SVIM'B8 -— .
MUNICH T l.,“| uuuuu = SIERA

An Extension of XACML to Improve
the Performance of Decision Making

Processes when Dealing with
Stable Conditions

Romain Laborde, Thierry Desprats

21-22 October, 2008



* Introduction to XACML
— Policy language
— Architecture

Scenario
Definition of Stable Conditions

Improvement of the XACML architecture
Experiments

Conclusion & Future works




* OASIS Standard (Organization for the
Advancement of Structured Information
Standards)

— eXtensible Access Control Markup Language

— Based on XML

* Access control policy language
— Attribute based access control

* Access control management architecture
— Policy Based Management

* Protocol (Request/Decision)




XACML Policies

e Attribute Based Access Control

— Four objects:
* Subject
* Resource

* Action
* Environment

— Attribute

* any security relevant characteristics of requestors,
actions, resources, and environment
— Example

* role of the subject, name of the action, type of
resource, efc.




XACMLv2 policies

Target (Policy applies if ...)

More rules

Obligation (If effect is Permit/Deny Do ...)




XACMLVZ2 policies set

Policy Set

Target (Policy set applies if ...)

Policy

More Policies




XACML Architecture

Access M Access Request—p»
Requester

3. Request‘l 1. Decision

4. Request Notification—

5. Atgtri't&utteg ?ueries—» Context
. Attributes————
10. Response Contextpe|  1andler

Resource

6. Attribute Query 8. Attribute

7c. Resource Attributes
7b. Environment Attributes

7a. Subject Attributes

|




Scenario

XACML-
Based
Access
Control

Corporate

Internet

\\\
A @ FTP Server
IS

Public

role(S) = corporate I name(R) = ftp://ftp.example.com/private =>
Permit

name(R) = ftp://ftp.example.com/public I BW(E) < 60% => Permit
Else => Deny



ftp://ftp.example.com/private

XACML-Based
Access Control

SNMP

Agent
Internal
o Metivork
FTP Sarver

FTP Access Client SWNMP Agent |
T {| PEP/PDP/CH |i|

i .
S S

———————_ | |Afttribute Request

SNMP Get Request

SNMP Get Response

o Attribute Value
Access Decision

role(S) = corporate I name(R) = ftp://ftp.example.com/private =>
Permit

name(R) = ftp://ftp.example.com/public I BW(E) < 60% => Permit
Else => Deny



ftp://ftp.example.com/private

Stable Conditions

Descriptive definition

— A stable condition can be viewed as an expression that always
returns the same result during a given period considered to be
long.

Characterization (eligible stable condition)

— A stable condition is an expression where every argument does
not directly or indirectly depend on the value of one of the
intrinsic attributes of the request.

Request intrinsic attributes

— the attributes sent by the PEP to the Context Handler in an
authorization request

— Examples: Subject’s role, name of the resource, etc.
Request extrinsic attributes




Stable conditions processing

* Quridea:

— Remove stable conditions from policies

— Notify when the value returned by a stable condition
has changed

— Modify the policy according this changing

* Example:
1) role(S) = corporate 1 name(R) = fip://
ftp.example.com/private => Permit
2) name(R) = ftp://ftp.example.com/public £ BPermit
BW(E) < 60% => Permit
3) Deny



ftp://ftp.example.com/public
ftp://ftp.example.com/public
ftp://ftp.example.com/public
ftp://ftp.example.com/private
ftp://ftp.example.com/private
ftp://ftp.example.com/private

Modification of the XACML

Access
Requester

Reciuest Decision

\4

-
> Context
Handler

>\.

Policy
Change

A
Enhanced Inform
PAP Change Enhanced PIP
A

Environment Attributes
Requests/Responses

v
Environment Attribute ]

Attrlbute Query Attrlbute

Notlflcatlon

—P» New interactions

Providers

P Classical interactions [




Impact on our scenario

Notification that
informs the PAP on
usedBW>60%

£

I Notification Nntificatinn
XACMLk
PP

Based
Access
Control

ed

Router FTP Server

Public




Our testing environment

Test

— Time to make a decision for the request “a user wants to access the
public directory ftp://ftp.example.com/public”

— 5 times 100 requests

Router

— PC Pentium Core 2 Duo 2.13GHz, 1Gbyte RAM

— Linux Kubuntu DAPPER 6.06.1 LTS

— NET-SNMP version 5.2.1.2 for the SNMP agent et sending SNMP traps
FTP server

— PC core 2 Duo 1.66 GHz, 1Gbyte RAM and Windows XP Pro

— Sun’s XACML implementation version 1.2 (PDP and java API for PEPs,
PIPs and PAPs)

— SNMP4J java API version 1.8.2 for the SNMP client and the SNMP
traps server

Network
— Ethernet 100Mbps
— No Routing !



ftp://ftp.example.com/public

Results

O Trap analysis + Modification of the policy (Prototype 2)
m Decision process without SNMP request {Prototype 2)

@ Decision process including the SNMP request (Prototypei)

4,701

0 500 1000 1500 2000 2500 3000 3600 4000 4500 5000
Time in ps

* Evaluation

— 23 faster without looking at the MIB
* Modification of the policy represents:

— 0.3% of the evaluation process when looking at the MIB

— 8.7% of the evaluation process when not looking at the MIB
* Network

— Consulting the MIB = 2 SNMP messages/decision

— Notification approach = 1 SNMP trap message when needed




Conclusion

* All the attributes should not be considered
and processed in the same way

— Concept of stable conditions
* Notification approach in the XACML

architecture

— Extended XACML architecture to deal with
stable conditions

* Experiments




* Long term objective = self-optimization behaviour

* We have to:
— Automatic detection of stable conditions

— Management of policy modifications

* Modify of the policy and keep it correct according to the
original one

* Make this process as light as possible

— Dialogue between Policy Information Points and
Extended Attributes Providers




Thank you ...



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

