
1

DMTF (State & Behavior WG)�

State/Behavior and
the

CIM Model

9 October 2007

Karl Schopmeyer

Chair, State & Behavior WG

Version 1.1, 22 October 2007 



Copyright @ 2007 DMTF 2

DMTF (State & Behavior WG)

Disclaimer

� The information in this presentation represents a snapshot of work in progress within the 
DMTF.  

� This information is subject to change.  The Standard Specifications remain the normative 
reference for all information.  

� For additional information, see the Distributed Management Task Force (DMTF) Web 
site. 

� http://www.dmtf.org/standards

The DMTF was formed to lead the development, adoption and unification of management standards and initiatives for desktop, enterprise and internet environments



Copyright @ 2007 DMTF 3

DMTF (State & Behavior WG)

Agenda

� What do we mean by  Behavior and State ?

� Growth of behavior integration in modeling and CIM

� A CIMState Extension to the CIM concepts



Copyright @ 2007 DMTF 4

DMTF (State & Behavior WG)

What is Behavior?

� Important question because the conceptions of state, state machines, etc. vary 
widely

� Behavior means different things to different people

� Definitions

– Behavior - A behaviour of an object is a collection of actions that the object may 
take part in, together with the set of constraints on when those actions can occur. 
The object model does not constrain the form or nature of object behaviour. The 
actions can be interactions of the object with its environment or internal actions of 
the object

– State - The state of an object is the condition of the object at a given instant that 
determines the potential future sequences of actions that object may be involved in. 
At the same time, actions bring about state changes and, hence, the current state of 
an object is partly determined by its past behaviour.



Copyright @ 2007 DMTF 5

DMTF (State & Behavior WG)

Behavior and UML

� Behavior is a core concept in UML

– Structural Diagrams (class, Object, Composite Structure, Component, Deployment, 
…)

– Behavioral Diagrams( Use case, Activity, Interaction, State Machine, Protocol State 
Machine, OCL)

• The behavioral diagrams define how the UML modeled resources interact and how they 
execute their capabilities.



Copyright @ 2007 DMTF 6

DMTF (State & Behavior WG)

The Growth of Behavioral Concepts in  Modeling & CIM

Classes 
and 

Objects

Activity Diagram

State Charts

The CIM 
Model

Qualifiers, 
Classes and 

Instances

Operations as 
a separate 

specification

Intrinsic & Extrensic

Indications & 
Subscriptions Profiles

+

+ +

OCL

Sequence Diagrams

Behavior 
Enabled 

UML

Collaboration Diagrams

+

Increasing incorporation of Behavioral requirements and Behavior Concepts

Policy 
Model +

UML

CIM



Copyright @ 2007 DMTF 7

DMTF (State & Behavior WG)

Growth of Behavior in CIM

� The original developers of CIM tried to minimize behavioral characteristics in the 
development of the CIM Information Model

� A few early CIM models introduced behavior (Ex. Application Model state classes)
� Policy Model was direct introduction of model behavior through adding model 

components (rules define conditions -> actions)
� Basic state introduced to the CIM Model with properties in selected classes

– CIM_EnabledLogicalElement: EnabledState and RequestedState
– CIM_ManagedSystemElement: OperationalStatus

� The indication/subscription model added significant behavior because specific behavior 
was required relating subscriptions to indications. However, only the model components 
were formally defined initially

� Large scale users recognized the limitations and defined behavior through profiles
– Define the usage of a group of classes (services provided)
– Define/extend the classes and instances involved
– Define the interaction between the Classes/instances of the classes
– Define the required behavior of the resource in terms of the classes/Instances
– Largely free text today

� OCL introduced as a possible behavior definition tool (OCL Qualifier)



Copyright @ 2007 DMTF 8

DMTF (State & Behavior WG)

State and State Machines

� State and State Machine Abstractions are a useful tool to define object behavior
� Historically state used in hardware and protocol design

� Adopted by OMG as core behavior definition tool

� Uneven use in software development
� State concepts are part of several management technologies

– ISO management (Common state machine mechanism)
• Single state model for operational, Usage, Administrative state

– JSR 77 – J2EE management
• Common state model for J2EE Management objects

– Goal driven or desired state management solutions
• Management automation based on state as condition and actions
• Requires concepts of state, managed component hiearchy, state hiearchy
• A number of solutions use this concept but it was never really standardized
• User sets top level desired state. Management environment attempts to move all elements in the 

defined hierarchy so that the result state matches the desired state.
• Often used to change operational state in complex system systems requiring start/stop of multiple 

subsystems to change overall state.

