process accessible to the Framework user.

Also as showed in figure 7, the properties of the virtual

classes are not defined in any XML Schemas and their
validation them becomes the sole responsibility of the
LDAP Server. The Application Components will validate
only the properties and relationships defined in the
superclass. The new objects and their new properties
transit through the Application Components without
being validated. The validation occurs only when there is
an attempt to store the information on the LDAP server: an
exception can then be raised and returned.

5. Policy Platform Implementation

We have built the policy management platform using
the framework presented and exploiting XML to perform
validation. The policy platform is composed of the
following elements: a policy user interface, a SQL
database, a LDAP repository and three APIs. The first API
allows creating new classes in the CIM-based information

model. The second API allows reading and editing the
information model instances. The third API allows
mapping XML to LDAP. Figure 7 shows the Policy
Platform components.

SQL

LDAP

API

JDBC

JNDI

API

Policy
Editor

API
(XML

mapping)

Information
Model Mapping

User

User

Policy Manager

Figure 7. Policy Platform components

The Policy Platform allows creating new classes . The

Policy Manager Class editor is show in Figure 8.

Figure 8. Policy Manager Class Editor

6. Experimentation: adding new policy services

We will present the experimentation using the
MultiProtocol Label Switching (MPLS) virtual private
network (VPN) policy manager. A VPN uses shared

facilities from a public network to provide the appearance
and benefits of a private one, including continuous
availability and reliability. VPNs offer organizations the
network infrastructure needed to provide efficient
communication channels for employees and corporate
partners. For the customers, a VPN can extend the IP
capacities of their enterprise to remote offices’ and/or
users' intranet and dialup services [15].

Policies provide rules of how network devices deliver

services to users or sites at a given time. In the CIM
model, policies are represented by a class that associates
network devices, device profiles, sites, users and services,
and a scheduler, all of which being also represented by
classes. These are LogicalElement, OrganizationalEntity,
AdminDomain and NetworkService. In order to manage
VPN services, we need to extend these classes. Figure 9
presents the overall VPN model.

Organization

-SP-ID : int

ServiceProvider

AdminDomain

-role : String

System

LogicalElement

-name : String

VPNSite

ComputerSystem

ServiceAccessPoint
Service

NetworkService

VPNService

-name : String

LogicalRouter

OrganizationalEntity
*1AdministeredBy

-VPN-ID : String

VPN

LogicalLinkService

TunnelingService

QoSService

-LLink-ID : String

LogicalLink

-tunnel-ID : String
-unidirectionnal : Boolean

Tunnel

ManagedElementManagedSystemElement

Policy

*
0..1

PolicyInSystem

Figure 9. Overall VPN Information model

Policies provide rules of how network devices deliver
service The extended model is mapped to XML schemas.
The new data types corresponding to the new services are
hence created. As per the defined framework, the extended
derived objects are tagged “application”. Application
XML schemas describe those classes. The mandatory
properties and relationships are validated through the use
of those XML schemas.

New services can be incorporated in the policy platform

in a transparent way. The Policy editor tool can hence
adapt to the services added on the platform and the new
policy created without the need to rewrite a large amount
of code.

7. Conclusion

This article proposed a solution for evolving the

network management platform to adapt to the constant
changes imposed on the platform. The framework was
presented for the case of the policy manager. Reducing
the amount and the complexity of software changes is one
of the biggest issues in any platform evolution. The
proposed approach evolves the core information model
and uses XML to communicate the model to all platform
components.

Incorporating the description and validation of data on

an XML Schema provides an easy way to make
modification without having to go back to the code.
Making XML Documents the data format for the
Framework to communicate with other components ensure
that proper validation will be done and that any
component that want to use the Framework has to use the
same XML Schema or extended versions of the Schema.

With the proposed framework, the experimentation

demonstrates the ease of recreating the platform. We were
able to adapt the policy platform to incorporate the new
VPN policy management services by modifying the
information model. The framework verifies the new model
by validating the associations between the classes.
Developers do not need to worry about relationships
between classes shared between services nor do they
need to modify the code. Finally the approach allows
adapting to new configuration parameters as they are also
described in XML schemas.

