
Paul von Behren / Intel Corporation

Non-volatile DIMMs: Datapath

and Management models



Introduction to NVDIMM hardware



DMTF APTS 2015

Hardware supporting persistent memory (pmem)

Yesterday: battery backed RAM

Today: NVDIMMs with DRAM and flash
 On power down, RAM copied to flash; on power up, copy back to RAM

Emerging NVDIMMs: Phase Change Memory, 

Memristor, many others
 Offer ~ 1000x speed-up over NAND, closer to DRAM

Characteristics as seen by software
 Load/Store (memory instructions) accessible

 Would reasonably stall CPU for a load instruction

 No need for paging (at least not by the OS)

3



DMTF APTS 2015

Software access to pmem

Could treat pmem like disks/SSDs

 Existing software works, faster than with flash

 But we still have block stack latency (Intel SSD study)

With Next Generation NVM, hardware is no longer the bottleneck 4

*



New programming model for byte-

addressable persistent memory (pmem)



DMTF APTS 2015

SNIA goals for datapath programming

Define a programming model for direct access to pmem

 No kernel code in data path, use existing load/store instructions 

Use a general approach for different types of pmem

hardware

 Built into OSes 

 Use existing OS solutions where appropriate

– E.g., use existing file permissions rather than invent something new

Specify behavior, not a specific API

 Allow OS developers to implement APIs appropriate to the OS

Support application developer goals for power-fail safe 

atomicity

6



DMTF APTS 2015

Legacy memory mapped files

Background: memory 

mapped files backed by block 

devices

 POSIX mmap(), Windows MapViewOfFile()

 Disk file mapped to virtual memory

 Paged to memory when referenced (by load/store 

instructions

 msync() flushes dirty pages to disk

7

User

Space

Kernel

Space

Application

Standard

File API

Legacy

File System



DMTF APTS 2015

Persistent memory programming model

With pmem, no paging between 

persistence and volatile memory

Memory map command causes 

pmem file to be mapped to app's 

virtual memory

Sync command flushes CPU cache 

Load/Store commands directly 

access pmem

Standard read/write APIs still work
− Perhaps less performant 

8

Persistent Memory

User

Space

Kernel

Space

Application

Load/

Store
Standard

File API

pmem-Aware

File System
MMU

Mappings



DMTF APTS 2015

How this programming model meets goals

• pmem-aware file system allows pmem to be used by multiple 

applications, permissions controlled by admin

• Applications have direct access to pmem using load/store 

instructions

• Applications have control over CPU cache

• As with block storage, applications (esp. databases) want to control cache 

– flush frequently for high durability, less frequently for low latency

• Works with existing (C/C++) compilers

• Potential for friendlier programming model with language extensions, but 

we don’t want to require language and compiler extensions

• Works with existing hardware 

• Tracking emerging pmem HW features, but don’t require them

9



DMTF APTS 2015

Status of programming model

Included in SNIA NVM Programming Model specification

• http://www.snia.org/tech_activities/standards/curr_standards/npm 

SNIA NVM Programming Technical Workgroup

• Updating and extending the model

• Researching impact on transaction managers and distributed access to pmem

Supported by Linux kernel 4.2 

• New –dax mount option for pmem-aware behavior in ext4 filesystem

User-space libraries building on the pmem programming model

• NVML (pmem.io/nvml) libraries supporting transactions and other usage models

• NVM Direct (https://github.com/oracle/NVM-Direct) 

10



NVDIMM Management model



DMTF APTS 2015

Impact of NVDIMMs on management tasks

Today's volatile memory

 Discovered by OS and treated by SW as single pool

NVDIMMs introduce "flavors" of memory

 NVDIMMs support persistent byte-addressable memory or block access (i.e., 

emulate disks/SSDs)

 Memory controllers may allow 

– Configuration of a subset as byte-addressable persistent memory, block, or as 

volatile

– QoS-driven provisioning (such as DIMM mirroring)



DMTF APTS 2015

NVDIMMs (and other advances) add management 

complexity

 NVDIMM Pool topology (configured as volatile, persistent byte addressable, 

persistent block addressable, or unused)

– Allow admin to allocate pmem capacity to pmem-aware applications

 Ability to configure pool topology (allocate from unused to …)

– QoS provisioning

 Allocation of memory volumes from pools

 Health reporting

 Asynchronous notifications

 Firmware updates

 Physical Topology (NUMA affinity to CPU sockets)