– CIM
• Incorporates Operational State into model today



Copyright @ 2007 DMTF 9

DMTF (State & Behavior WG)

Issues of State as behavior in CIM

� State and behavior in defining models and profiles

– Using state to define behavior of CIM Objects in response to external input

– This is a behavioral mechanism useful in the definition of models

– Using actions to define the operations one object can execute on another object as 
part of the behavior of the object.

• Example.  Object A sets a property to a defined state in object b

• This can be integrated into a state machine so that state changes cause actions.

� Define and use a common managed element state management mechanism. 
Provide a common state model for CIM Objects with concepts like:
– Predefined states (ex. Enabled, Disabled, Shut Down, No Change, Offline, Test, 

Deferred, Quiesce, Reboot, Reset

– Provide mechanisms so that hierarchies of state change can be defined.  Allows 
rolling up state changes from one element to a higher level element.

� Clients want to see state as status



Copyright @ 2007 DMTF 10

DMTF (State & Behavior WG)

Objectives of the Behavior & State Working Group

� Today CIM is still today largely an information model

� Defining behavior within CIM is difficult
– Behavior of CIM objects in relation to external inputs

– Between objects (actions from one object to another)

– Model today incorporates State variables but without means to define behavior of the objects 
themselves

– Much of management implementation specs(ex SMIS) is definition of behavior of managed 
objects and between managed objects

– Concepts like starting and stopping in reality are object interdependent and represent state

– Work should be consistent with UML concepts

� Objectives
– Define mechanisms that would enhance behavior of CIM objects and between objects to be 

defined.

– Clarify the use of State in the CIM models

– Extend CIM to allow programmatic use of state

– Extend use of management of state



Copyright @ 2007 DMTF 11

DMTF (State & Behavior WG)

What is Finite State machine?

� Described By:
– An initial state or record of something stored 

someplace 

– A set of possible input events 

– A set of new states that may result from the input 

– A set of possible actions or output events that 

result from a new state

A state machine is any device that stores
the status of something at a given time
and can operate on input to change the
status and/or cause an action or output
to take place for any given change.

A finite state machine can be used both as a
development tool for approaching and solving
problems and as a formal way of describing
the solution for later developers and system
maintainers.

FSMs model how 
objects respond to 
external events



Copyright @ 2007 DMTF 12

DMTF (State & Behavior WG)

FINITE STATE MACHINES

• Many systems have the 
characteristic of "memory".  That is, 
past behavior can influence future 
behavior.  For example, a pay 
phone must remember how much 
money has been inserted to know 
how much service to provide

• Typical technique for modeling 
these situations is with a finite state 
machine.  The states serve as the 
memory

• Abstract machines with memory are 
called sequential machines to 
distinguish them from "memoryless”
combinatorial machines like those 
represented by decision tables

� State transition Diagrams
– One mechanism for representing finite 

state machines (FSMs) is the state 
transition diagram

– A state is denoted by a rectangle 
containing the state's name

– The machine is always in exactly one 
state.  When the system obtains a new 
input, the machine moves to another 
state and performs an action, which may 
be used to produce an output

– States are connected by labeled directed 
arcs denoting the transitions among the 
states

– The labels on the arcs consist of two 
parts.  The first is the 
input/event/stimulus provoking the 
transition.  The second is the 
action/response performed.  The two 
parts are separated by a short horizontal 
line



Copyright @ 2007 DMTF 13

DMTF (State & Behavior WG)

State Machine Advantages in Behavior Definition

� Concise form for defining reaction of object to input

� Capable of extending reaction to inter-object actions ( action of one object on 
another object)

� Clearly bounded description of change to input

� Clear mathematical form that simplifies design

� Precise form of definition that is usable for code generation

� Example 
– A telephone is a device that at any given 

time is in one of several states.  For 
example, the state can be busy, ringing, 
dialing, in use, or on hook.