The proposed framework can deliver a more scalable

platform as the information model is recreated with the
needed extension to support the deployment of new
services. It facilitates also the information sharing between
services. The approach is less complex than the
middleware solutions, as it enables an easy integration of
new services or an easy removal of obsolete functionality.
Finally, the approach can cope with the rapid changes in
the network elements alleviating the burden of developers
on the platform update task.

A management design pattern catalog can also be

introduced in the framework [16]. It provides a set of
patterns to ease the construction of CIM-based
management models.

Fundamental to the approach is the in-depth

understanding of the information model. The flexibility of
the information models (CIM or other standard models)
makes the analysis task for the developer non trivial.

Future work could focus on developing semantic tools
that can help developers navigate and better use the
model. The Web technology semantic [17] could be used
to alleviate this problem. Network management ontology
can also help define a vocabulary and a semantic that can
clarify the model. An ontology will provide an explicit and
formal representation of the domain knowledge expressing
the objects belonging to that domain, the object properties
and the relationship between those objects.

Other possible research avenue is to consider the

combination of the component-based approaches with
this solution in order to benefit from both approaches.

7. References

[1] Omar Cherkaoui, et all., Policy Management for
Virtual Classroom over WAN network, SPIE ITCOM2001,
Denver, August 2001.
[2] Cherkaoui Omar, Mounir Boukadoum, Alain Sarrazin,
Managing Network-Based VPN with Policies, submitted
paper.
[3] Cherkaoui Omar and Ahmed Serhrouchni, Managing
Optical VPNs with Policies, APOC, Asia-Pacific Optical
and Wireless Communications, 13-15 November, 2001,
Beijing, China, IEEE and SPIE .
[4] Common Object Request Broker Architecture
(CORBA/IIOP), Object Management Group (OMG),
Revision 3.0,
http://www.omg.org/technology/documents/spec_catalog.htm
[5] Joint Inter-Domain Working Group, X/Open and
Network Management Forum,
Inter-Domain Management Specifications: Specification
Translation, April 1995.
[6] Implementing OSS Workflow: End to End to End,
www.eftia.com/solutions/pdf/endtoend.pdf, March 2000.

[7] NGOSS: Development and Integration Methodology,
Version 0.4, TeleManagement Forum, July 2001.
[8] Common Information Model (CIM) Specification,
Version 2.x, DMTF.
http://www.dmtf.org/standards/standard_cim.php.
[9] Policy Core Information Model version 1, rfc3060, IETF
Network Working Group, B. Moore, E. Ellesson, J.
Strassner, A. Westerinen, Nov. 2001.
[10] Extensible Markup Language (XML) 1.0 (Second
Edition) W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006
[11] Specification for the Representation of CIM in XML,
Version 2.x, July 20th 1999, Distributed Management Task
Force, Inc. (DMTF) http://www.dmtf.org
[12] IETF 3377: Lightweight Directory Access Protocol
(v3): Technical Specification. J. Hodges, R. Morgan.
September 2002.
[13] Lightweight Directory Access Protocol (v3): Attribute
Syntax Definition, K. Dally, Editor, 19 June 2001 <draft-ietf-
ldapbis -syntaxes-00> http://www.ietf.org/internet-
drafts/draft-ietf-ldapbis -syntaxes-00.txt
[14] OpenGroup/NMF, “Inter-Domain Management:
Specification Translation”, The OpenGroup Prelim.
Specification, March, 1997,
http://www.rdg.opengroup.org/public/pubs/catalog/p509.htm.
[15] Fowler D., Virtual Private Network, Morgan Kaufmann
Publishers, 1999.
[16] O. Mehl, M Becker, A. Köppel, P. Paul, D.
Zimmermann and S Abeck, A Management-Aware
Software Development Process Using Design Patterns, IM
2003, Colorado, March 24-28, 2003.
[17] Stephen Cranefield, UML and the Semantic Web,
Proceedings of the International Semantic: Web Working
Symposium, SWWS'01, July 2001