13



DMTF APTS 2015

Emerging NVDIMM management standards

CIM profiles from DMTF and SNIA

• DMTF System Memory (DSP1026) existing profile limited to volatile memory

• Concern in DMTF that extending this profile could break existing clients

• DMTF Multi-type System Memory (DSP1071) (in progress) 

• reports memory regions and associated QoS attributes, 

• plus affinity and visibility of regions to processors

• SNIA SMI-S 1.7 (in progress) includes two memory configuration profiles 

• Memory Configuration Profile

• Assign NVDIMM capacity to volatile pool or to persistent pools

• Persistent Memory Configuration Profile

• Carve persistent pools into namespaces (which SW treats as volumes)

• Final draft available “soon” 

(http://www.snia.org/tech_activities/publicreview)

14



DMTF APTS 2015

DMTF Multi-Type Memory profile model

See DSP1071 for details

VisibleMemory

RawMemory

1..*

1..*

BasedOn

ResourcePool

(SNIA:Memory Configuration 
Profile)

1..*

1

ElementAllocatedFromPool

Physical Memory 

(Physical Asset Profile)

1

1

Realizes

ComputerSystem

(See Referencing 
Profile)

1

1..*

SystemDevice

MemoryController

1..*

1..*
AssociatedMemory

Processor

(CPU Profile)

MemoryAllocationSettings 

(SNIA:Memory Configuration 
Profile)

1 1
ElementSettingData

1

1..*
SystemDevice

1..*

1..*

ConcreteDependency

11..*
ConcreteComponent

RegisteredProfile

(See Profile Registration Profile)

1

1
ElementConformsToProfile

1

1..*
ElementConformsToProfile



DMTF APTS 2015

Configure Memory
See SMI-S 1.7 Memory Configuration profile

Primary Use Case: allocate visible memory from a pool (of raw memory)

• MemoryConfigurationService iAllocateFromPool() s used to request an allocation. 

• The end result of the allocation is the new CIM_VisibleMemory and CIM_MemoryAllocationSettingData instances.

• The CIM_VisibleMemory instance is associated to the CIM_ResourcePool by an ElementAllocatedFromPool association.

MemoryConfigurationServiceComputer System

(see referencing profile)

HostedService
MemoryConfigurationCapabilities

ElementCapabilities

(see DMTF Multi-type Memory Profile)

VisibleMemory

SystemDevice

ResourcePool

ServiceAffectsElement

1

(see DMTF Multi-type Memory Profile)

RawMemory

MemoryAllocation
SettingData

Element
SettingData

BasedOn Concrete
Component

ElementAllocated
FromPool

1

MemoryCapabilitiesElement
Capabilities

1

1

1

1*

1

1..*

1

1

MemoryAllocationSettingData

Element
SettingData

1

1..*

1..*

1..*

1



DMTF APTS 2015

Configure Persistent Memory
See SMI-S 1.7 Persistent Memory Configuration profile

Primary Use Case: Create a persistent namespace

• Enumerate instances of MemoryResource, find a pool that has sufficient remaining capacity and who’s 

associated CIM_PersistentMemoryCapabilities indicates support for the desired quality of service.

• Follow the CIM_ServiceAffectsElement association to the PersistentMemoryService instance that handles 

the selected pool.

• Utilize the AllocateFromPool() extrinsic, specify pool, desired size, quality of service parameters.

PersistentMemoryServiceComputer System

(see referencing profile)

HostedService

PersistentConfigurationCapabilities

ElementCapabilities

PersistentMemoryNamespace

SystemDevice ResourcePool

ServiceAffectsElement

1

(see DMTF Multi-type Memory Profile)

VisibleMemory

PersistentMemory
NamespaceSettingData

Element
SettingData

BasedOn

ConcreteComponent

ElementAllocated
FromPool

1

PersistentMemoryCapabilitiesElement
Capabilities

1

1..*

1

1

1

*
1

*

1

1



DMTF APTS 2015

Takeaways

• NVDIMM are available now

• and will be more and more common in the future

• will offer more configuration options

• Operating system support for NVDIMMs is emerging

• Applications are being rewritten to utilize NVDIMMs where available

• Platform vendors are planning NVDIMM configuration tools, health and fault 

monitoring, topology reporting

• Some NVDIMM technologies expected to support dynamic configuration

• E.g., automation/orchestration that can change balance of volatile to 

persistent memory in response to workload changes

paul.von.behren@intel.com

18