– User actions cause the current state to 
change.  For example, a user picking up a 
ringing telephone causes the current state to 
change from ringing to in use.

– State transition diagrams can be used to 
model software with user interfaces.

ON
HOOK

OFF
HOOK DIALING

RINGING

BUS
Y

CONNECTED

Handset
lifted Handset 

replaced

Number
dialed

Number
dialed

Handset 
replaced

Handset 
replaced

Handset 
replaced

Handset 
replaced

Line 
in use

Last number
dialed

Callee
answers

Callee
hangs up



Copyright @ 2007 DMTF 14

DMTF (State & Behavior WG)

UML STATE CHARTS

� One problem with finite state machines was the explosion in the number of 
states that occurs when several independent activities are going on 
simultaneously

� Traditional finite state machines provide no mechanisms for abstraction; the 
grouping together of related states that are relatively independent from the 
other states in a system

� David Harel developed an extension to finite state machines called state 
charts to overcome these difficulties

– Core additional concepts were hierarchical states and concurrent states 
(orthogonal regions )

BakingBaking

ToastingToasting

Heating

Door OpenDoor Open

•Graduate Attack on Complexity
•States decomposed



Copyright @ 2007 DMTF 15

DMTF (State & Behavior WG)

State and UML – The StateChart

� State Charts are part of UML
� One of The UML behavioral elements

– Shows how parts of a UML model 
changes over time

– Objects change state in response to 
events and time

� The UML state diagram captures state 
changes

� State is defined for a single UML object, 
and sequences of messages between 
objects.

� Hierarchical State Model
– Hierarchical States

– Hierarchical State Transitions

� Based on event processing architecture

� Features
– Guards

– Entry and exit actions

– Orthogonal Regions - orthogonal regions 
detect the same events and respond to 
them “simultaneously”



Copyright @ 2007 DMTF 16

DMTF (State & Behavior WG)

Using UML State Model for CIMState

� Issues

– Complexity of UML StateCharts
• Hierarchical states, orthogonal regions, etc. create a complex development/modeling 

environment

– UML Diagram based, no text language (ex. MOF � UML)

– Concepts of Actions and Constraints which do not translate cleanly to CIM
• CIM has no single condition and action language

� Solution
– Extend the CIM metamodel to incorporate behavior concepts

– Define simplified, text-based abstract notation for State Transitions

– Offer alternatives for Actions/Conditions



Copyright @ 2007 DMTF 17

DMTF (State & Behavior WG)

Behavior Meta-Model

• Based ON UML State Meta Model
• Extends CIM  meta-model

NamedElement

ActionBehavior

ActivityStateMachine

Class
Class

Behavior

Action

Sequencing

0..1 *



Copyright @ 2007 DMTF 18

DMTF (State & Behavior WG)

Full Meta Model extension (in process)



Copyright @ 2007 DMTF 19

DMTF (State & Behavior WG)

Features of CIMState

� Define  UML StateChart based State 
Machine definitions

– Events

– State Transitions

– Conditions

– Actions

� Connect State Machine to Class 
Model

– CIMState machines can be attached 
to Classes (qualifier)

� Define Actions through multiple 
languages

– CQL, SPL, OCL, implementation 
specific languages

CIM Class

{

State property 
(state qualifier 
points to State 
Transition 
definition)

}

State Transition Definition

Defines:

States transitions

Actions



Copyright @ 2007 DMTF 20

DMTF (State & Behavior WG)

class <MOName> {

actions («method1», …);

import { import aPackage.aPackageX.*;}

state <StateName> {

ignore («method1», …);

on enter { do:anAction;}

on exit {do:anAction;}

on pre-invoke (« aMethodId ») {do:anAction;}

on post-invoke (« aMethodId ») {do:anAction;}

}

transition (« fromstateX », « tostateY ») {

condition ( « aCondition »); }

}

List of ignored methods

State Description Description  of

Action or Condition
(java code)

Description of 

Condition
(java code)

Package Import

List of the 

class methods

Description of 

Transition

4 types of possible 

events (to be extended)

Overview of a CIMState Grammar



Copyright @ 2007 DMTF 21

DMTF (State & Behavior WG)

CIMState Grammar Overview
Class <MOName> {
actions ( « methodIgnored1 », ...)
import ( a Package.aPackageX.* ; )
properties ( « prop1 », « prop 2 », …)
set ( {« prop1 » , « param1 »} , {« obj1.prop1 » , « param1 »} ,

{« classe1:asso1:prop1 » , « param1 »} , ….. ) ;

state < StateName > {
ignore ( « methodIgnored1 », ..) ;
on enter { do: an action; } ;
on exit { do: an action; } ;
on pre_invoke (« a methodId ») { do: an action; } ;
on post invoke (« a methodId ») { do: an action; } ;
on exception ( « a methodId » , « an exception ») { do: an action; } ;
access ( « prop »,TYPE_ACCESS ) ;

transition ( « state Y » ) {
on at _event («a method» ,«jj/mm/aaaa hh :mm:ss» ) [ , condition ( …..) ] { do: an action; } ;
on call _event ( « a method » ) [ , condition ( «java code returning a boolean») ] { do: an action; } ;
on change_ event ( « Exp Bool en java » ) [ , condition ( … )  ] { do: an action; } ;
on signal_ event ( « a Event_Type » [ , « propX=value1 »,… ] ) [ , condition ( … ) ] { do: an action; } ;
on time_ event ( [«method »,] « durée» ) [ , synchro ( « synchro StateName ») ] { do: an action; } ;

}
} // End State Definition

state_synchro <StateName> ( « tostateY » )  {
loop ( laptime ) ;
condition ( { java code returning a boolean} ) ;
// then idem a normal state

} // fin de state_synchro

transition ( « fromstateX », « tostateY » ) {condition ( « a condition » ) }  //compatibilité ascendante

List of method that
can be used

Import a Package

List of properties for witch
the access right can be changed

State 
Description

List of method
to ignored

5 types of 
event

possible

Action or Condition
description

5 types of 
transition

event
possible

Condition or
Synchronisation

Action or 
Condition
description

Declaration of 
the parameters

Definition of 
the access
right

Pseudo -state 
description



Copyright @ 2007 DMTF 22

DMTF (State & Behavior WG)

CIMState Grammar Overview



Copyright @ 2007 DMTF 23

DMTF (State & Behavior WG)

Issues today

� Defining Actions and Conditions

– No single language in CIM for action and condition definition

– Alternatives include
• CQL

• Objects and defined in Policy Model

• SPL

• Implementation specific languages (ex. Java for Java implementations)

� Point of Integration into the CIM Models and Profiles
– This is unclear without more working examples



Copyright @ 2007 DMTF 24

DMTF (State & Behavior WG)

Expectations for this Work

� Extension to the Meta Model for behavioral elements

� Text based notation representing State models

� Usage

– It is clear that it is not logical to generally apply state concepts generally at the 
DMTF CIM Model level (attaching state definitions to CIM Classes in a model 
release). Models are still largely information models

– Useful in defining behavior specific to profiles. Behavior becomes essential to 
profile definition.

– Useful as component of tools for development of providers.

– Useful in clarifying the general issues of CIM general model of managed state and 
managed status concepts, rollup of state and status, etc.

� This work is in process today in the DMTF Behavior and State Work Group



Copyright @ 2007 DMTF 25

DMTF (State & Behavior WG)

Questions?

DMTF:  http://www.dmtf.org/

EMAIL:  k.schopmeyer@swbell.net


